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When an antiviral immune response is generated, a balance must be reached between two
opposing pathways: the production of proinflammatory and cytotoxic effectors that drive
a robust antiviral immune response to control the infection and regulators that function
to limit or blunt an excessive immune response to minimize immune-mediated pathology
and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an
important role in this balance, particularly through the activities of the arginine-hydrolyzing
enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO)
production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing
macrophages contribute to the resolution of inflammation and wound repair. In the context
of viral infections, expression of these enzymes can result in a variety of outcomes for the
host. NO has direct antiviral properties against some viruses, whereas during other virus
infections NO can mediate immunopathology and/or inhibit the antiviral immune response
to promote chronic infection. Arg1 activity not only has important wound healing func-
tions but can also inhibit the antiviral immune response during some viral infections.Thus,
depending on the specific virus and the tissue(s) involved, the activity of both of these
arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced
disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-
CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance
of the virus from the host, as well as the severity and resolution of tissue damage, via
the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine
metabolism will continue to be important areas of investigation in the context of viral
infections.
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INTRODUCTION
Tissue -resident and monocyte-derived macrophages are innate
immune cells that play a key role in normal tissue homeosta-
sis, presentation of foreign and self antigens following infec-
tion or injury, pathogen clearance, and resolution of inflamma-
tion and wound healing. Depending on the microenvironment,
macrophages can be programed to adopt a variety of proin-
flammatory, regulatory, resolving, and immunosuppressive acti-
vation phenotypes, particularly in vivo. These activation states
exist as a complex continuum of overlapping phenotypes; how-
ever, macrophage subsets with distinct functions have been
defined (1). Macrophages are considered M1-polarized when
stimulated by IFN-γ or Toll-like receptor (TLR) ligands, such
as lipopolysaccharide (LPS), to express inducible nitric oxide
synthase (iNOS; Nos2) and produce nitric oxide (NO). NOS
enzymes metabolize l-arginine to citrulline and NO. NO is a
short-lived gaseous messenger with physiological and patho-
logical effects. Nanomolar concentrations of NO, generated by
endothelial NOS and neuronal NOS, are important for maintain-
ing homeostasis, regulating vasodilation, and for the aggregation,
recruitment, and adhesion of platelets to the vascular endothe-
lium. iNOS generates micromolar levels of NO that modulates

various pathophysiological processes and is important for killing
intracellular pathogens (2).

In contrast, M2-polarized macrophages result following stimu-
lation of cells with a variety of stimuli, including type 2 cytokines
such as interleukin (IL)-4 or IL-13. M2-polarized macrophages
express a distinct l-arginine-metabolizing enzyme, arginase 1
(Arg1), which hydrolyzes l-arginine to l-ornithine and urea. l-
Ornithine can be further metabolized to polyamines, which partic-
ipate in a variety of fundamental cellular functions (e.g., prolifera-
tion, cell membrane transport), and l-proline, which is an essential
component of collagen. In addition to playing important roles
in defense against extracellular parasites and tissue repair, Arg1
expression and activity in myeloid cells have emerged as a major
regulator of innate and adaptive immune responses (3). Other
M2-like suppressive or anti-inflammatory macrophages include
myeloid-derived suppressor cells (MDSCs) and tumor-associated
macrophages (TAMs). MDSCs are considered to be an imma-
ture population of myeloid cells, including both monocyte-like
(GR-1/Ly-6C+) and neutrophil-like (GR-1/Ly-6G+) populations,
associated with tumors or infections that suppress proinflamma-
tory responses (4, 5). Depending on the context, MDSCs have
been shown to mediate their suppressive activity via NO- and/or
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Arg1-dependent mechanisms. Importantly, macrophages are not
permanently programed, but are considered “plastic” – that is,
macrophages have been shown to change activation phenotypes
depending on the local environment.

Although the M1/iNOS and M2/Arg1 division is generally
appropriate, Arg1 can be induced in M1-like macrophages under
certain conditions. Thus, due to the spectrum of activation states
for macrophages, a framework for macrophage-activation nomen-
clature was recently suggested (6). In an attempt to avoid confusion
in this review, we focused on the specific effects of the l-arginine
metabolizing enzymes iNOS or Arg1 on the pathogenesis of viral
infections, noting other activation markers where appropriate.

Increasing evidence suggests that myeloid cell programing,
iNOS, and Arg1 contribute to the pathogenesis of numerous virus
infections, suggesting that therapies that target these cells and
pathways may be beneficial for the treatment of some virus dis-
eases. In this review, we highlight recent studies of viral infections
where myeloid cell polarization – resulting in expression of iNOS
or Arg1 – contribute to viral control or the development of chronic
virus infection and mediate the resolution of tissue damage or
cause immunopathology.

NO PRODUCTION CAN BE BENEFICIAL DURING VIRUS
INFECTION
NO has antimicrobial activity against a number of bacteria, par-
asites, and fungi (7, 8). Additionally, NO has been shown to have
direct antiviral effects in vitro and/or in vivo against several viruses,
including DNA viruses such as herpes simplex virus type-1 (HSV-
1), ectromelia virus (EV), and vaccinia virus (VV) (9, 10), as well
as some RNA viruses such as vesicular stomatitis virus (VSV) (11),
Japanese encephalitis virus (JEV) (12), dengue virus (DENV) (13),
and coxsackievirus (Table 1) (14–17). There are several advantages
of using NO as an antiviral agent. For instance, unlike complement
and antibody, NO can readily pass through cellular membranes
into neighboring cells as well as some viruses. Additionally, NO is
likely to act on a variety of both viral and virally exploited cellular
targets, inhibiting viral replication as well as limiting the capacity
of viruses to develop resistance. Lastly, the effect of NO is inde-
pendent of immune recognition of the infected cell, in contrast to
that of antiviral lymphocytes, which could be important in virus-
infected cells where expression of MHC class I molecules may be
downregulated and in some virally infected tissues such as the
brain where expression of MHC class I and II molecules is limited.

