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The concept of immunological memory stipulates that past exposures shape present
immune function. These exposures include not only specific antigens impacting adaptive
immune memory but also conserved pathogen or danger associated molecular patterns
that mold innate immune responses for prolonged periods of time. It should thus not come
as a surprise that there is a vast range of external or environmental factors that impact
immunity. The importance of environmental factors modulating immunity is most readily
recognized in early life, a period of rapidly changing environments. We here summarize
available data on the role of environment shaping immune development and from it derive
an overarching hypothesis relating the underlying molecular mechanisms and evolutionary

Infectious and Immunological principles involved.
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INTRODUCTION

The immune system is an organ that specializes in responding to
environmental exposures. Its tasks are to determine friend from
foe, innocuous from dangerous, inert from toxic. This highly
complex task is most readily recognized during rapid changes
of environmental exposures such as those occurring in early life.
The purpose of this review is to amalgamate existing data into a
cohesive vision on how early life environmental exposures leave a
lasting impression on the human immune system, and how this
impression can either have beneficial or potentially deleterious
effects. This vision incorporates the key principles of the devel-
opmental origin of health and diseases (DOHaD) hypothesis, the
hygiene hypothesis as well insights from the field of developmental
immunotoxicology (DIT) and posits that the sum of these mold
immune memory. Immune education includes not only the classi-
cal acquired adaptive immune system with the cardinal feature of
long-term immune memory but also the more recently described
trained memory of the innate immune system. Understanding
the environmental engines that drive development of the immune
system is not only necessary to address specific pediatric diseases
but also to identify the strategies to change trajectories toward
long-term, life-long protection from disease.

ONTOGENY OF THE IMMUNE SYSTEM

Ontogeny refers to the study of development. As multicellular
life evolved so too did cell types with discrete functions. The
immune system has evolved to meet a fundamental challenge of
multicellular life determining whether exposures are benign or
harmful. The seeding and growth of mammalian organs are a
highly regulated sequence of events. Periods of rapid develop-
ment represent windows of vulnerability for dysregulation with
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subsequent downstream effects that may manifest much later in
adult life. Our interest in the immune system is focused upon how
it comes to be fully functional, and to try to elucidate how and
when aberration can result in disease, and how to best prevent
undesirable outcomes. Thus, it is necessary to first understand the
earliest origins of immune cells.

Cells making up adaptive and innate arms of the immune
system are derived from lymphoid or myeloid progenitors.
Hematopoietic stem cells (HSCs) are the canonical precursors of
all immune cell lineages and are defined by their capability to
replace all blood lineages in lacking recipients (1). HSCs migrate
from the yolk sac and aorta-gonad-mesonephros region into the
fetal liver, to ultimately reside in the bone marrow in adults where
they constantly self-renew and differentiate to replace the rapid
turn over of circulating immune cells. In addition, there are mul-
tipotential progenitors that can give rise to myeloid and lymphoid
cells independent of the yolk sac (2—4). These cells may arise from
within the embryo or from extra embryonic sites such as the pla-
centa and vitelline arteries (5). Cell types such as tissue resident
macrophages may be derived from monocytes of bone marrow ori-
gins or from self-potentiating cells of embryonic yolk sac origin
(6). It is yet unknown whether cells with similar roles and pheno-
types derived from independent origins have identical functions,
programing, and responses to immunological challenges.

Age dependent differences in human immunity are implied by
the clinical observation of altered disease susceptibility and sub-
stantiated by differences in immune cell activities. Newborns are
more susceptible to several diseases when compared to adults; this
appears to be at least partially due to a lack of acquired immune
memory and differential regulation of innate immune responses
(7, 8). This altered immunological priming is not maladaptive,
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rather, the fetus and neonate are challenged with balancing defense
against infection, minimizing potentially harmful inflammation,
and mitigating colonization by microbes as it develops and tran-
sitions from the relatively protected womb to the external world
(9). Over the first few years of life the capacity for the immune sys-
tem to exert a balanced and rapid response becomes increasingly
salient. Though human neonates are capable of mounting adap-
tive T-cell responses, CD4 T-cell responses are slower to develop
and have a predisposition to T helper-2 (Th2) or Th17 responses
against extracellular pathogens (10). In contrast, Thl responses
are important for defense against intracellular pathogens and cell
mediated immunity, and reach adult levels only after about 2 years
of age (10).

