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Conditions resulting from loss of cellular homeostasis, including oxidative stress, inflamma-
tion, protein aggregation, endoplasmic reticulum stress, metabolic stress, and perturbation
of mitochondrial function, are common to many pathological disorders and contribute to
aging. Cells face these stress situations by engaging quality control mechanisms aimed
to restore cellular homeostasis and preserve cell viability. Among them, the autophagy-
lysosomal pathway mediates the specific degradation of damaged proteins and organelles,
and its proper function is related to cellular protection and increased life span in many model
organisms. Besides autophagy, increasing evidence underscores a role for exosomes in
the selective secretion of harmful/damaged proteins and RNAs and thus in the mainte-
nance of cellular fitness. In this perspective article, we discuss the emerging function of
exosomes as a means of alleviating intracellular stress conditions, and how secretion of
harmful or unwanted material in exosomes, in coordination with the autophagy-lysosomal
pathway, is essential to preserve intracellular protein and RNA homeostasis. Finally, we
provide an overview about the consequences of the spreading of the exosome content in
physiological and pathological situations, and suggest putative therapeutic strategies for
these exosome-mediated alterations.

Keywords: exosomes, autophagy, proteostasis, spreading, endosome, multivesicular bodies, lysosome, neurode-
generation, aging

INTRODUCTION
The degradation and recycling of cellular material is essential for
eukaryotic cells to maintain their homeostasis. Extracellular mate-
rial and plasma membrane proteins are delivered to lysosomes for
degradation via the endocytic pathway, whereas cytosolic compo-
nents and organelles are delivered to the lysosomes by autophagy.
After a complex maturation process, autophagosomes and endo-
somes converge in the lysosome to deliver their cargo for degra-
dation. Autophagy is used by all cell types to overcome starvation,
recycle nutrients, and remove unwanted or damaged intracellular
constituents, including both proteins and organelles. In some sit-
uations, cells remove this unwanted or damaged material through
their release to the extracellular environment as exosomes. Since
exosomes can be transferred from one cell to another, secretion of
unwanted material to the extracellular environment in exosomes
may have an impact, which can be beneficial or detrimental, in
neighboring cells.

In this perspective article, we discuss the molecular and func-
tional crosstalk between exosome release and autophagy pathways.
We also discuss how conditions regulating the metabolic state of
the cell or challenging stress conditions may affect both processes
and contribute to the maintenance of intracellular homeostasis.
Finally, we discuss how exosome release may serve as a cellular
mechanism to partially bypass the autophagic defect that occurs
during aging or in diverse pathological situations.

EXOSOME SECRETION AND AUTOPHAGY ARE
COORDINATED MECHANISMS
Exosomes are small vesicles that are released by almost every cell
type to the extracellular environment. Contrary to other types
of extracellular vesicles, exosomes have endocytic origin and are
formed as intraluminal vesicles (ILVs) by inward budding of the
limiting membrane of late endosomes or multivesicular bodies
(MVBs) (1). Exosome secretion occurs in a constitutive man-
ner although cellular stress or activation signals modulate their
secretion (2). Exosomes carry specific repertoires of proteins and
nucleic acids in the form of mRNAs and small non-coding RNAs,
including microRNAs, and are considered as an unconventional
secretory pathway. Exosomes can transfer their content to neigh-
boring cells and regulate at a distance the properties of receptor
cells (3). Consequently, exosomes have been found to play a role
in intercellular communication in several physiological processes,
and contribute to organism development (4), immune responses
(5), neuronal communication (6), and tissue repair (7). However,
exosomes may participate in some pathological disorders, favor-
ing tumor progression (8) or virus spreading (9). Additionally,
given that exosomes carry damaged cellular material targeted for
destruction, they facilitate the spreading of toxic forms of aggre-
gated proteins such as α-synuclein, β-amyloid, and prion pro-
teins and thus contribute to the progression of neurodegenerative
diseases (10).
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Loading of proteins into exosomes is controlled through a vari-
ety of pathways, most of which are still not fully understood
(11). The endosomal sorting complexes required for transport
(ESCRT) machinery is essential for the sorting of ubiquitinated
membrane proteins and for the formation of ILVs in the MVB
compartment. ESCRT is composed of four multimeric com-
plexes, ESCRT-0 to III, and the VPS4 ATPase that mediates the
final ESCRT disassembly and budding of the ILVs. ILVs bud-
ding and protein sorting depend also on tetraspanin and lipid-
dependent interactions (2). An active sorting mechanism par-
ticipates in RNA targeting into exosomes, which allows some
RNA species to be particularly enriched in exosomes, whereas
other RNAs are barely detected (12). Next-generation sequenc-
ing analysis of exosomal RNA revealed that the most abundant
RNA species are small ribosomal RNA (rRNA), fragmented tRNAs,
and structural RNAs (13). Notably, exosomes also contain cer-
tain microRNAs and mRNAs. Regarding microRNA composi-
tion, a specific repertoire of microRNAs is found in exosomes
(12–15). The loading of microRNA into exosomes depends on
a tetranucleotide sequence recognized by heterogeneous nuclear
ribonucleoproteins (hnRNPs) (12). Once the ILVs are formed,
MVBs can fuse with the plasma membrane and release their
content to the extracellular environment as exosomes. Alterna-
tively, MVBs fuse with lysosomes where the content of the ILVs
is degraded. Although a great deal of effort has been placed
on understanding the mechanisms of exosome cargo loading,
less is known about the signals and the metabolic clues that
coordinate the fate of MVBs between exosome secretion or
their integration with the degradative and recycling pathways of
the cell.