In initial studies in vitro, inhibition of EV, VV, and HSV-1 repli-
cation in mouse RAW 264.7 macrophages and in primary mouse
macrophages following IFN-γ treatment was shown to be largely
dependent on NO production (9, 10). Additionally, pharmaco-
logic inhibition of NOS or genetic deletion of Nos2 resulted in
increased viral titers and mortality following EV infection in mice
(9, 18). Moreover, NO affects several events in the late stages of
the life cycle of VV, including viral DNA replication, viral protein
synthesis, and virion maturation in vitro (32). These studies pro-
vided some of the first evidence that macrophage-produced NO
has direct antiviral effects.

In addition to inhibiting HSV-1 replication in vitro,
macrophage-derived NO has been shown to have anti-HSV prop-
erties in vivo. In a mouse model of HSV-1-mediated corneal

disease, iNOS was highly induced in the trigeminal ganglion (TG)
of HSV-1-infected mice, and its expression was markedly reduced
in mice depleted of macrophages (22). Depletion of macrophages
prior to HSV-1 infection resulted in markedly reduced iNOS
expression and higher viral loads in the TG of infected mice
(22, 23), suggesting that macrophages were the main source of
iNOS expression in the affected tissues following HSV-1 infec-
tion and that NO had important anti-HSV-1 properties in vivo.
Consistent with these data, inhibition of NOS activity resulted in
increased viral loads in the TG (22). Additional studies showed
that F4/80+GR-1+ inflammatory monocytes were recruited to
the eye via an IFN-α-driven CCL2 gradient and restricted HSV-1
replication in that tissue via NO production (24). It was further
shown that NO production by F4/80+ macrophages in the brains
of HSV-1-infected mice blocked viral replication in a partially
TLR2- and TLR9-dependent mechanism (25). Finally, following
footpad inoculation, HSV-1-infected Nos2−/− mice displayed a
delayed clearance of virus from the dorsal root ganglia (DRG)
and exhibited an increase in the frequency of virus reactivation
in DRG (26).

The reactivity of NO and its higher oxides and nitrosothiol
products (84) makes it likely that a variety of molecular tar-
gets are involved in its antiviral action. It has been shown that
NO can inhibit ribonucleotide reductase (85, 86), a rate-limiting
enzyme in DNA synthesis, and NO can lead to the deamina-
tion of mammalian and bacterial DNA (87, 88), which may be
important antiviral mechanisms. Indeed, HSV-1 encodes its own
ribonucleotide reductase and although it is not required for HSV-
1 replication in vitro, it is necessary under conditions where the
intracellular pool of deoxynucleotides is limited (89, 90). Thus, by
inactivating this cellular and/or viral enzyme, NO may halt virus
replication by directly inhibiting viral DNA synthesis.

In addition to HSV-1, treatment of primary human cells with
an NO donor following infection with human cytomegalovirus
(HCMV), a beta-herpesvirus, resulted in a significant reduction
of early and late viral protein expression (28). Consistent with
these in vitro data, Nos2−/−mice (129/Sv/Ev x C57BL/6 F1) exhib-
ited increased viral titers and mortality following infection with
murine CMV (MCMV; Smith VR194 strain) (29).

Nitric oxide has also been shown to have antiviral properties
on a chicken herpesvirus, Marek’s disease virus (MDV), which can
cause T cell lymphomas in chickens: Addition of NO-generating
compounds inhibited viral replication in chicken fibroblasts (33).
Additionally, the treatment of chickens with an inhibitor of iNOS
increased the level of MDV replication in vivo (34). Further stud-
ies demonstrated that NO production was limited to chickens that
were genetically resistant to tumor development following MDV
infection or to chickens that were vaccinated before being inocu-
lated with MDV (35). Thus, NO appeared to be produced in both
types of resistance to tumor development in Marek’s disease, either
acquired after vaccination or genetic. Together, these findings sug-
gest a role of NO in the protective immune mechanisms against
Marek’s disease, possibly through its activity on viral replication.

Finally, studies with HBV, a hepadnavirus associated with acute
and chronic hepatitis, demonstrated that HBV replicated to higher
levels in the livers of HBV-transgenic Nos2−/− mice than con-
trol transgenic mice, and transgenic Nos2−/− mice had increased
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Table 1 | Differential roles for the L-arginine-hydrolyzing enzymes iNOS and Argl in virus-induced diseases.

iNOS/NO Reference Arg1 Reference

Beneficial

for host

Antiviral Ectromelia virus (EV) (9, 10, 18) Tissue repair/

regeneration

Respiratory syncytial virus (RSV) (19–21)

Herpes simplex virus-1 (HSV-1) (9, 10, 22–26) Influenza (27)

Cytomegalovirus (CMV)a (28, 29) Coxsackievirus B3 (CVB3)d (30, 31)

Vaccinia virus (VV) (9, 10, 32)

Marek’s disease virus (MDV)b (33–35)

Hepatitis B virus (HBV) (36)

Vesicular stomatitis virus (VSV) (11)

Japanese encephalitis virus (JEV) (12)

Dengue virus (DENV) (13, 37–41)

West Nile virus (WNV) (42)

Sindbis virus (SINV) (43)

Reovirus (T3A strain) (44)

Coxsackievirus B3 and B4 (CVB3,

CVB4)

(14–17, 91)

Detrimental

to host

Immunopa-

thologic

Influenza (45–55) Immunopa-

thologic

SARS-CoV (56, 57)

HSV-1 (58–60) Murine γ-herpesvirus-68

(MHV-68)e
(61–63)

Feline immunodeficiency virus (64, 65)

Promotes viral

persistence

Cytomegalovirus (CMV)c (66) Promotes viral

persistence

LCMV clone 13 (67)

rJ2.2 strain of mouse hepatitis virus

(neurotropic coronavirus)

(68) Ross River virus (RRV),

chikungunya virus (CHIKV)

(69)

Marek’s disease virus (MDV)f (35)

Lymphocytic choriomeningitis virus

(LCMV) clone 13

(70) Hepatitis C virus (HCV) (71)

Human immunodeficiency virus

(HIV)

(72–77)

Hepatitis B virus (HBV) (78–80)

Influenza (81, 82)

Human papillomavirus (HPV)g (83)

aHCMV, in vitro; MCMV, in 129/Sv/Ev x C57BL/6 F1 mice.
bFor resistant chickens.
cMCMV, in BALB/c mice.
dIn female BALB/c mice.
eIn Ifngr −/− mice.
fFor susceptible chickens.
gMouse model of HPV-induced cancer.

liver disease (36). It was further demonstrated that NO produc-
tion by mononuclear cells, most likely macrophages, in the liver
mediated most of the antiviral activity resulting from IFN-γ pro-
duction by virus-specific T cells (36), suggesting an antiviral role
for macrophage-derived NO following HBV infection in mice.