The abridged Thl response is manifest in reduced defense
against intracellular pathogens and is influenced in part by differ-
ent innate cell cytokine responses to pathogen associated molecu-
lar patterns (PRRs) that direct subsequent adaptive immune func-
tions (11). These are receptors associated with the innate immune
system that recognize conserved regions on broad phyla of organ-
isms and through signaling cascades guide subsequent immune
responses. Neonatal innate immune cells including monocytes,
plasmacytoid dendritic cells, and conventional dendritic cells pro-
duce less interleukin (IL)-12p70 and type I interferon and similar
or higher levels of IL-1Beta, IL-6, IL-23, and IL-10 than adult
cells when stimulated by the same PRRs (8). In addition to
compromised cytokine response, neonatal cells have also been
shown to exhibit relatively limited ability to produce multiple
cytokines in polyfunctional responses to PRR stimulation. Peri-
natal anti-inflammatory cytokine production of IL-10 decreases
in concert with increasing pro-inflammatory responses (such as
tumor necrosis factor alpha and IL-1Beta) over the first few years
of life while neonatal antiviral cytokine (type 1) responses already
reach adult levels after the first month of life (12). Underlying
patterns of immune ontogeny lead to windows of vulnerability to
different types of infection during different stages of development
(13). While age dependent development of the immune response
may also follow genetically encoded programs, increasing evidence
from several fields suggest that these changes in immunity are
profoundly impacted by external environmental influences. Exem-
plified by successfully acquired specific and non-specific responses
to vaccination, programing early in life represents not only a
window of vulnerability but also a window of opportunity for
long-term prevention of infectious diseases and maintenance of
homeostasis and health.

DOHAD AND EARLY LIFE PROGRAMING

The developmental origins of health and disease (DOHaD)
hypothesis have been gradually increasing in popularity since the
1980s. Conceptually, DOHaD posits that presentation of adult-
hood disease can be traced back to childhood, perinatal, or
in utero exposures. Observations that nutritional status during
gestation can influence organogenesis and metabolism in later
adulthood lead Dr. David Barker to pursue and expand the ideas
of DOHaD (14). The current paradigm states that fetal adapta-
tions to intrauterine and maternal conditions during development
shape structure and function of organs (14, 15). Alternate develop-
ment and programing are not maladaptations per se, but represent

transient responses to environmental demands that confer short-
term survival, potentially establishing lasting implications for later
health. The immune system represents the prime example of the
DOHaD concept, as the immune status is precisely defined by the
amalgamation of interactions with the environmental exposures
of a given individual. The immune system is the DOHaD organ
par excellence and even contains mechanistic parallels in that early
life programing directs later immune health through epigenetic
modifications, the modus operandi of DOHaD.

Epigenetic modifications are defined as mitotically or meioti-
cally heritable changes in accessibility of genes for expression that
do not involve a change in DNA sequence (16). There are numer-
ous types of epigenetic modifications including DNA methylation,
histone modification, nucleosome position, and non-coding RNA
expression (17). These modifications alter gene expression and
explain how identical DNA can result in entirely different pheno-
types and cell lineages. In humans, environmental exposures can
drive epigenetic modification that allow for innate immune cell
programing as demonstrated by examples from trained immunity
(18). Epigenetic programing is also an important factor in adap-
tive immune T-cell activation (19) and memory response (20).
Cell ontogeny is dependent on epigenetics, and development rep-
resents a time where immune priming may be taking place with
lasting implications for subsequent health and disease.

DEVELOPMENTAL IMMUNOTOXICOLOGY

Numerous environmental factors can influence immune activ-
ity, and the field of developmental immunotoxicology (DIT) has
arisen to assess how chemical, biological, physical, or physiological
factors alter the development of the immune system. Immunotoxic
substances have traditionally been identified based on observa-
tion of pathology in adults, and may miss potential harm during
development. Only now are we beginning to investigate how some
exposures may affect pediatric populations and human develop-
ment (21). Following selective examples of naturally occurring
and synthetic compounds illustrate how immunotoxic exposures
can influence the immune system.

Depending on concentration naturally occurring heavy met-
als (e.g., Cd, Hg, Pb) can be either immunopotentiating or
immunosuppressive (22). Heavy metals are capable of crossing
the placenta; the effects of which depend on the dose, length,
and timing of exposure (23, 24). Cadmium exposure demon-
strates dose-dependent suppression of circulating IgG in children
and is associated with adult diabetes and impaired fasting glu-
cose (25, 26). In utero exposure to methylmercury can decrease
T-cell functionality, alter circulating immunoglobulin levels and
has been implicated with low birth weight and preterm birth (27—
29). Neonatal immunotoxicity can occur well below adult safety
thresholds (30). Arsenic exposure may lead to direct effects on
immunity through epigenetic programing involving leukocytes
and metabolic physiology (31-36).