Autophagy is a degradative pathway critical in the maintenance
of protein homeostasis (proteostasis) as well as the preserva-
tion of proper organelle function by selective removal of dam-
aged organelles. Autophagy occurs constitutively but can also
be induced in response to cellular stresses including limitations
to various types of nutrients, such as amino acids, growth fac-
tors, oxygen, and energy, excessive ROS or DNA damage (16).
Autophagy represents an essential cytoprotective pathway that
participates in the maintenance of cellular fitness by several mech-
anisms. Autophagy may act as a proteoquality control mechanism
that continuously degrades pre-existing cellular material and pro-
vides building blocks for the renewal of cellular components.
Degradation of self-components by autophagy is a critical survival
response against starvation conditions, as it enables recycling of
macromolecules to provide new nutrients and energy. Moreover,
autophagy leads to the elimination of potentially toxic aggregates
and limits the accumulation of ubiquitinated proteins. Autophagy
is also a critical regulator of organelle homeostasis, particularly
of mitochondria (17). Autophagy allows the selective removal of
dysfunctional mitochondria, which release pro-apoptotic factors
and generate oxygen species. To date, three autophagy-related
pathways have been described, which promote bulk as well as
selective degradation of cytosolic and organelle components. In
macroautophagy (herein autophagy), whole cytosolic regions are
sequestered inside double-membraned vesicles (autophagosomes)
that are then able to fuse either with endocytic vesicles (as MVB)

or lysosomes, which provide the hydrolytic enzymes that will
degrade autophagosomal content (18). The chaperone-mediated
autophagy (CMA) is a more selective autophagy pathway that
relies on the chaperone hsc70, which specifically recognizes
cytosolic substrate proteins that contain KFERQ-like pentapeptide
motifs. The transmembrane protein LAMP-2A acts as a recep-
tor for hsc70 on the lysosome to deliver unfolded proteins into
the lysosomal lumen for degradation in a type of autophagy that
does not require membrane reorganization (19). The third type of
autophagy, microautophagy, involves engulfment of small cyto-
plasmic components by inward invagination of the lysosomal
membrane (20).

Several lines of evidence point to a close relationship between
the different autophagy pathways and the biogenesis and secre-
tion of exosomes (Figure 1). The mechanisms that guide the
selective incorporation of proteins during exosome biogenesis
and the membrane invagination that occurs during ILV forma-
tion and MVB maturation have been proposed to be a type
of endosomal microautophagy. This endosomal microautophagy
transports cytosolic proteins into ILVs relying on the ESCRT
machinery and the chaperone hsc70. The process does not require
substrate unfolding or the essential component of CMA in lyso-
somes, LAMP-2A, but it relies on electrostatic binding of hsc70 to
endosomal acidic phospholipids (21).