In addition to DNA viruses, macrophage-derived NO also
exerts antiviral effects against a number of RNA viruses. Inhibition
of JEV, a mosquito-transmitted flavivirus that causes encephalitis
in humans, in IFN-γ-activated RAW 264.7 macrophages in vitro

correlated with NO production, and IFN-γ-activated RAW 264.7
macrophage-mediated inhibition of JEV replication in murine
neuroblastoma N18 cells was NO-dependent (12). Moreover, inhi-
bition of NOS activity led to increased mortality in JEV-infected
mice (12).

In terms of its mechanism of action, NO was found to inhibit
JEV RNA synthesis, viral protein accumulation, and virus release
from infected cells in vitro (12). These data suggest that NO may
be directly or indirectly inhibiting viral enzymes and/or other

www.frontiersin.org September 2014 | Volume 5 | Article 428 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Antigen_Presenting_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Burrack and Morrison Arginine metabolism in virus pathogenesis

cellular components required for viral replication, and this may
subsequently block viral protein synthesis. Additionally, NO may
interfere with the release and/or maturation of virions.

Monocyte/macrophage-derived NO may also block replica-
tion of DENV, another mosquito-transmitted flavivirus. Infection
with DENV resulted in increased levels of NO in patients with
dengue fever, the classic form of the disease (37). Additionally,
iNOS expression was induced in CD14+ monocytes from a sub-
set of acutely infected individuals (13). It was further shown that
ex vivo infection of human monocytes with DENV-1 resulted in
increased iNOS expression, and inhibition of iNOS activity led to
increased DENV antigen detection in these cells (13). Moreover,
treatment of C6/36 mosquito cells with an NO donor resulted in
reduced DENV-positive cells (13). These data suggest that DENV
replication is susceptible to NO-mediated inhibition. Consistent
with this, Nos2−/− mice were shown to be more susceptible to
DENV infection, resulting in more severe disease and increased
lethality in mouse models of DENV-2 and DENV-3 infection (38,
39). It was further demonstrated that, following DENV infection
in vivo, IL-12 and IL-18 induced IFN-γ production, resulting in
iNOS expression and NO production, which contributed to viral
control (38, 39).

In addition to monocyte/macrophage-derived NO, a recent
study demonstrated that platelets isolated from patients with
dengue fever had increased l-arginine transport and increased
NO production compared to platelets from healthy controls
(40). However, NO has anti-aggregatory properties, and Mendes-
Ribeiro et al. (40) found that dengue patients exhibited decreased
collagen-induced platelet aggregation, consistent with the vascu-
lar leak and hemorrhagic manifestations of dengue hemorrhagic
fever/dengue shock syndrome (DHF/DSS), thus establishing an
association between reduced platelet aggregation, enhancement
of the l-arginine–NO pathway, and DHF/DSS (41).

In contrast, Getts and colleagues showed that experimentally
abrogating NO activity during West Nile virus (WNV) encephali-
tis, a related flavivirus, in NO-competent mice at a specific, rela-
tively late time point prolonged survival of infected mice, while
pharmacological inactivation throughout disease did not (42).
Combined, these data suggest that although during DENV infec-
tion IFN-γ-induced NO production has a role in antiviral defense,
it is likely that dysregulation of the IL-12/18–IFN-γ–NO axis
leads to immune-mediated damage in certain flavivirus infections.
Along these lines, it has also been shown that treatment of mice
with a NOS inhibitor increased mortality rates following Sindbis
virus (SINV) infection (43), suggesting a protective role for NO
during this particular CNS infection. However, SINV replication
in the brain was unaffected. Furthermore, treatment of neuroblas-
toma cells with NO donors had little effect on SINV replication but
increased cell viability (43). These data suggest that NO protects
mice from fatal SINV-induced encephalitis by a distinct mecha-
nism that does not directly involve the inhibition of virus growth
but rather may enhance survival of the infected neuron until the
immune response can control virus replication.

Nitric oxide also plays an antiviral role during CNS infection
with reovirus. Infection of neonatal mice with the prototypic neu-
rotropic reovirus strain (T3A) induced iNOS expression in brain
areas demonstrating reovirus antigen expression and associated

virus-induced injury (44). Reovirus also induced iNOS expression
following in vitro infection of primary neuronal and glial cultures.
Reovirus was shown to infect a subpopulation of microglial cells
in vitro (44), suggesting that direct virus interaction may induce
iNOS in this specialized population of macrophages. Treatment
of neuronal cultures with an NO donor inhibited viral replication
whereas a NOS inhibitor increased viral growth (44), suggesting
iNOS has the potential to exert antiviral activity in vivo.

Finally, coxsackievirus infection has been shown to induce
expression of iNOS in macrophages infiltrating the hearts
of infected mice (17). Treatment of WT mice with a NOS
inhibitor and infection of Nos2−/− mice resulted in more severe
coxsackievirus-induced pancreatitis and myocarditis, elevated
viral loads in tissues, and decreased survival compared to WT
mice following coxsackievirus B3 (CVB3) infection (14, 15, 17).
Similarly, Nos2−/− mice infected with coxsackievirus B4 exhib-
ited decreased survival and delayed viral clearance compared to
WT mice (16). These data suggest an antiviral effect of NO against
coxsackievirus infection. Consistent with this, it was demonstrated
that NO inhibits the 2A and 3C proteinases of CVB3 in vitro (91).
Additionally, CVB3-infected outbred mice showed significantly
reduced signs of myocarditis after treatment with NO donors (91).