The immune system now encounters synthetic com-
pounds absent from our evolutionary history. We know rel-
atively little about the lifelong effects of synthetic com-
pounds and they have only recently been studied for early
life exposures. Three major classes of synthetic compounds
include tetrachlorodibenzo-o-dioxins (TCDDs), perfluorinate
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compounds (PFCs), and polychlorinated biphenyls (PCBs); all
of which are capable of crossing the placenta and the latter two
have been detected in breast milk (37-40). Effects on immune
function are compound dependent. TCDDs have been associ-
ated with hypothyroidism, inhibition of thymocyte maturation,
reduced MHC II expression, altered T-cell differentiation, and
decreased blood thyroid stimulating hormone (39, 41, 42). PFCs
are known to suppress innate immune cytokine responses (43)
and appear to lower antibody response to some childhood immu-
nizations (44). PCB exposure has been linked to neonatal thymus
size (45), alteration of childhood adaptive immune cell popula-
tions, impaired vaccine responses (46), and increases in childhood
middle ear infections (47, 48). Synthetic compounds may have
long-term effects due to bioaccumulation in tissues with high fat
content or relatively long half-lives (averaging around 10 years for
PCBs) and slow clearance (37, 49).

Risk of exposure to immunotoxic substances can be mediated
by cultural predilections, including diet, alcohol consumption, and
smoking of cigarettes. Alcohol use during pregnancy can result
in fetal alcohol spectrum disorders (FASD), extensively reviewed
elsewhere (50). Briefly, children with FASD have modulated innate
and adaptive immunity (51), and maternal alcohol abuse has been
associated with infection risk in newborns (51, 52); long-term
effects may be potentiated through epigenetic modifications (53—
55). Early life exposure to cigarette smoke has been linked to
increased respiratory and ear infections (56, 57), altered innate
cytokine production (58), and changes in adaptive cell populations
(59). Removing or mitigating cultural sources of immunotoxic
compound exposure may indeed be attainable but will require
multidisciplinary efforts and community engagement.

The field of DIT is demanding increased immune-surveillance
in developing subjects and shows promise for explaining some
underlying risk of infectious and non-communicable global dis-
ease burden. There is limited and incomplete knowledge about
the developmental immunotoxicology of many compounds (both
synthetic and natural) but there is compelling evidence that these
substances can subtly and dramatically alter human immune sys-
tems. It has been suggested that even relatively mild or seemingly
benign alteration of immune response may set the stage for dis-
ease (60). Factors such as lead, methylmercury, TCDD, and tobacco
smoke are considered causal for modifying sub-clinical immune
dysfunction that compounded with infection can trigger disease
states (61). Immunotoxicological effects can take place in the
womb, and more thorough understanding of the maternal envi-
ronment is required to further explore immune programing at this
stage.

MATERNAL ENVIRONMENT

Pregnancy impacts both neonatal and maternal immune status.
Half of neonatal genetic material is paternally derived and can be
targeted by maternal immune responses as non-self, resulting in
targeted rejection of the developing neonate. Extensive research
has revealed that interaction between maternal and fetal tissues is
mitigated by local immune evasion as well as maternal immune
modulation, though exactly how is not yet fully understood (62).
For instance, the syncytiotrophoblasts that make up the majority
of the maternal-fetal interface express alternate forms of major

histocompatibility complexes (MHC) that may help enable fetal
evasion of maternal immune response (63—65). These cells, and the
maternal uterine mucosa, produce indoleamine 2,3 dioxygenase
in response to interferon-gamma that suppresses adaptive T-cell
proliferation (66). Potential adaptive responses may be further
abrogated during pregnancy by an expansion of T-regulatory cell
subsets. In murine models, T-regulatory cell expansion has been
associated with increased susceptibility to some infections. Sus-
ceptibility to pathogens was reduced with removal of T-regulatory
cell populations; however, this also triggered maternal immune
activity and fetal resorption (67). Pregnancy also changes levels of
circulating hormones such as estradiol, progesterone, and estriol
that have pleiotropic effects on both adaptive and innate immune
cells (68). Immune modulatory effects of pregnancy associated
hormones may partially explain observed decreases in severity
of maternal inflammatory disease, such as rheumatoid arthritis
(69, 70), and increased susceptibility to some infections (71, 72).
Maternal immune activity is altered during pregnancy both in the
womb and systemically. Altered maternal immune status during
the perinatal period meets the demands of pregnancy but also can
have implications for infectious diseases.

DISEASE SUSCEPTIBILITY AND SEVERITY ASSOCIATED
WITH PREGNANCY

There is clinical evidence for maternal immune modulation given
that pregnant women have different susceptibility and severity to
certain infectious diseases when compared to the general popula-
tion (71). While pregnant, women are more susceptible to malaria,
listeriosis, and human immunodeficiency virus (HIV) type 1 infec-
tion (72). Evidence from malaria research suggests that altered
susceptibility to disease from certain pathogens is likely due to
the appearance of newly derived fetal tissues, such as the pla-
centa. In malaria endemic regions with high rates of transmission,
women are generally asymptomatic, however, during pregnancy
even previously asymptomatic women may present with disease.
Acute disease state appears to be related to variable surface antigens
generated by the parasite that results in sequestration of infected
erythrocyte at the placenta (73). Accumulation of infected erythro-
cytes results in local inflammation associated with pathogenesis
and adverse pregnancy outcomes (74). During pregnancy, women
also suffer more severe infections from influenza, hepatitis E virus
(HEV), herpes simplex virus (HSV) (72), and with more limited
evidence to measles, smallpox, and varicella (71). Decreased pro-
portions of circulating maternal T, B, and NK cells may represent
weakened responses against intracellular pathogens that explain
increased disease severity to some infections (75).

