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It has been well-established that type I interferons (IFN-Is) have pleiotropic effects and play
an early central role in the control of many acute viral infections. However, their pleiotropic
effects are not always beneficial to the host and in fact several reports suggest that the
induction of IFN-Is exacerbate disease outcomes against some bacterial and chronic viral
infections. In this brief review, we probe into this mystery and try to develop answers based
on past and recent studies evaluating the roles of IFN-Is in infection and immunity as this
is vital for developing effective IFN-Is based therapeutics and vaccines. We also discuss
the biological roles of an emerging IFN-I, namely IFN-ε, and discuss its potential use as a
mucosal therapeutic and/or vaccine adjuvant. Overall, we anticipate the discussions gen-
erated in this review will provide new insights for better exploiting the biological functions
of IFN-Is in developing efficacious therapeutics and vaccines in the future.
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INTRODUCTION
Since the initial discovery of type I interferons (IFN-Is) as anti-
viral agents (1), these cytokines have been extensively studied
for their anti-microbial and immune regulatory properties. IFN-I
family comprises 13 IFN-α subunits, IFN-β, IFN-ω, IFN-ε, IFN-κ,
IFN-τ, and IFN-δ (in mice only) (2–8). All IFN-Is signal through
the IFN-α receptor (IFN-AR) complex to induce synthesis and
secretion of IFN-inducible genes or effector proteins with anti-
viral, pro-apoptotic, and ubiquitination-modifying properties (9–
11). The signaling pathways that IFN-Is utilize to exert various
biological effects have been comprehensively reviewed elsewhere
and will not be reviewed here [see Ref. (12)]. Numerous cell types
produce IFN-Is (e.g., macrophages, myeloid dendritic cells (DCs),
fibroblasts, and epithelial cells), but plasmacytoid DCs (pDCs)
appear to be the most prolific producers of IFN-Is (13, 14). The
production of these cytokines tends to be beneficial to the host
particularly against acute viral infections, but there are consid-
erable evidences to suggest that IFN-Is play detrimental roles in
autoimmune diseases (15), bacterial and persistent viral infections.
Herein, we review how IFN-Is could play beneficial or detrimen-
tal roles in pathogen control predominantly with respect to viral
infections and discuss how they could be used as therapeutics and
vaccine adjuvants. Furthermore, the importance of considering
the emerging IFN-ε in immunity and vaccine development will be
discussed.

THE BENEFITS AND DETRIMENTS OF IFN-Is IN THE CONTROL
OF PATHOGENS
The importance of IFN-Is in protecting hosts against pathogens
has been demonstrated in several contexts. Firstly, IFN-AR

deficient mice tend to be more susceptible to infection with
viruses (particularly acute viral infections) compared to wild-
type mice. Some examples include Henipavirus (16), acute Friend
virus (17), encephalitic flavivirus (18), lymphocytic choriomenin-
gitis virus (LCMV) Armstrong (19), Hazara virus (20), Dengue
virus (21), Respiratory Syncytial Virus (22), and numerous other
viral infections (23). Secondly, systemic exhaustion of IFN-Is fol-
lowing a primary viral infection has been shown to increase the
host susceptibility to secondary unrelated viral infections in mice
(24). Thirdly, therapeutic administration of IFN-Is can reduce
viral loads in individuals infected with chronic viruses and pro-
mote cancer regression (see below Section “The Use of IFN-Is
as Therapeutics and Adjuvants”). Finally, pathogens can attenu-
ate IFN-I responses to promote immune evasion. For instance,
human immunodeficiency virus (HIV)-1 can reduce the capacity
of IFN producing cells to produce IFN-Is (25–27), induce cyto-
pathic effects on these cells (28–32), and/or block IFN-I mediated
intracellular signaling events (33) to help establish a chronic phase
infection. Similarly, cancer immune evasion and development
could also involve attenuation of IFN-I responses. In agreement
with this,Critchley-Thorne et al. (34) have shown that various can-
cer patients have significantly attenuated expression of interferon
stimulate genes in lymphocytes compared to healthy controls.