NO PRODUCTION CAN BE DETRIMENTAL TO HOST
MYELOID CELL PRODUCTION OF NO CAN BE IMMUNOPATHOLOGIC
DURING VIRUS INFECTIONS
Despite its protective capacity during some viral infections, NO
can also contribute to immunopathology. The pathological effects
of NO are likely due, at least in part, to oxidative damage caused by
the interaction of NO with oxygen radicals such as the superoxide
anion radical

(
O−2

)
and hydrogen peroxide (H2O2).

For example, although addition of an NO donor to virus-
infected MDCK cells reduced influenza A and B viral burden
in vitro (45), treatment of mice with inhaled NO (iNO) did not
decrease the viral load of influenza A (mouse-adapted H1N1
strain)-infected mice; in fact, prophylactic treatment with iNO
resulted in enhanced weight loss and decreased survival following
infection (46), suggesting a pathogenic role for NO. Consistent
with this, chickens, which show a high level of mortality and asso-
ciated pathology following avian influenza infection, had higher
levels of iNOS expression in the lungs compared with H5N1
influenza-infected ducks, which show relatively minor symptoms
following influenza infection (47). Additionally, Akaike and col-
leagues (48) found evidence of the production of peroxynitrite,
which is generated through the reaction of NO and O2

–, in the
lungs of influenza A (mouse-adapted H2N2 strain)-infected mice.
Moreover, inhibition of NOS resulted in enhanced survival and
decreased pneumonia, but not decreased viral loads, in influenza-
infected mice (48, 49), suggesting that NO was contributing to
pathogenesis rather than having direct antiviral effects. Nos2−/−

mice also survived a lethal dose of influenza A virus (PR/8/34
strain) infection with little histopathologic evidence of pneumoni-
tis; however, in these studies no infectious virus was detected in
Nos2−/− mice at day 6 after infection (49). The enhanced viral
control in Nos2−/− mice was shown to require the activity of
IFN-γ (51), with Nos2−/− mice also producing increased virus-
specific IgG2a antibody titers (50). Additionally, genetic deletion
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of Nos2 or pharmacologic inhibition of NOS enhanced survival of
mice inoculated with the highly pathogenic (non-mouse-adapted)
1918 influenza virus strain, although mice exhibited similar viral
loads to control mice in lung tissue at the peak of viral repli-
cation (51). Influenza infection in vitro was shown to induce
apoptosis, and a reduction in influenza-mediated apoptosis was
noted in cells treated with a NOS inhibitor (52). Similarly, fewer
apoptotic cells were found in the lungs of influenza-infected
Nos2−/− mice, suggesting that NO mediates cell death following
influenza infection (52). The cellular source of iNOS/NO follow-
ing influenza infection in mice was shown to be CCR2+ inflam-
matory monocytes that accumulate in the lungs: CCR2−/− mice
survived a lethal challenge of influenza infection (PR/8/34 strain)
and had significantly reduced accumulation of iNOS-expressing
macrophages in the lung, with no associated increase in viral titers
or dissemination (53).

It was also recently shown that a subset of monocyte-derived
dendritic cells (DCs), described as TNF-α/iNOS-producing DCs
(tipDCs), accumulate in greater numbers during the course of
lethal versus sublethal influenza infections, suggesting a patho-
genic role for this subpopulation of myeloid cells (54). Inter-
estingly, though, Aldridge et al. (54) found that the tipDCs also
stimulated a local, protective CD8+ T cell response in the virus-
infected respiratory tract, indicating both protective and patho-
genic roles for these cells in influenza infection. It was further
shown that partially compromising tipDC recruitment via treat-
ment with pioglitazone, a synthetic agonist of the peroxisome
proliferator-activated receptor-γ (PPAR-γ), was protective against
lethal influenza challenge (54). Pioglitazone treatment led to a
reduction in the levels of CCL2 (MCP-1) and MCP-3 in the BAL
fluid of influenza-infected mice (54). Pioglitazone has also been
shown to reduce the production of a wide range of proinflamma-
tory molecules, including iNOS (55), providing further evidence
for the importance of NO production by monocyte-derived cells
in the pathogenesis of influenza infection.

Pharmacologic inhibition of NOS using l-NMMA also
decreased pneumonitis and increased survival following intranasal
infection of CBA/J mice with HSV-1, despite a 17-fold increase in
viral titers in the lung at day 3 after inoculation (58). In con-
trast, treatment of BALB/c mice with a different NOS inhibitor
[aminoguanidine (AG), administered intranasally] resulted in
enhanced pneumonitis, viral titers, and mortality following infec-
tion with a different strain of HSV-1 (59). Thus, the precise role
of NO in HSV-1 pneumonitis remains to be determined. NO and
other ROS/RNS were also shown to be pathogenic in the brains
of mice with herpes encephalitis: iNOS was induced in CD11b+

resident microglia following intranasal infection with HSV-1, and
oxidative and nitrative damage was found in the brains of infected
animals (60).

A common neurological complication of HIV infection in
the developed world is sensory neuronal injury accompanied by
inflammation, which is clinically manifested as disabling pain and
gait instability. Feline immunodeficiency virus (FIV) infection
of cats, which causes similar neuroinflammation together with
immunosuppression in cats, resulted in induction of iNOS and
STAT-1, which were predominantly produced by macrophages, in
DRG (64). Additionally, inhibition of NOS resulted in reduced

nitrotyrosine and prevented neuronal injury in FIV-infected DRG
cultures in vitro (64). These data suggest that lentivirus infection
contributes to axonal and neuronal injury through a mechanism
involving M1 macrophage immune activation mediated by STAT-
1 and iNOS activation. In addition to these studies, infection of
mice with the retrovirus LP-BM5, which causes profound immun-
odeficiency, induces CD11b+GR-1+Ly-6C+ MDSC-like cells that
inhibit both T- and B-cell responses in an iNOS/NO-dependent
but arginase-independent fashion (65). This study identified an
important – and only recently appreciated – role for iNOS-
expressing myeloid cell-mediated suppression of B cell responses
in retrovirus infection.