Maternal infection status has implications for fetal immune
development. Diverse pathogens are capable of infecting the
developing fetus either via maternal circulation and the placenta
or through the uterine tract (76). Chorioamnionitis can lead
to preterm birth and associated morbidity and mortality (77).
Beyond direct transmission or infection of the neonate, in utero
exposure to inflammation, soluble factors, and antigen can alter
neonatal immune status (78). Maternal infection can have lasting
implications for the neonatal immunity both for subsequent infec-
tion with the same agents, or in more general immunomodulatory
ways that changes risk of other infections (79).
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MATERNAL INFECTION IMPACTS NEONATE IMMUNE
PROGRAMING

Maternal infection during gestation has implications for neona-
tal immunology. Effects can be specific to the infectious agent or
general modulation of the host immune system. Infection with
helminths such as Wuchereria bancrofti (80-82) and Ascaris lum-
bricoides (83, 84) results in increased risk of post-partum infection
in early life. Active helminth infection also has non-specific general
effects on host immunity that enable continued parasitic evasion
of host defenses. Human helminth infections are associated with
skewing of the host immune response to a Th2 predisposition (85),
chronic immune activation, hyporesponsiveness, and immune
anergy (86). This immune modulation can impair response to and
efficacy of some vaccines (87-90). During pregnancy these off tar-
get effects can increase mother-to-child transmission of HIV (91)
and alters transplacental transfer of circulating antigen specific
antibody to other infectious agents, such as TB that could interfere
with vaccination (92). Thus, exposure to helminths in utero can
result in specific and non-specific immune programing changing
the risk of perinatal infections and vaccine responses.

IN UTERO EXPOSURE TO HIV MODULATES OFFSPRING
IMMUNITY

Maternal infection can also directly expose the fetus to pathogen
that may cross the placenta, be transmitted during birth, or by
contact early in life. HIV is a well characterized infectious disease
with profound impacts on the immune system. The use of anti-
retroviral drug regimes can increase quantity and quality of life for
infected individuals, and perinatal treatment can block the major-
ity of mother to child transmission of the virus. However, HIV-
exposed uninfected (HEU) children have increased morbidity and
morality compared to unexposed children (93, 94). HEU children
have been shown to display altered innate cytokine responses early
in life (95, 96), impaired T-cell proliferation, reduced cytokine
polyfunctionality, and have reported higher and lower responses
to vaccination (97, 98).

Altered neonatal immune status may be due to transplacental
transmission of soluble immune factors, exposure to viral anti-
gen, or reduction of breastfeeding by HIV+ mothers. Maternal
burden of infection may have significant implications for neona-
tal immune ontogeny; high maternal viremia has been associated
with significantly lower CD4+4 T-cell count in uninfected prog-
eny (99). Transmission of viral antigens may also be influencing
neonatal immune development as a third of HEU children appear
to have detectable virus specific responses (100). Breastfeeding can
result in vertical transmission of HIV and interfere with vaccine
responses; however, avoidance or early cessation of breastfeeding
has been shown to be detrimental for infant health outcomes (94,
101-103). The World Health Organization currently recommends
for breast feeding as benefits appear to outweigh risks of verti-
cal HIV transmission (104). The lifelong implications of in utero
exposure to HIV are not currently known but will gradually unfold
as this population increases in size and maturity.

BREAST FEEDING
Breast feeding provides not only necessary caloric and nutritional
provisions for the growing neonate but also important factors

for immune development. Human milk contains proteins that
aid digestion, have antimicrobial activities, and act as sources of
amino acids for the developing neonate. Bile salt-stimulated lipase
aid lipid digestion, alpha amylase may promote complex carbo-
hydrate metabolism, beta casein increases the bioavailability of
divalent cations such as calcium and zinc, and lactoferrin facilitates
uptake of iron, stimulates gut cytokine production and release,
and may have antimicrobial effects (105). These and other factors
suggest that colostrum and breast milk are important for neona-
tal immune ontogeny. Human milk contains numerous immune
modulatory proteins such as immunoglobulins, lysozyme that
degrades gram positive bacterial outer cell walls, and kappa-casein
that blocks pathogen binding to the gastric mucosa (105). Sol-
uble and cell secreted cytokines including IL-1Beta, IL-6, IL-8,
IL-10, tumor necrosis factor alpha, granulocyte- and macrophage-
colony stimulating factor (GM-CSF) are present in human breast
milk (106). The first meal of a breastfeeding neonate is gener-
ally colostrum that contains more immune factors that regular
breast milk, including maternal immune cells such as neutrophiles,
macrophages, B, and T-cells (107). The direct role of mater-
nal soluble factors and immune cells consumed by the rapidly
developing neonate is unknown, yet, it is tempting to speculate
that these factors aid in the establishment and development of
microbial communities in the infant gut, while promoting defense
against harmful pathogens (108). Regardless of exact immunolog-
ical mechanisms, beneficial clinical effects from breastfeeding have
been reported for both children and mothers.