The benefits of IFN-Is in conferring protection against
microbes have been mostly demonstrated using acute viral infec-
tion models, but several studies suggest that IFN-Is can also
assist in the control of bacterial infections. This was first demon-
strated in vitro where De la Maza and colleagues (35) showed
that IFN-I inhibit Chlamydia trachomatis infectivity of human
and mouse cell lines. Several subsequent studies have shown that
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IFN-I could indeed play important roles for inhibiting various
stages of bacterial infections. Some examples include replication
of Chlamydophila pneumoniae (36), recruitment of Myobacterium
tuberculosis target cells into the lung during early infection (37),
and invasion and transmigration of Streptococcus pneumoniae in
the lungs (38). However, IFN-Is do not always appear to render
beneficial outcomes in anti-bacterial immunity. Several studies
have reported that IFN-AR deficient mice are better protected
than WT controls following bacterial infections such as Ehrlichia
muris (39), Chlamydia muridarum (40), Listeria monocytogenes
(41, 42), Myobacterium species (43, 44), and Francisella tularensis
(45). Furthermore, induction of IFN-Is following virus infec-
tions could make hosts more susceptible to secondary bacterial
infections (46–48). The mechanisms as to how IFN-Is exacer-
bate or make hosts more susceptible to bacterial disease may vary
depending on the infection. For instance, IFN-I mediated disease
exacerbation has been linked to reduction of interleukin (IL)-17
expressing γδ T cells, increased expression of IL-10 or reduction in
cell-mediate immune responses following F. tularensis, M. Leprae,
or L. monocytogenes, respectively (42, 44, 45).

Several reports suggest that the detrimental effects of IFN-Is
could also support the establishment of persistent viral infections
depending on the quantities and duration of IFN-I induction.
IFN-Is have been shown to play significant roles in inhibiting
various stages (e.g., replication, virus assembly, protein traffick-
ing, and transcription) of HIV-1 life cycle (49–53). However,
sustained unlike transient production of IFN-Is resulting from
chronic stimulation of pDCs has been proposed to facilitate HIV-
1 persistence (54). Similarly following clone 13 LCMV infection
transient (within 24 h) hyper-induction of IFN-α and -β has been
reported to exacerbate virus pathogenesis and promote viral per-
sistence (19). However, in the same study IFN-Is were crucial for
the control of acute Armstrong LCMV infection, which was likely
due to lower IFN-I induction following Armstrong compared
to clone 13 LCMV infection. In chronic simian immunodefi-
ciency virus (SIV) infection studies, disease free phenotypes of
sooty mangabeys have been associated with the abolishment of
interferon stimulated gene expression during chronic, but not
in acute phase infection (55). Overall, it can be speculated that
early, transient yet non-excessive induction of IFN-Is (at least α

and β species) are important in the control of acute viral infec-
tions. On the contrary, chronic and/or hyper-induction of IFN-Is
could provide an environment for enhanced persistence and/or
pathogenesis of chronic viral infections.

IFN-Is AND REGULATION OF ADAPTIVE IMMUNITY
Apart from their most celebrated role as direct anti-viral agents,
IFN-Is have also been increasingly recognized as potent regulators
of cellular immune responses. Of particular interest to vaccine
development has been the ability of these cytokines to regulate
adaptive immune responses and this aspect is discussed here.

Dendritic cells are often crucial for initiating adaptive immune
responses and serve as important targets for IFN-Is to regulate
adaptive immunity. Exposure of IFN-Is facilitates maturation of
DCs via increasing the expression of DC-associated chemokine
receptors, co-stimulatory molecules, and major histocompatibil-
ity complex class I and class II antigen presentation (56–60).

Consequently, DCs that mature following IFN-I exposure can
effectively prime protective T cell responses (61). A caveat here
is that IFN-I responses could operate in a threshold dependent
manner where excessive responsiveness is inhibitory to the ability
of DCs to prime T cell responses. For instance, following LCMV
infection higher induction of IFN-Is has been associated with
heightened expression of programed death-ligand 1 (PD-L1) on
DCs and PD-L1 interaction with programed death 1 (PD-1) on T
cells can inhibit T cell activation (19, 62).