MYELOID CELL PRODUCTION OF NO CAN INHIBIT VIRAL CLEARANCE
The oxidative effects of NO have also been shown to inhibit
immune cells, particularly T cells. This phenomenon has been
appreciated for a number of years in the context of tumors (92),
where myeloid suppressor cells can inhibit the anti-tumor T cell
response via the effects of NO in addition to other mechanisms (2,
4). In a similar manner, it has been shown that NO can inhibit the
antiviral immune response.

MCMV clearance from BALB/c mice is predominantly CD8+

T cell-mediated. A recent report showed that MCMV infection
in BALB/c mice induced CD11b+Ly-6Chi inflammatory mono-
cyte recruitment from the bone marrow to infected tissues that
was dependent on CCR2 signaling (66). This recruitment was
shown to inhibit antigen-specific CD8+ T cell activation, expan-
sion, and cytotoxic activity via NO production, thus facilitating
viral persistence (66).

In a similar fashion, NO may contribute to a defective immune
response following infection of mice with an attenuated neu-
rotropic coronavirus (rJ2.2 strain of mouse hepatitis virus). rJ2.2-
infected WT mice exhibited mild acute encephalitis, followed by a
non-lethal, chronic demyelinating disease (68). In marked con-
trast, rJ2.2 infection of mice that transgenically express CCL2
in the brain (CCL2 Tg) ineffectively cleared virus and rapidly
succumbed to the infection (68). CCL2 Tg mice mounted a dysreg-
ulated immune response, characterized by increased accumulation
of iNOS-expressing macrophages and microglia as well as regula-
tory T cells, but decreased Arg1 expression (68). These data suggest
that persistent CCL2 overexpression establishes and sustains an
immunological milieu that may predispose mice to a defective
immune response to a typically minimally virulent virus.

ARGINASE ACTIVITY CAN BE BENEFICIAL FOR TISSUE
REPAIR FOLLOWING VIRUS INFECTION
Arginase activity is important for wound healing and tissue regen-
eration through the production of polyamines and proline (2).
In the context of some viral infections, arginase activity and M2
macrophage activation have been shown to be beneficial for tissue
repair following virus-induced damage. For instance, resolution of
severe respiratory syncytial virus (RSV)-induced bronchiolitis in
mice is mediated by M2 macrophages that counteract cyclooxyge-
nase (COX)-2-induced lung pathology (19, 20). Arg1 was induced
in the lungs of RSV-infected mice, and its induction was shown to
be IL-4Rα-dependent (19). Additionally, WT macrophages adop-
tively transferred into RSV-infected IL-4Rα−/− mice restored the
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M2 phenotype in the lungs and decreased lung pathology (19). It
was further shown that the lipoxogenase pathway was important
for M2 macrophage activation and lung resolution following RSV
infection (20). Most recently it was demonstrated that treating
mice with agents that sustain Arg1 expression (e.g., IL-4/anti-IL-4
immune complexes) limited RSV-induced lung pathology (21).

Consistent with a pathogenic role for iNOS/NO following
influenza infection (described above), it was recently shown that
the presence of airway bacteria polarize alveolar macrophages
into a M2 phenotype, thus limiting influenza-mediated lethal
lung inflammation. Wang and colleagues (27) demonstrated
that priming with Staphylococcus aureus, which commonly col-
onizes the upper respiratory mucosa, attenuated influenza-
mediated lung injury via TLR2 signaling that recruited periph-
eral CCR2+CD11b+ monocytes into the alveoli (27). These
monocytes polarized alveolar macrophages into a M2 phenotype
characterized by high Arg1 as well as Ym1, FIZZ1, and IL-10
expression (27). It was further shown that S. aureus-primed M2
alveolar macrophages inhibited inflammatory cell recruitment
to the lung, including neutrophils, NK cells, and CD8 T cells
(27). S. aureus-primed M2 alveolar macrophages also expressed
higher levels of the inhibitory ligand PD-L1 (27), suggesting that
expression of a combination of anti-inflammatory cytokines and
inhibitory ligands could be the mechanisms by which S. aureus-
primed M2 alveolar macrophages limit influenza-mediated lung
inflammation.

As discussed above, coxsackievirus B3 (CVB3) infection causes
myocarditis in human beings as well as in male BALB/c mice.
Although female mice do not develop severe myocarditis, both
male and female mice have comparable numbers of infiltrating
macrophages and viral titers in the heart following CVB3 infec-
tion (30). The macrophages infiltrating the heart in male mice were
skewed toward a M1 phenotype characterized by high expression
of iNOS (17) as well as M1-associated cytokines such as IFN-γ and
IL-12 (30). Additionally, inhibition of NOS resulted in increased
viral titers and higher mortality in CVB3-infected mice (17), con-
sistent with an antiviral role for NO during CVB3 infection (see
above). However, in contrast to male mice, the heart-infiltrating
macrophages in female mice were skewed toward a M2 pheno-
type characterized by high expression of Arg1 as well as IL-4 and
IL-10 (30). Moreover, adoptive transfer of ex vivo-programed M1
macrophages significantly increased myocarditis in both male and
female mice. Strikingly, transfer of M2-programed macrophages
into susceptible male mice alleviated myocardial inflammation by
modulating the local cytokine profile from a M1 to M2 phenotype
and promoting peripheral regulatory T cell (Treg) differentiation
(30). Using different variants of CVB3, one that caused myocardi-
tis in C57BL/6 mice and one that did not, it was additionally
shown that the myocarditic variant induced a M1 macrophage
phenotype (31). In contrast, the amyocarditic variant induced a
M2 macrophage phenotype, which was also associated with the
activation of NKT cells that promoted a Treg response (31). The
ability of NKT cells to suppress myocarditis was shown by adoptive
transfer of purified NKT cells into NKT knockout (Jα18 knockout)
mice infected with the myocarditic CVB3 variant, which inhibited
cardiac inflammation and increased Treg response (31). Cardiac
virus titers were equivalent in all mouse strains indicating that

NKT cells did not participate in control of virus infection (31).
Thus, although NO appears to have antiviral properties against
CVB3, these data indicate an important role for Arg1-expressing
M2 macrophages in controlling CVB3-induced myocarditis.