Systematic review and meta-analysis of breastfeeding research
in developed countries has shown that a history of breastfeeding
is associated with a reduced risk of acute otitis media, non-specific
gastroenteritis, sever lower respiratory tract infections, atopic der-
matitis, asthma, obesity, type 1 diabetes, childhood leukemia, sud-
den infant death syndrome, and necrotizing enterocolitis (109).
Beneficial maternal outcomes were also associated with lactation,
and reduction of risk for development of type 2 diabetes, breast
cancer, and ovarian cancer. Premature cessation of breastfeeding
or not breastfeeding was associated with an increased risk for
post-partum depression (109). It is noteworthy that this analysis
was based on observational studies and does not imply causal-
ity. Breastfeeding is important for nutrition and education of the
neonatal immune system.

PERINATAL NUTRITIONAL IMPACT

The relationship between nutritional status and immunological
competence is a matter of debate. Nutritional deprivation has
likely been common throughout our evolution history, thus, selec-
tive processes hypothetically favor resilient immune systems that
are not impaired by transient episodes of malnutrition (110).
However, our current population density, global interdependency,
and modern lifestyles represent a mismatch between the selec-
tive pressures historically acting on our immune systems and the
exposures we face today. In addition, our concern is with pro-
moting immune health for life, which does not equate with the
role of diet and immunity required for maximum reproductive
fitness. High adherence to the Mediterranean diet during the peri-
natal period is protective against wheeze and atopy in children
(111), demonstrating that maternal diet may be of import not
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only for the specific caloric and nutritional need of the developing
fetus but also for offspring immune modulation (112). Mecha-
nistically neonatal immune programing can take place in utero
given that food and environment antigen specific T-cell responses
are detectable in virtually all neonatal cord blood samples (113).
Nutrition may be the source of antigens to which the immune
system must become tolerant, and additionally provide factors
that themselves modulate immune activity (113). The interre-
lationship between nutrition and immunity is highly complex;
however, there are known nutritional deficiencies that can influ-
ence immune activity early in life though these may indeed be
transient effects and not lead to lifelong disease susceptibility.

MICRONUTRIENTS

Hallmarks of malnutrition include micronutrient limitations
and protein-calorie macronutrient deficiencies. Full reviews on
micronutrient malnutrition and immunity can be found else-
where (114-116) and only select micronutrients (selenium, zinc,
and vitamin A) known to modulate immunity are highlighted
here. Limited maternal dietary selenium also restricts transmis-
sion to the neonate that has been reported to result in impaired
in vitro activation of thymocytes, and decreased proportions of
circulating adaptive immune cells in the neonate (117). Zinc defi-
ciency has been associated with impaired growth and immune
cell functions (118) and reprograming of the immune system
from adaptive to more innate immune responses (119). Ran-
domized controlled trials of zinc supplementation in small for
gestational age term infants have resulted in decreases in diar-
rhea, pneumonia infection, and may reduce overall mortality in
some settings (120). Vitamin A is crucial for integrity of barriers,
lymphocyte proliferation, and cytotoxic T-cell activity, deficiency
reduces the number of circulating immune cells and complement
proteins (121). Broad supplementation of micronutrients may not
reduce undesirable outcomes, because nutrient-nutrient interac-
tions may increase or decrease availability of other immune mod-
ulatory nutrients altering nutritional homeostasis (121). Explicit
deficit may not temper immunity but rather a dietary imbal-
ance could be the culprit. Micronutrient deficiencies are plau-
sible modulators of immunity, though the immune modulation
based on micronutrient deficiency appears to be transient and
in that subsequent supplementation can rescue immune system
functionality.

MACRONUTRIENTS

Study of human macronutrient deficiencies primarily arises from
tragic natural experiments, wherein populations suffer acute or
seasonal periods of starvation. The immune system appears to be
intrinsically tied to metabolic functions, and depending on tim-
ing of macronutrient deficiency may have long-term implications
due to lasting epigenetic modifications (122). Study of immune
outcome in such settings is intrinsically difficult, and results are
primarily based upon retrospective analysis of records rather than
controlled experimental settings.