During macroautophagy, autophagosomes can either fuse with
lysosomes or with MVBs. Studies on ESCRT mutants have revealed
a close relationship between the process of autophagy and MVB
biogenesis. ESCRT mutants are unable to complete autophagic
maturation due to the lack of autophagosome fusion with the
endolysosomal system (22–24) and exhibit increased number
of autophagosomes. In different C. elegans ESCRT mutants,
autophagic activity is increased, which allows cells to deal with
the detrimental accumulation of abnormal endosomes, result-
ing from defects in the ESCRT machinery. In this context,
autophagy induction contributes to increase cell survival and
organismal lifespan presumably through the selective removal of
late endosomes by the autophagy machinery (25). Remarkably,
autophagy modulators regulate MVB formation and the exo-
some release (26). Autophagy induction by starvation, rapamycin
treatment, or LC3 overexpression inhibits exosome release, sug-
gesting that under conditions that stimulate autophagy, MVBs are
directed to the autophagic pathway with consequent inhibition
of exosome release (27). Hence, the balance between autophagy
induction and exosome release might be regulated by the cel-
lular metabolic state. The challenge now is to understand how
metabolic sensors regulate the fate of certain molecules toward
autophagic degradation or secretion in exosomes, and how this
regulation impacts the autonomous and non-cell autonomous
homeostasis.

Selective autophagy as well as MVBs participates in the reg-
ulation of cellular RNA homeostasis. Assembly of the silencing
machinery to intracellular endomembranes, specifically to late
endosomes and MVBs, is critical in the regulation of miRNA activ-
ity and might determine the fate of certain miRNAs to be exported
in exosomes. Consistently, mutations in ESCRT components lead
to a decrease in miRNA activity (28, 29). Moreover, autophagy
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FIGURE 1 | Crosstalk between exosome secretion and autophagy in
maintenance of cellular homeostasis. Exosome secretion is an alternative
way to alleviate stress when recycling pathways are compromised, with an
impact in neighboring cells. Recycling mechanisms relay on
endosome/autophagy and lysosomal function. Recycling pathways include:
macroautophagy where whole cytosolic regions are sequestered inside

autophagosomes that fuse either with MVBs or lysosomes,
chaperone-mediated autophagy (CMA) where LAMP-2A acts as a receptor for
hsc70 on the lysosome to deliver unfolded proteins into the lysosomal lumen,
and microautophagy that involves engulfment of small cytoplasmic
components by inward invagination of the lysosomal or endosomal
membrane.

is also involved in the regulation of miRNA activity by promot-
ing selective degradation of DICER and AGO2 (30). Interestingly,
the lysosomal membrane protein LAMP-2A interacts with RNA-
binding proteins, such as hnRNPs, nucleophosmin, or ribosomal
proteins, and has been suggested to mediate the import and degra-
dation of RNA molecules into lysosomes (31). The sorting of
specific set of miRNAs into exosomes depends on hnRNPs (12).
Whether LAMP-2A, nucleophosmin, and other RNA-binding pro-
teins are essential for the import of RNA molecules into the
endolysosomal system and their export in exosomes needs further
investigation.

Finally, another line of evidence supports the role of autophagy
and exosomes in mediating unconventional secretion for pro-
teins that lack a typical signal peptide (32). This includes a role
for autophagy and MVBs in regulating unconventional secre-
tion of ACB1 in yeast (33, 34) and interleukin-1β in mammalian
cells (35, 36).

AUTOPHAGY DYSREGULATION AND EXOSOME SECRETION
IN HUMAN DISEASES
Autophagy malfunction is often linked to a variety of human dis-
eases, such as cancer, neurodegeneration, and microbial infection,
among many others (37). Neurodegenerative diseases are an

example to illustrate how autophagy dysfunction is linked to exo-
some release. Autophagy dysregulation in neurons may increase
the secretion and the intercellular transmission of toxic pro-
teins in exosomes and thus, contribute to the spreading of the
neurodegenerative diseases (38).