ARGINASE ACTIVITY CAN PROMOTE VIRAL PERSISTENCE
AND/OR EXACERBATED IMMUNOPATHOLOGY
ARGINASE ACTIVITY CAN INHIBIT VIRAL CLEARANCE
As a consequence of their co-evolution with their hosts, viruses
have developed numerous strategies to evade the host immune sys-
tem and ensure their own replication and survival. Recent studies
have identified a new evasion strategy for viruses: exploitation of
the host’s anti-inflammatory, wound repair response to promote
chronic infection.

Two strains of LCMV – Armstrong (Arm) and clone 13 (C13) –
have been studied for decades as models for acute and chronic
infections (93). Infection of mice with the Arm strain leads
to a robust CD8+ T cell response that rapidly clears the virus
(94), whereas infection with C13 results in T cells with impaired
functionality, enabling the virus to persist (95). It was recently
demonstrated that C13 infection led to an enhanced and sus-
tained expansion of cells that resembled MDSCs (70). These
suppressive myeloid cells inhibited T cell proliferation ex vivo
via an iNOS/NO-dependent but Arg1-independent mechanism.
Another study, however, found that Arg1-expressing immunoreg-
ulatory antigen presenting cells induced during C13 infection
suppressed T cell responses (67). Most recently, it was demon-
strated that T cell responses were improved – resulting in clearance
of the normally chronic C13 infection – when either myeloid cells
or T cells lacked IL-10 production (96). Overall, these data demon-
strate the importance of iNOS/Arg1-expressing myeloid cells in
viral persistence.

Similar to LCMV C13 infection, it was recently demonstrated
that infection of mice with the arthritogenic alphaviruses Ross
River virus (RRV) and chikungunya virus (CHIKV) resulted in the
induction of Arg1 in macrophages in the infected and inflamed
musculoskeletal tissues (69). It was further shown that genetic
deletion of myeloid cell Arg1 resulted in enhanced viral control
in inflamed muscle tissue and reduced tissue pathology follow-
ing RRV infection in mice (69), suggesting an important role for
Arg1-expressing macrophages in the persistence of these chronic
viruses.

Infection of mice with Theiler’s murine encephalomyelitis virus
(TMEV) results in persistent virus infection in the CNS, which
contributes to the development of a demyelinating disease that
has similarities with multiple sclerosis. Bowen and Olson (97)
showed that CD11b+Ly-6C+ cells infiltrated the CNS follow-
ing infection and were the dominant cell type during the innate
immune response. Depletion of the CD11b+Ly-6C+ cells via
administration of an anti-GR-1 Ab resulted in reduced develop-
ment of demyelinating disease and enhanced virus-specific CD4+

and CD8+ T cell responses (97). Additionally, TMEV-infected,
anti-GR-1 Ab-treated mice had decreased myelin-specific CD4+

T cell responses compared to control Ab-treated mice during the
demyelinating disease at a later time post-infection (97). Although
the expression of Arg1 was not investigated in this study, TMEV-
infected mice had elevated expression of IL-10 in the brain and
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spinal cord (97), suggesting a role for this cytokine in the suppres-
sion of antiviral T cell responses, potentially through the effects
of Arg1.

Interestingly, a role for the modulation of arginine metabolism
in viral control versus persistence along with associated disease
has recently been demonstrated for the tumor-inducing, chicken-
specific herpesvirus MDV. We mentioned above that MDV was
vulnerable to the antiviral properties of NO, with iNOS being
induced in genetically resistant chickens and in vaccinated chick-
ens (35). In contrast, MDV induced strong macrophage arginase
activity in cell extracts from adherent monocytes from geneti-
cally susceptible chickens, but not in chickens that were resistant
to Marek’s disease, either genetically or acquired after vaccina-
tion (35). Together, these data suggest that in the case of Marek’s
disease, the state of resistance versus sensitivity to disease was cor-
related with a reciprocal balance of NOS versus arginase activities
in macrophages.

This phenomenon of Arg1-mediated T cell suppression has also
been recognized in human viral infections. Arg1 mRNA and pro-
tein levels were elevated in HCV-infected liver cell lines in vitro and
in HCV-infected liver samples compared with paired hepatocellu-
lar carcinoma samples from the same patients or with uninfected
liver tissues (71). Additionally, the number of MDSCs in chronic
HCV patients correlated with levels of plasma HCV-RNA (98). Cai
et al. (98) also found that MDSCs from patients with chronic HCV
infection suppressed T cell function via an Arg1-dependent mech-
anism. An additional study found that more PBMCs from chronic
HCV patients expressed the phenotypic markers of MDSCs than
PBMCs from healthy controls, and these cells expressed increased
levels of p47phox, a component of the NADPH oxidase complex
(99), suggesting a role for ROS in MDSC-mediated suppres-
sion. Consistent with this, CD33+ mononuclear cells co-cultured
with HCV-infected hepatocytes or HCV core protein suppressed
T cell proliferation in a ROS-dependent manner (99). Overall,
these data suggest that multiple mechanisms – including arginine
metabolism and ROS – may be at play in myeloid cell-mediated
suppression of anti-HCV T cell responses.