An incredibly thorough retrospective analysis of perinatal acute
famine comes from Holland during WWII, during which com-
prehensive records were kept about famine exposure, pregnancy,
and the development of the newborns (123). In utero exposure

to famine resulted in lower birth weights, later increased rates of
mental illness (schizophrenia and antisocial personality disorder),
congenital neural defects, obstructive airway disease, coronary
heart disease, altered renal function, fivefold increases in breast
cancer risk among women and reduced glucose and insulin toler-
ance (124). Famine exposure effects were not limited to the first
generation, but were carried forward into the subsequent gener-
ation. Adult offspring born to prenatally undernourished fathers
(but not mothers) were on average 5 kg heavier than peers born to
unexposed fathers (125). Lasting effects on immunity are implied
by heritable metabolic differences, as obesity has been associated
with altered baseline inflammation (126). Additionally, records
from a Swedish community have revealed that grand-paternal
exposure to poor food availability during his prepubescent and
slow growth period resulted in a fourfold increase in grandchild
risk for diabetes, however, no underlying mechanism explaining
the process was described (127). Thus, even relatively transient
exposures to starvation may have intergenerational implications
for metabolism, and by proxy, immune status.

Other studies focused on primary immune outcomes and
nutrient deficit have produced incongruent results. In the Philip-
pines, 14—15year olds born with small for gestational age birth
(related to intrauterine growth restriction) and lasting nutritional
deficit have a lower probability of responding to typhoid vaccines
than their peers (128). In contrast, assessment of immune impli-
cations from perinatal (seasonal) nutritional deprivation in the
Gambia later in life (18—24-year-old men) revealed no lasting effect
on the proportion of memory and naive T-cells (129). The tim-
ing, nature, and duration of perinatal nutritional deficit impacts
human immune development in different ways; however, these
effects are additionally confounded by local genetics, toxin expo-
sures, cultural practices, and exposure to both inert and infectious
organisms.

HYGIENE HYPOTHESIS AND MICROBIAL EXPOSURES

The hygiene hypothesis has expanded from initial observations
of allergy and social position to include assessment of observed
increases in inflammatory diseases, atopy, and allergy inversely cor-
related with risk of infectious disease and parasite burden (130).
During pregnancy the maternal compartment provides nutrition
and immune defenses for the neonate and influences microbial
colonization. Maternal involvement in microbial colonization may
be from in utero exposure, acquisition during childbirth, and
transmission through breast milk.

There is ample evidence suggesting that the womb and devel-
oping fetus are not sterile, thus, it may be the case that neonatal
tolerance to certain microbes may begin before birth. Clinical evi-
dence from perinatal infections implies that the womb is not
perfectly sterile, and bacteria may invade the uterus from the
abdominal cavity, blood, or the cervix (131). Aside from clini-
cal description of pathology, the presence of bacterial DNA in the
placenta of healthy vaginal and caesarian births has been reported
(131, 132). Bacteria have been detected in umbilical cord blood
from elective cesarean section, in the meconium of healthy term
births from mothers who had not had probiotic supplementation
who had not yet been breastfed, and even in the amniotic fluid of
a murine model (133). While the womb may not be sterile and be
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the stage for limited in utero microbial exposures, the vast majority
and continued interaction with microbes takes place post-partum.

MODE OF DELIVERY

As the neonate transitions from the intrauterine environment into
the external environment rapid colonization takes place, influ-
enced by mode of birth. Cesarean and vaginal birth result in
different microbes initially colonizing the neonate, either reflect-
ing maternal skin and local surface or vaginal microbes, respec-
tively (134, 135). Clinically, children born by cesarean delivery
are more likely to suffer from rhinitis, asthma, type 1 diabetes,
and celiac disease (136, 137). Vaginal delivery promotes produc-
tion of numerous cytokines and associated soluble receptors (IL-6,
IL-1Beta, sIL-2R, sIL4R, interferon-gamma, and tumor necrosis
factor alpha) in both maternal serum and neonatal umbilical cord
blood, which are related to immune activation (138). The pro-
motion of these cytokines supports the notion that vaginal birth
activates both maternal and neonatal immune system in a pro-
inflammatory manner. This response is likely important for initial
colonization of the neonate by microbes, and increase in cesarean
delivery associated immune dysfunction may be due to altered
microbial exposures and baseline inflammation status of both
neonate and maternal systems. Post-partum, neonatal gut micro-
biome composition is likely continually influenced by breast milk
that according to culture dependent, independent, and metage-
nomic methods harbors a diverse community of bacteria (139,
140).

MICROBIOTA, DISEASE, AND TRAINED IMMUNITY
Continued interaction with microbes that live upon and within us
represents a most intimate environmental exposure and challenge
for the immune system. The microbiota colonizing human gut,
skin, and mucosal membranes are integral for energy harvest from
food sources (141), metabolism (142, 143), and are implied in the
education of the immune system (144, 145). Microbes and micro-
bial communities have been implicated in a variety of diseases
that include immune involvement including severe malnutrition
(146), obesity (142, 143, 147), chronic obstructive pulmonary dis-
order (148), and irritable bowl disease (149). Animal models reveal
that the gut microbiota directly interact with immune activity by
changing the proportion of gut mRNA for chemokines, receptors,
and FoxP3 (associated with regulatory T-cells) (150). More com-
prehensive reviews on the impact of human microbiota in early
life are provided elsewhere (144, 151). To date, there has been
limited research assessing the role of eukaryotes in microbial com-
munities, further research of which are required to fully describe
complex gut ecosystems in order to understand the role of the
microbiome in health and disease. The human gut microbiome is
acquired from local environments and is variable depending on
numerous environmental influences, including geography, diet,
and lifestyle (152).