IFN-Is could also act directly on lymphocytes to alter adaptive
immune outcomes. Naïve B cells up-regulate the expression of
activation markers CD69, CD86, and CD25 following IFN-I expo-
sure in vitro (63), but in vivo IFN-Is only up-regulate CD69 and
CD86 expression on naïve B and T cells (64). The consequences of
up-regulating these activation markers are not clear, but in vitro
studies suggest it could serve to reduce the activation thresholds of
naïve B cells unlike T cells (63, 65). Alternatively, CD69 expression
resulting from IFN-I exposure can down-regulate sphigosine-1
phosphate receptor-1 on naïve lymphocytes to retain these cells
in secondary lymphoid organs (66). This retention mechanism
could facilitate a more durable interaction between naïve lympho-
cytes and DCs for efficient lymphocyte activation to occur. IFN-Is
have been reported to represent a distinct third signal for naïve T
cell activation to occur and prevent the expansion of regulatory T
cells that can inhibit T cell activation (67–69). Furthermore, IFN-Is
regulate the functions of lymphocytes even after naïve lymphocyte
activation or effector/memory differentiation. Some examples of
this include IFN-I mediated enhancement in cell division (63, 70),
survival (71, 72), interferon-γ secretion (73), cytotoxicity (74),
germinal center formation, and antibody isotype switching (75).

Despite the many studies demonstrating that IFN-Is are capa-
ble of boosting adaptive immunity; there have also been several
studies in bacterial and chronic viral infection settings suggesting
that IFN-I signaling leads to IL-10 production (19, 44, 76, 77). IL-
10 is thought to be detrimental to the clearance of these pathogens
as has been demonstrated with HIV-1 (78). It is likely that IFN-
Is up-regulate PD-1 expression (e.g., on regulatory T cells) and
PD-L1 (e.g., on DCs) on cells resulting in a milieu where PD-
1/PD-L1 interactions occur; this could facilitate IL-10 production
and exhaustion of T cell function during chronic viral infections
(19, 76–80). A caveat here is that IFN-Is in some instances can
also inhibit IL-10 production and IL-10 production can occur
independently of IFN-I signaling (76, 81). Furthermore, IFN-Is
up-regulate pro-apoptotic molecules such as Bak on T cells to
induce apoptosis independently of T cell exhaustion (82).

Overall, IFN-Is play pivotal roles in boosting adaptive immu-
nity, but the switch from becoming a booster to an inhibitor of
adaptive immunity may reflect on how much apoptosis, PD-1/PD-
L1 interactions and IL-10 signaling are induced on immune cells
due to IFN-Is.

THE USE OF IFN-Is AS THERAPEUTICS AND ADJUVANTS
The development of efficient methods to purify IFN-I and sub-
sequent high yield purification of IFN-α2 during the late 1970s
paved way for the first IFN-I based human clinical trial in 1986
where IFN-α2 was used for treating hairy cell leukemia (83, 84).
Since then the therapeutic use of IFN-Is have shown promising
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outcomes for treatment of several cancers and viral infections.
Therapeutic administration of pegylated IFN-α2 have rendered
potent anti-viral and immune enhancing effects against hepatitis
B virus infection (85, 86). A recent clinical trial has shown that sim-
ilar outcomes could be achieved even when pegylated IFN-α2 is
administered to HIV-infected patients (87). Systemic administra-
tion of IFN-α and/or IFN-β has also been reported to reduce viral
growth and clinical manifestations of herpes zoster, herpes simplex
virus, and cytomegalovirus (CMV) infections (88–91). Further-
more, systemic or intralesional administration of IFN-α and/or
IFN-β has been shown to induce a regression of skin-associated
wart infections following papilloma virus infections (92–98). IFN-
Is have also been used in synergic regimens where administration
of IFN-α2 or -β2 and anti-viral drugs (e.g., ribavirin and faldapre-
vir) could effectively reduce viral loads of certain hepatitis C virus
(HCV) genotypes and is currently the best treatment for HCV-
infected patients (99–102). A caveat here is that these regimens
have also been reported to cause adverse side-effects (103). Apart
from treatment of pathogen infections, IFN-Is especially IFN-α2,
have also been used for treatment and regression of various can-
cers (e.g., leukemia, prostrate cancer, and cervical intraepithelial
neoplasia) (104–106).