It has been suggested that prolonged immune activation dur-
ing chronic virus infections, such as HCV and HIV, provides
an environment that drives viral replication and disease pro-
gression (100, 101). Moreover, immune activation can drive an
anti-inflammatory response to limit immunopathology, which
can be characterized by the presence of M2-like macrophages.
Indeed, similar to HCV infection, a role for arginase and M2-
polarized MDSC-like cells has been identified in the suppres-
sion of antiviral T cell responses following HIV infection. Indi-
viduals with detectable HIV-1 infection showed an increase
in the frequency of CD163+CD16+CD14+ monocytes, which
are thought to be precursors of M2 macrophages, when com-
pared to seronegative or HIV-1-infected persons with unde-
tectable viral loads, and monocyte frequency correlated positively
with HIV-1 viremia and negatively with CD4+ T cell counts
(in patients with counts <450 cells/µl) (72). Furthermore, Qin
and colleagues (73) observed elevated levels of MDSCs, defined
as HLA-DR−/low CD11b+CD33+/highCD14+CD15− cells, in the
peripheral blood of HIV-1-seropositive subjects compared with
healthy controls, and these MDSCs suppressed T cell responses

in an Arg1-dependent manner. Moreover, PBMCs from HIV-
seropositive patients exhibited increased levels of arginase activity
(73). Cloke and colleagues (74) found that increased arginase
activity correlated with lower CD4+ T cell counts, and this asso-
ciation was abrogated following antiretroviral treatment (75).
Additionally, exposure of PBMCs to HIV gp120 expanded T cell-
suppressive MDSCs in vitro (76). These data point to a direct role
for arginase-expressing MDSC-like cells in the suppression of anti-
HIV T cell responses. Consistent with that, individuals co-infected
with HIV and Leishmania parasites had increased arginase activity
in PBMCs and plasma compared with Leishmania-only infected
individuals, even though Leishmania infection alone results in
increased arginase activity (77). In addition, the parasite load in
the spleen was significantly higher in co-infected patients (77).
The arginase-expressing cells were identified as low-density gran-
ulocytes (77). These results suggest that increased arginase might
contribute to the poor immune responses and disease outcome
characteristic of patients with Leishmania and HIV co-infection.

Hepatitis B virus (HBV) infection is another common chronic
viral infection, with estimates as high as 350 million chronically
infected humans (102). Bility and colleagues (78) recently devel-
oped a humanized mouse model with both a human immune
system and human liver cells, named the A2/NSG-hu HSC/Hep
humanized mouse model, to study the pathogenesis of HBV
infection. Following HBV infection, the mice developed persis-
tent HBV infection as well as chronic hepatitis and liver fibrosis
(78). The liver disease was associated with a high level of infil-
trating human macrophages with a M2-like activation phenotype
(78). Similarly, M2-like macrophage accumulation was seen in
chronic HBV-infected patients, and M2-like macrophage induc-
tion in the liver was associated with accelerated liver fibrosis and
necrosis in patients with acute HBV-induced liver failure (78),
suggesting a role for M2 macrophages in persistent HBV infec-
tion. Additionally,patients with acute HBV infection had increased
serum levels of arginase, and this serum inhibited IFN-γ produc-
tion by CD8+ T cells (79). Das et al. (80) also found decreased
l-arginine levels in the circulation of chronic HBV patients with
marked liver inflammation (>100 ALT) and increased arginase
activity in liver extracts taken directly ex vivo from patients with
chronic HBV compared with those from patients with other types
of liver pathology (80). They further showed that CD8+ T cells
from chronic HBV patients, regardless of their antigen speci-
ficity, exhibited less IL-2 but not IFN-γ or TNF-α production
and impaired proliferation following TCR-dependent stimulation,
indicating an aberrant antiviral T cell response in chronic HBV
infection (80). In the A2/NSG-hu HSC/Hep humanized mouse
model, HBV-infected mice had impaired liver T cell responses,
and M2 macrophages were associated with T cells in the liver
(78). Expression of the TCR signaling molecule CD3ζ was reduced
in both peripheral and intrahepatic CD8+ T cells from chronic
HBV patients; similarly, CD28 was also downregulated on CD8+

T cells from high viral load HBV patients (80). Downregulation
of the CD3ζ molecule has previously been shown to occur in the
arginine-depleted tumor microenvironment. Consistent with this,
in vitro transfection of CD3ζ and CD28 restored IL-2 produc-
tion and supplementation of l-arginine partially restored CD3ζ

expression and T cell proliferation (80). These data suggest a role
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for arginase activity and arginine depletion in the impairment of
anti-HBV T cells functions.

In the absence of iNKT cells, influenza A (PR/8 strain) infection
was shown to induce the expansion of CD11b+GR-1+ MDSCs in
the lungs of mice, which suppressed influenza-specific T cell and
antibody responses through the activity of both arginase and NOS,
resulting in higher viral titers and increased mortality (81). Adop-
tive transfer of iNKT cells reversed this phenotype; mice had an
increased survival rate, reduced viral titers, and increased virus-
specific immune responses, suggesting a novel immunomodula-
tory role for iNKT cells during influenza virus infection (81).
Moreover, these authors identified that influenza infection in
humans induced the expansion of CD11b+ myeloid cells with
suppressive activity that could be reduced by iNKT cell activation
or the inhibition of arginase and NOS activity. Similarly, it was
recently shown that highly pathogenic H5N1 and H1N1 influenza
virus infection induced the accumulation of CD11b+GR-1+ cells
and the expression of Arg1 in the lungs (82), further support-
ing a role for M2-polarized MDSC-like cells in promoting viral
persistence and immunopathology.

Helminth infection induces the expression of type 2 cytokines
and is associated with M2 macrophage activation, as deter-
mined by Arg1, FIZZ1, and Ym1 expression. Indeed, Osborne
and colleagues (83) found that Arg1, FIZZ1, and Ym1 were
highly induced in the ileum of mice infected with the helminth
Trichinella spiralis (Ts). Interestingly, they further showed that
co-infection of mice with Ts and murine norovirus (MNV)
resulted in decreased frequencies and numbers of MNV-specific
CD8+ and CD4+ T cells within the small intestine and spleen
as well as decreased polyfunctionality of these T cells, com-
pared to Ts-only infected mice (83). Additionally, the defective
T cell responses were associated with increased viral loads in the
double-infected mice compared to the mono-infected controls
(83), suggesting that Ts-elicited M2-activated macrophages inhib-
ited the antiviral T cell response to MNV. Lastly, neutralization
of Ym1, a chitinase-like molecule, in co-infected mice partially
restored antiviral immunity and was associated with enhanced
control of viral replication (83). These data point to a new mech-
anism by which Arg1-expressing macrophages inhibit antiviral
responses.