The human microbiota appears to have some implications
in human health and disease, likely through participation in
immunological education. Early life microbial exposure may be
exceedingly important within the context of trained innate immu-
nity. In this process, independent of adaptive immune mecha-
nisms primary exposure to pathogen can alter innate immune

cell programed responses to subsequent re-exposure. Depending
on the stimuli, exposure can result in innate cell training with
resulting heightened or attenuated cytokine responses, lasting pro-
graming occurs through epigenetic histone modification (153).
Both murine and human studies indicate innate immune sys-
tem responses are altered by repeated exposure to the same
pathogen (154). Innate immune cells can be trained by prior
exposures, and can influence the success of vaccines (18). It is
of critical importance to better understand how microbial expo-
sure can alter both trained and adaptive arms of the immune
system to promote adequate immune education for life-long
health.

GLOBAL VARIATION IN EARLY LIFE IMMUNITY

Humans have incredibly plastic immune responses to the myriad
of toxic, infectious, nutritional, and microbial exposures encoun-
tered throughout life. With added genetic variability, it is no
wonder that promoting global health has been an ongoing strug-
gle. Age-related patterns in innate immunity development vary
depending on the area assessed (155, 156). In efforts to describe
global innate immunity Smolen et al. enrolled subjects from four
continents and assessed pattern recognition receptor mediated
responses. Despite environmental variation between continents
toll-like receptor mediated cytokine production was remarkable
similar in most sites, with only South African subjects appear-
ing as obvious outliers, though nuanced differences were present
between all populations (157). Whether they may be drastic or
nuanced differences, understanding how populations response
to immune stimuli may be of critical importance for explaining
global variation in vaccine efficacy. Global and regional assessment
oflocal immune responses will be fundamental for developing new
and optimizing current vaccines.

VARIABLE VACCINE RESPONSE

Even when cold chain and distribution requirements are ade-
quately met vaccines are not ubiquitously successful. One of the
best studied and most globally relevant examples of geographic
variation in immune system function are the response to vacci-
nation with bacille Calmette-Guerin (BCG) against tuberculosis
(TB). Widely used with variable outcomes, a comprehensive meta-
analysis of BCG has shown that it reduces tuberculosis risk by 50%
(158), but provides no protection in some parts of the world (159).
A review of BCG trials found latitude to be strongly associated with
protection, explaining 41% of the variance between studies (159).
A more recent meta-analysis revealed that protection was higher in
trials further from the equator, in areas with lower risk of diagnos-
tic detection bias, and when studies address potential confounding
of latent mycobacterial exposure (160).

There are many hypotheses for the variable efficacy of BCG
against pulmonary tuberculosis, including vaccine substrain over
attenuation, inadequate dosage, interference by prior exposure to
Mycobacterium, host genetics, and geographic differences in clin-
ical isolates (161). Northern Malawi is an area where BCG does
not appear to have substantial protective effects, and prior envi-
ronmental exposure to mycobacterial antigens appears to prevent
replication of BCG within the host (162). Additional research
assessing cytokine production induced by vaccination showed UK
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subjects (who are protected by vaccine) exhibited Th1 associated
cytokines, whereas Malawian subjects with poor protection from
vaccine had Th2 and IL-17 biased responses (163).

Differences in BCG strains have been well assessed and have
been found to lead to differential gene regulation and efficacy,
but no one strain appears to be consistently superior in all loca-
tions and for both pulmonary and disseminated TB (164). Res-
timulation of peripheral mononuclear blood cells from Mexican
neonates vaccinated with different BCG stains displayed signif-
icantly different levels of interferon-gamma, IL-12B, IL27, IL-1,
IL-6, and IL-24 mRNA (165). Ultimately, any and all the hypothe-
ses likely have some credence, and determining the best course
of action will have to consider local genetics and environmen-
tal exposures to optimize vaccine efficacy and disease prevention.
Unfortunately, this means no single vaccine is likely to confer pro-
tection to all of humanity. However, assessment of local immune
responses to stimuli may enable derivation of customized adju-
vants to adequately activate the immune system to confer lasting
protection.