Studies in pre-clinical models suggest that IFN-Is could also be
potent vaccine adjuvants for inducing adaptive immune responses.
Some examples include when an influenza vaccine adjuvanted
with IFN-α/β administered mucosally induced significantly higher
IgG2a and IgA antibody responses and protection compared to
non-adjuvanted vaccines (107, 108). Interestingly, the species of
IFN-Is used as immune adjuvants could have different immune
outcomes in terms of enhancing adaptive immunity. Studies in our
laboratory suggest that recombinant pox viral vectors encoding
IFN-β compared to those encoding IFN-α4 or IFN-ε significantly
enhanced systemic T cell immunity against co-encoded antigens
in prime-boost vaccination settings (109). However, Xi et al. (110)
using similar prime-boost vaccination settings demonstrated that
the use of IFN-ε was much more efficient in inducing T cell immu-
nity in mucosal compartments (e.g., lung and gut) compared
to IFN-α4 and IFN-β when used as vaccine adjuvants. Another
important consideration here is that the vaccine vectors (i.e., pox
viruses) used in our studies are acute attenuated viruses and do
not chronically induce IFN-Is as is usually the case with persistent
virus infections.

There are several confounding factors that could dictate the
use of IFN-I in therapy and as vaccine adjuvants. Firstly, unique
biological effects have been reported with different members of
the IFN-I family and subtypes of IFN-α. Thus, the choice of
IFN-I species (e.g., IFN-α2 or IFN-β) could dictate the success of
IFN-I treatment or IFN-I based vaccine formulations. Secondly,
members of the IFN-I family have different binding affinities and
kinetics to the IFN-AR subunits with current comparative studies
suggesting that IFN-β has the highest affinity to IFN-AR and anti-
viral capacity (111–113). A caveat with these studies is that not all
members of the IFN-I family were compared. Thirdly, IFN-Is can
cause numerous adverse side-effects and induce autoimmunity
(e.g., lupus, thyroiditis, diabetes, dermatitis, Sjogren’s syndrome,
and arthritis) especially in patients with a history of autoimmune
manifestations (114). The autoimmune outcomes in these settings

are thought to be a combination of tolerogenic immune func-
tion failures and IFN-I mediated maturation of DCs that present
autoantigens to activate autoreactive T cells and B cells that make
autoantibodies (115).

Collectively, IFN-Is have shown considerable promise for
the treatment of cancers and pathogen infections (e.g., chronic
viruses) in some clinical settings. IFN-Is are also promising for use
as vaccine adjuvants, but the species of IFN-Is used for this purpose
could have a significant bearing on adaptive immunity generated at
certain immune compartments. For instance, IFN-β could be used
to effectively enhance systemic T cell immune responses, whereas
IFN-ε is more promising as an adjuvant to enhance mucosal T cell
immunity in the lung and the gut mucosae.