Cumulatively, these data are reminiscent of macrophages found
in tumors (e.g., MDSCs, TAMs) that have been shown to sup-
press anti-tumor T cell responses via a variety of NO- and/or
Arg1-dependent mechanisms (4, 5). Indeed, in a mouse model
of human papillomavirus (HPV)-induced cancer,Arg1-expressing
CD11b+F4/80+macrophages infiltrated the tumors and inhibited
T cell responses, including virus-specific T cells, by suppress-
ing T cell proliferation and promoting a regulatory phenotype
(103). Moreover, depletion of the tumor-infiltrating macrophages
resulted in reduced tumor growth and increased tumor infiltration
by virus-specific CD8+ T cells (103). Thus, increasing evidence
points to a direct role for arginase-expressing M2-polarized cells in
the suppression of antiviral T cell responses and the persistence of a
variety of important pathogenic viruses. In addition to the actions
of iNOS and Arg1, MDSC-like cells can employ other mechanisms
to promote chronic viral infections, which were recently reviewed
by Goh and colleagues (104).

M2 MACROPHAGE ACTIVATION CAN PROMOTE IMMUNOPATHOLOGY
In contrast to some parasitic infections where M2 macrophages
limit Th2 cell-mediated immunopathology, M2-polarized
macrophages have been shown to promote immunopathology
in some viral infections. For example, it was recently demon-
strated that SARS-CoV infection of mice induced suppressive
alveolar macrophages that inhibited the induction of antiviral
T cell responses, a phenotype that was reversed by the adop-
tive transfer of activated bone marrow-derived DCs into mice
prior to virus infection (56). Additionally, SARS-CoV-infected
mice lacking hematopoietic STAT-1 expression were shown to
have greater weight loss and lung pathology, and this was asso-
ciated with the activation of M2 macrophages (57). To further test
the role of M2 macrophages in enhanced pathogenesis following
SARS-CoV infection, the authors generated STAT-1/STAT-6 dou-
ble knockout mice due to the established role for STAT-6 in driving
M2 macrophage activation in response to IL-4/IL-13 stimulation.
STAT-1/STAT-6 double knockout mice, which reversed the upreg-
ulation of M2 macrophages observed in STAT-1-deficient mice,
had reduced lung disease and prefibrotic lesions (57). These data
support the notion that M2 macrophages contribute to SARS-CoV
pathogenesis.

In another example, mice deficient in the IFN-γR exhibit
more severe disease following infection with murine gamma-
herpesvirus-68 (MHV-68), including interstitial and intra-alveolar
fibrosis that is reminiscent of idiopathic pulmonary fibrosis (IPF)
in human beings. In this model, alveolar macrophages were
recruited to the lungs of MHV-68-infected IFN-γR−/− mice, were
associated with areas of fibrosis, and exhibited a M2-polarized
phenotype characterized by the expression of FIZZ1, Ym1, and
Arg1 (61). Additionally, lung tissue from patients with IPF showed
increased expression of Arg1 in alveolar macrophages compared
with normal lung (61). These results suggest that virus-induced
upregulation of Arg1 could be mediating lung fibrogenesis. MHV-
68 infection in IFN-γR−/− mice also resulted in fibrosis in lym-
phoid tissues such as the spleen, which is a site of latent MHV-68
infection, and the liver (62, 63). Similar to the lung, MHV-68 infec-
tion in the absence of IFN-γR signaling induced a M2 macrophage
response in the spleen, characterized by high Arg1 expression
along with FIZZ1 and M2/Th2 cytokines such as IL-13, result-
ing in fibrotic disease in the spleen (105). Moreover, depletion of
T cells prevented MHV-68-mediated fibrosis in IFN-γR−/− mice
(62), suggesting that M2 macrophages were further driving Th2
activation to possibly create a M2/Th2 cytokine-induced cycle,
resulting in the exaggerated pathology. In contrast to IFN-γR−/−

mice, iNOS was induced in the spleen of MHV-68-infected WT
mice (105), indicating an important role for IFN-γ in inducing a
M1-associated immune response to control gamma-herpesvirus
infection and limiting Arg1-mediated immunopathology.

CONCLUSION
Macrophages and other myeloid cells have marked phenotypic het-
erogeneity, as a result of distinct cellular differentiation programs,
distribution in tissues, and responsiveness to various endogenous
and exogenous stimuli. Indeed,macrophages have well-established
roles in development, tissue homeostasis, coordinating the adap-
tive immune response and inflammation, as well as directing
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tissue resolution and repair following damage – processes that
are often modulated via the actions of the arginine-hydrolyzing
enzymes Nos2 and Arg1. We have highlighted a number of viral
infections in which these enzymes have a beneficial effect: NO
has antiviral properties against a variety of viruses, and arginase
activity can mediate tissue repair and regeneration following a
viral insult (Table 1). However, NO production can also result
in immunopathology in some virus infections, and the sup-
pressive functions of Arg1-expressing macrophages can promote
immunopathology. Additionally, some viruses have exploited the
immune-suppressive properties of iNOS- and/or Arg1-expressing
macrophages to evade the immune response, particularly the
antiviral T cell response, resulting in chronic viral infections.

Clearly, iNOS- and/or Arg1-mediated responses are impor-
tant in many viral infections. Thus, there is the potential to
develop the means to selectively stimulate or inhibit either M1
or M2 responses to mediate viral clearance or repair tissue dam-
age. Due to the overlap in immunosuppressive mechanisms of
iNOS- and/or Arg1-expressing suppressor cells, therapeutic strate-
gies under development to limit the immunosuppressive effects
of myeloid cells in cancer may be beneficial in treating persis-
tent/chronic virus infections. However, as described above, iNOS
and Arg1 activity can be both beneficial and detrimental during
certain viral infections. Therefore, further research is needed to
define the molecular and tissue-specific mechanism(s) by which
iNOS and Arg1 influence the clearance of viral pathogens as well as
the injury and repair of tissues. In addition, a better understanding
of the pathways regulating macrophage polarization (specifically
iNOS and/or Arg1 induction and activity), macrophage traffick-
ing, and the precise effects of iNOS and Arg1 activity on other
immune cells following different virus infections will inform the
development of therapeutics that target critical effector molecules
to promote viral control and limit immunopathology.
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