In this regard, it is well established that loss of basal autophagy
causes neurodegeneration (39, 40). The role of autophagy as a
degradative pathway is critical since it prevents aggregation of
proteins, such as hungtintin, tau, and alpha-synuclein, which are
associated with neurodegenerative diseases (41, 42). Impairment
of autophagy is accompanied by accumulation of p62 (sequesto-
some 1/SQSTM1), which leads to the formation of large protein
aggregates containing both p62 and polyubiquitinated proteins
(43). Similar inclusion bodies with p62 and ubiquitin have been
identified in various neurodegenerative pathologies, including
Alzheimer disease,Parkinson disease, and amyotrophic lateral scle-
rosis (ALS). Pharmacological activation of autophagy can mitigate
the accumulation of aggregated pathological proteins and cell
death indicating that autophagy can attenuate proteotoxicity (44).
Interestingly, MVBs and the ESCRT machinery have also been
involved in neurodegenerative diseases. In fact, it has been reported
that ESCRT-III dysfunction causes autophagosome accumula-
tion and neurodegeneration (23). Moreover, depletion of ESCRT
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subunits (Tsg101, Vps24) or overexpression of a CHMP2B mutant
associated with frontotemporal dementia, inhibits autophagic
degradation, and leads to accumulation of ubiquitin-positive
aggregates containing aggregate-prone proteins associated with
neurodegenerative diseases (22, 23). These data indicate that func-
tional MVBs are required to prevent accumulation of abnormal
proteins that can disrupt neural function and lead to neurodegen-
eration. However, functional MVBs might be also involved in the
loading and secretion of misfolded and harmful proteins in exo-
somes with deleterious effect on neighboring cells (45). Exosomes
are involved in the spread of toxic proteins in neurodegenerative
diseases such as Alzheimer, Huntington, Parkinson, and prion dis-
eases (46). In addition, misfolded proteins involved in ALS, such
as SOD, TDP-43, and hnRNPA2B1, have been found in exosomes
(12, 47–49). Upon stress, TDP-43, hnRNPA2B1, and FUS pro-
teins exit the nucleus and accumulate in stress granules, whose
clearance depends on autophagy and valosin-containing protein
(VCP) function (50). Mutations in VCP predispose humans to
ALS, frontotemporal lobar degeneration, and multisystem pro-
teinopathy, suggesting that autophagic clearance of stress granules
may be important in the context of neurodegenerative diseases.
Thus, it is possible that protein aggregates, which are not prop-
erly cleared by autophagy, may spread to neighbor neurons in
a prion-like manner. In this regard, there is accumulating evi-
dence that extracellular protein aggregates can be taken up by cells
(38), thus promoting the formation of new protein aggregates
in the recipient cell. Recent studies on alpha-synuclein (αsyn)
oligomers also support our proposal of links between exosomes
and autophagy. These oligomers can be secreted either directly
or associated with exosomes, being the secretion route strongly
influenced by autophagic activity (51). These findings suggest
that exosome-mediated release of αsyn oligomers is a mechanism
whereby cells clear toxic αsyn oligomers when authophagic mech-
anisms fail. Accordingly, we propose that prevention of exosomal
release by promoting autophagy might be a novel approach to
develop new drugs for treatment of neurodegenerative diseases.

On the other hand, it is also well established that during
aging, there is a decline in overall proteolytic activity and pro-
gressive intracellular accumulation of damaged macromolecules
and organelles (52). Insufficient digestion of damaged molecules,
which lead to a progressive accumulation of deleterious mater-
ial, might promote the release of partially digested or undigested
materials through exosomes. This is important, for example, dur-
ing age-related macular degeneration (AMD), where increased
autophagy and the release of exosomes may contribute to the for-
mation of drusen (53). Autophagy appears to decline with age, and
several key players in the autophagic pathway (ATG5 and ATG7)
show decreased expression in the brains of aging individuals (54).
In addition, a decrease in LAMP-2A is the responsible for dimin-
ished CMA activity during aging (55). Interestingly, senescence
causes an increase in exosome secretion, which is dependent on
the activation of the p53 tumor suppressor (56, 57). However, how
autophagy and exosome secretion are coordinated during organ-
ismal aging is still a largely unexplored question. Further studies
will be necessary to evaluate whether exosomes have the ability
to transmit systemic signals, which can contribute to explain the
synchrony characteristic of the aging process.

FINAL REMARKS
The selective removal and secretion of harmful proteins in exo-
somes or by the autophagy-lysosomal pathway are coordinated
processes that participate in protein homeostasis and contribute
to the maintenance of cellular fitness. Autophagy is a protective
process due to its ability to remove noxious cellular components
and also because it provides energy and basic cellular building
blocks during adverse conditions, as nutrient deprivation. In par-
allel, exosome secretion may be involved in the spreading of signals
to surrounding cells to coordinate systemic responses. Thus, we
propose that exosome secretion may function in close relation
with autophagy pathway to preserve protein and RNA homeosta-
sis, and to mediate the spreading of signals to surrounding cells in
order to coordinate organismal systemic responses. Understand-
ing the apparently intricate liaisons between autophagic regulation
and exosome secretion constitutes an interesting challenge, now
that both manipulation of autophagy and exosome secretion is
being considered as a therapeutic strategy. Hopefully, these studies
may lead to the development of novel approaches for therapeutic
intervention in diseases associated with alterations of proteostasis.
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