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The immune system cannot be continuously reactivated throughout the lifetime of an
organism; there is a finite point at which repeated antigenic challenge leads to the loss of
lymphocyte function or the cells themselves. Antigen-specificT cells can be compromised
in two ways through the distinct processes of replicative senescence and exhaustion.
Senescence is initiated by a DNA damage response whereas exhaustion triggers inhibitory
receptors to dampen the immune response.These two distinct pathways not only differ in
their initiation but also growing evidence suggests that their biogenergetics is also different.
Here, we review recent findings uncovering the metabolism of these unique states.
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METABOLISM OF THE IMMUNE RESPONSE TO VIRAL
INFECTION
During viral infections CD8+ T cells undergo clonal expansion
and produce effector molecules. In order to meet this bioenergetic
demand, the cells switch their metabolism from a mitochondrial-
dependent oxidative and fatty acid metabolism (1, 2), toward
glycolysis and glutamine oxidation (3, 4), even in the presence
of sufficient oxygen, a process termed aerobic glycolysis. Activated
T cells use this metabolism, although it is less energy efficient, as
it allows for the increase in biomass through the biosynthesis of
fatty acids and nucleotides (3). Cytokines and co-stimulatory sig-
nals via CD28 help promote the metabolic switch (5, 6). This acute
phase of the viral response is then followed by a contraction phase,
characterized by a decrease in mitochondrial membrane potential
and high levels of reactive oxygen species (ROS), which triggers
the majority of the antigen-specific effector cells to be cleared
by apoptosis (7). The remaining antigen-specific cells differen-
tiate into long-lived memory cells that protect against recurrent
infection. The metabolism also changes within the memory pop-
ulation; memory T cells revert back to fatty acid oxidation and
preferentially use the TCA cycle to fuel oxidative phosphorylation
(OXPHOS) (2). These changes appear to be governed by IL-15,
an important cytokine for CD8+ memory T cells, as it promotes
mitochondrial biogenesis and regulates the mitochondrial spare
respiratory capacity, the extra capacity available in cells to produce
energy (2, 8).

Although numerous infections are successfully cleared by the
acute immune response, certain viral infections are not resolved
and result in chronicity. The function of virus-specific T cells dur-
ing chronic infections is often characterized by varying degrees
of impairment, leading to defects in the ability of the host to
eliminate the pathogen. Depending on the antigenic load gen-
erated by the infectious agent the impaired memory formation
can result in T cells becoming either senescent or exhausted (9).

Thus, immune senescence arises as a consequence of low-grade
antigenic stimulation with the resulting inflammation determin-
ing the rate of senescence, as seen with CMV or EBV infection and
not age per se (10, 11). The quantity of the lifelong antigenic load
and the resulting inflammation determines the rate of immune
senescence. Whereas a high-antigen load, caused by HIV, HCV,
and HBV infection, leads to the formation of exhausted T cells
(12). In this present review, we will discuss the current under-
standing of the metabolic requirements of antigen-specific CD8+

T cells in chronic infections.

SENESCENCE AND EXHAUSTION ARE DISTINCT PROCESSES
As introduced above two different cellular processes can lead to T
cell dysfunction, namely, senescence and exhaustion (Figure 1).
Numerous mechanisms have been proposed to cause cellular
senescence, including repeated cell division, telomere shortening,
and damage by ROS (13, 14). The ensuing DNA damage trig-
gers the recruitment of a complex of proteins that are involved
in DNA repair, which is commonly referred to as the DNA dam-
age response (DDR) that inhibits cell cycling until the DNA is
repaired (13, 15, 16). Senescence manifests itself in T cells as
the loss of the co-stimulatory molecule CD28 and the acquisi-
tion of innate markers such as killer-cell lectin-like receptor G1
(KLRG-1), while senescent T cells lose proliferative capacity they
retain their cytotoxic activity and secretion of TNFα and IFNγ

(17–19).
Continuous T cell stimulation in the setting of a high-antigenic

load induces a state termed T cell exhaustion, characterized by
the loss of effector functions in a hierarchical manner (20).
IL-2 production and proliferation are the first functions to be
lost, followed by TNFα production and cytotoxic activity. At
late stages of exhaustion, IFNγ production is eventually com-
promised. When the antigen persists long-term at high-levels
exhausted T cells are ultimately removed by apoptosis. So in
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FIGURE 1 | Phenotype and function of senescent and exhausted
T cells. Senescent T cells are present in chronic viral infections with a low
viral and antigenic load. Senescent T cells express CD57, the late activation
marker killer-cell lectin-like receptor subfamily G member 1 (KLRG-1) and
killer-cell immune globulin-like receptors (KIR) and are capable of producing
significant amounts of effector cytokines such as perforin, IFN-γ, and TNF-α