Despite contrary results for the protective effects of BCG against
tuberculosis, vaccination is recommended to continue due to
reduced infection from other mycobacteria as well as astonishing
non-specific effects that have been recently noted in a random-
ized clinical trial in premature births in Guinea-Bissau. Overall
child mortality was reduced by over 50% when low birth-weight
children who received BCG earlier than currently recommended
(166). It is important to note that though BCG vaccination may
have beneficial non-specific effects, it can also modulate immune
responses to subsequent vaccination (167). Non-specific effects of
vaccines are not limited to BCG, but have also been reported for
measles, and DTP (diphtheria, pertussis, and tetanus) vaccines;
it has been suggested that optimization of immune scheduling
in areas with high infectious disease burden could reduce child
mortality by 30% (168). Optimization of existing vaccine sched-
uling may seem to be low hanging fruit, but will require thorough
analysis of local immune development with consideration of both
genetic and environmental factors.

SEASONALITY

Though an individual may remain geographically constrained
their environmental exposures may vary dramatically depending
on seasonal. Changing temperature, rainfall, exposure to elements,
food availability, diet, and exposure to infectious agents may be
compounded or alleviated by local cultural practice. Perturbation
of immune function early in life may have important short-term
impacts as both birth season and nutritional status have been
associated with decreased humoral response to pertussis vacci-
nation (169). Birth during the wet season in West Africa increases
the proportion of T-cells in the CD8+ compartment, decreas-
ing the CD4+:CD8+ ratio (170, 171). In rural Gambia, season
of birth has been associated with infection related adult mortal-
ity and was postulated to be due to perinatal nutritional status
or pathogen exposure during early immune programing (172).
However, no association between seasonality and immune status
was detected in a subsequent study of youth (173) or young adults
(129). Independent of nutrition or pathogen exposure, season-
ality can also change diurnal exposure to sunlight and levels of

circulating vitamin D. In the United Kingdom, vitamin D status
during gestation and birth month has been associated with dis-
eases with immune involvement, including rheumatoid arthritis,
irritable bowel diseases, and multiple sclerosis (174). Assessment
of seasonality, vitamin D, and infectious disease has been further
explored with regards to TB in South Africa, revealing a recipro-
cal seasonal variation in serum 25(OH)D concentration and TB
notification (175). Seasonality is a multifactorial parameter to be
considered for studies of human immunity, though evidence for
long-term immune programing is limited.

CONCLUSION

Numerous environmental factors can modulate human immunity
early in life. These range from abiotic chemicals exposures and
nutritional status to biotic insult from infectious diseases and with
microbial or parasitic colonization. Early life represents windows
of both vulnerability and opportunity that impact the develop-
ing immune system. The cases above demonstrate that there can
be short-term and lasting implications for lifelong health based
on pre- and perinatal environmental exposures. These include
potential inherited programing (genetic and epigenetic), derailed
development due to altered metabolism (nutrition and toxicol-
ogy), and inappropriate immune system decision-making (for
both adaptive and innate arms).

A living world is defined by change, in terms of both envi-
ronment and human populations. It is fitting that the immune
system is in a constant state of flux to adapt to local constraints
and conditions. Though selective pressures of environments have
shaped the evolution of our immune systems, in recent years we
have rapidly altered our lifestyle and environments. As a result,
today we live in a world foreign to our ancestors. Given the inher-
ent plasticity of the immune system, it follows that with exposure
to entirely different organisms and chemicals than those we coex-
isted with for the last millenia can result in undesirable outcomes.
Through medical interventions we are also living much longer
lives, beyond the threshold of selective pressure. In order to pro-
mote immune-mediated health for life, we must consider the
importance of environmental exposures for immune programing,
and learn how to direct the developing immune system to opti-
mize health outcomes. For example, the result of perinatal toxic
exposures highlight the need to include assessment of the devel-
oping immune system for modulation in animal models beyond
short-term adult toxicity, and include multi-generational moni-
toring. This also suggests surveillance of human populations need
to be conducted for longer periods of time, to determine whether
chemical exposures are hazardous for immune health in different
physiologically relevant combinations and over time. And while
we only recently have begun to understand that the microbiome is
likely centrally involved in a number of chronic diseases, such pro-
found and wide-spread impact highlights the power of microbial
exposure in early life to modulate developmental trajectories. For
example, it appears possible to reduce global morbidity and mor-
tality with targeted early life probiotic interventions, as has been
recently suggested in preliminary results from an active yogurt
culture study in India (176).

Bass Becking and Beijerinck once stated that “everything is
everywhere; but the environment selects” (177). We would like
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to add to this phrase “and we adapt.” To enable continued survival
the human immune system must be especially malleable early in
life, to respond to rapidly changing requirements between prena-
tal and postnatal life. Adaptability is the hallmark of both innate
and adaptive immunity and through immune memory, can direct
life-long immune-mediated health. Though there remains much
to be done to determine how to best to direct the immune sys-
tem toward optimal long-term health, we now have gathered a
critical mass of insight into the mechanisms underlying immune
programing in early life and with that for the first time are pre-
sented with the unprecedented opportunity to become stewards
of not only prevention of disease but also promotion of life-long
health.
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