IMPORTANCE OF IFN-ε IN IMMUNITY AND VACCINE
DEVELOPMENT
Most studies investigating the roles of IFN-Is have done so mainly
analyzing the roles of IFN-α and -β. However, investigating the
roles of other IFN-I family members is beneficial for effective
therapeutic and vaccine development strategies especially given
that higher induction of IFN-α and -β could be detrimental to
the host as discussed previously. For this purpose, it is indeed
intriguing to evaluate the roles of IFN-ε, which unlike other IFN-
Is is constitutively expressed and plays various protective roles in
reproductive tissues, gut, lung, and the brain (Table 1). Since our
initial studies characterizing the roles of IFN-ε in inducing anti-
viral states on cells (109), we have found that this cytokine also
possesses potent immune regulatory capacity. Our recent stud-
ies indicated that, intranasal immunization of mice with vaccinia
virus (VV) encoding murine IFN-ε (VV-HIV-IFN-ε) unlike IFN-α
(VV-HIV-IFN-α4) or IFN-β (VV-HIV-IFN-β) could induce rapid
clearance of VV in the lung (110). Viral clearance in this instance
correlated with several immune outcomes: (i) elevated lung VV-
specific CD8+CD107a+IFN-γ+ cell population expressing activa-
tion markers CD69/CD103, (ii) enhanced lymphocyte recruitment
to lung alveoli with reduced inflammation, and (iii) highly func-
tional CD8+CD4+ double positive T cell subset [CD3highC–C
chemokine receptor (CCR)7highCD62Llow] in lung lymph nodes
(110). Next when IFN-ε was used in an intranasal/intramuscular

Table 1 | Site-specific effects of IFN-ε.

Site Function Reference

Brain Maintenance of the structure and function (116)

Lung Promote clearance of viral infections (110)

Recruitment of unique yet highly anti-viral

CD4+CD8+ T cells

Gut Enhance expression of CCR9 and α4β7 on

anti-viral T cells to promote homing to the

gut (i.e., Peyer’s patches)

(110)

Reproductive

tissues

Regulation of embryonic development

Protect male and female reproductive

tissues against infections (e.g., herpes

and Chlamydia)

(117, 118)
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heterologous HIV-1 prime-boost vaccination regimen, elevated
HIV-specific effector, but not memory CD8+ T cells responses
were detected in spleen, genito-rectal nodes, and Peyer’s patches.
Furthermore, homing marker α4β7 and CCR9 analysis showed
that unlike other IFN-Is, IFN-ε promoted the migration of
antigen-specific CD8+ T cells to the gut mucosae (110). These
results for the first time established that unlike other IFN-Is, IFN-
ε played a unique role at the mucosae. Another recent study has
also further substantiated our findings demonstrating that IFN-ε
deficient mice were more susceptible to intra-vaginal herpes sim-
plex virus 2 and Chlamydia muridarum infections compared to
wild-type mice (117). This suggests that IFN-ε could also be bene-
ficial for the control of certain bacterial infections. A caveat here is
that it is unknown whether IFN-ε could cause adverse side-effects
in humans as it has not yet been used for treatment or vaccination
purposes in humans.

Overall, IFN-ε has great potential to be used as a topical micro-
bicide or a therapeutic to control local lung/gut infections or
modulate tissue-specific immunity at sites where pathogens are
initially encountered (i.e., mucosal surfaces). Specifically, IFN-ε’s
ability to enhance CD8+ T cell homing to the gut [gut is the
primary site of HIV virus replication and CD4+ T-cell depletion
(119)] and also its ability to control infections at the lung mucosae
suggest that administration of pegylated forms of IFN-ε or vac-
cines encoding IFN-ε could be effective for controlling mucosal
pathogens such as HIV-1.

CONCLUDING REMARKS
The dual roles of IFN-Is in providing beneficial and detrimental
effects to the host in pathogen control is intriguing for devel-
oping IFN-I based vaccines and therapies. Lessons learned from
acute viral infection models and studies comparing acute versus
chronic infection states suggest that transient, but not sustained
and/or excessive induction of IFN-Is is likely to confer protective
outcomes. IFN-Is have also proven to be promising therapeutic
agents against various pathogens and cancers and could also be
used as vaccine adjuvants. The caveat here is that the vaccine vec-
tor used should ideally not chronically stimulate the production
of IFN-Is, which is expected to be detrimental for the generation
of robust adaptive immune responses. Our laboratory and others
have demonstrated that IFN-ε has great potential to provide pro-
tective outcomes against not only mucosal viral infections, but also
certain mucosal bacterial infections. Keeping this in mind, more
studies need to evaluate the contribution of the different species
of IFN-Is not just IFN-α and -β in immunity against infections.
These studies are expected to pave way for the development of
novel and effective IFN-I based vaccines/therapies against chronic
pathogens and cancers.
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