(left panel). Exhausted CD8 T cells are found in persistent infections with
a high viral and antigenic load. These cells express various co-inhibitory
receptors such as PD-1, CTLA-4, Tim-3, LAG-3, and 2B4, which dampen
their effector response consequently exhausted T cells produce low
amounts of effector cytokines (right panel). Both T cell types show impaired
proliferative capacities.

contrast to senescent T cells, which can produce high amounts
of effector cytokines, exhausted T cells do not. Both groups have
low-proliferative potential in common. Furthermore, functional
exhaustion is accompanied by a marked change in T cell phe-
notype. Expression and maintenance of the co-inhibitory recep-
tors programed cell death-1 (PD-1) at high levels is a hallmark
of exhausted T cells, concomitantly other inhibitory receptors
such as cytotoxic T lymphocyte antigen-4 (CTLA-4), lymphocyte
activation gene-3 (LAG-3), T cell immunoglobulin and mucine
domain containing molecule-3 (Tim-3), CD160 (21), and the nat-
ural killer-cell receptor 2B4 can also be significantly increased
(12). T cell dysfunction in exhaustion is, at least in part, medi-
ated by these inhibitory receptors, since multiple studies have
demonstrated that their blockade results in functional recov-
ery of exhausted T cells, examples include PD-1 blockade in
HIV, HBV, and HCV (22–25) and CTLA-4 and Tim-3 blockade
in HBV (26, 27).

Both senescent and exhausted T cells show a differentiation
profile distinct from memory or effector cells. Senescent human
CD8+ T cells express high levels of T-bet but only a moderate
amount of EOMES (28). Exhausted T cells express high lev-
els of the transcriptional repressor Blimp-1, responsible for the
increased expression in co-inhibitory receptors (29). NFATc1, is
also increased and surprisingly is associated with poor cytokine
expression (12), while T-bet expression in exhausted T cells seems
to be important in supporting their persistence and sustenance
of any residual functionality (12). However, exhausted T cells do
help to control viral levels both in chronically infected patients and
shown experimentally in elegant T cell transfer studies in murine
chronic lymphocytic choriomeningitis virus (LCMV) (30). It is
tempting to speculate that both T cell senescence and exhaustion
are mechanisms by which viral infections are kept under control
in order to avoid extensive on going immune damage.

METABOLISM IN SENESCENT AND EXHAUSTED CD8 T CELLS
Senescent and exhausted T cells display a metabolic phenotype
distinct from memory cells but also, due to their differing func-
tionality, from each other (Figure 2). Senescent human CD8+

T cells isolated from healthy donors stimulated through the TCR
have been shown to preferentially utilize glycolysis and also exhibit
mitochondrial dysfunction and impaired mitochondrial biogene-
sis, which may explain their dependence on glycolysis for energy
(17). The ability of a T cell to undergo mitochondrial biogenesis
leads to an increased capacity of the cell to respond to metabolic
stress, a characteristic termed spare respiratory capacity (2). It
has been demonstrated that, unlike other memory subsets senes-
cent CD8+ T cells have a substantially reduced spare respiratory
capacity making them energetically unstable (17).

Information regarding the metabolism of exhausted T cells is
limited and, to date, restricted to mouse models where alterations
in metabolism have been reported. During acute infection with
the LCMV Armstrong clone, virus-specific CD8 T memory cells
develop. In contrast, during chronic infection with the LCMV
clone 13, repetitive antigen-stimulation leads to the loss of mem-
ory cells. Virus-specific cells detectable in chronically infected ani-
mals were either still naïve or functionally exhausted (31). Wherry
et al. have demonstrated using exhausted CD8+ T cells following
chronic infection with LCMV that genes involved in glycolysis and
oxidative metabolism were significantly altered compared to effec-
tor and memory CD8 T cells (32), suggesting that exhaustion is a
distinct state.

Information regarding the metabolic requirements of HIV is
hampered by the toxicity of many of the antiretrovirals (33). How-
ever, removal of mitochondrial content from a cell line leads to the
attenuation of HIV infection (34). Furthermore, cells isolated from
HIV+ patients may up-regulate OXPHOS owing to an increased
mitochondrial mass (33). However, the methodology used in this
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FIGURE 2 |The metabolism in senescent and exhausted T cells.
Senescent T cells rely more on glycolysis than mitochondrial respiration due
to the accumulation of giant non-functional mitochondria in these terminally
differentiated cells. The inhibitory receptor KLRG-1 prevents signaling through
the TCR, while the activation of p38 blocks autophagy, which senescent T
cells use as an energy source. Nonetheless, senescent T cells generate

sufficient energy to produce significant amounts of effector cytokine (left).
Exhausted T cells express co-inhibitory receptors, which interfere with TCR
and co-stimulatory signaling, thereby likely blocking any increase in metabolic
activity. Cells may also be prone to mitochondrial induced apoptosis.
Additionally, an increase in GAPDH, caused for example by lower levels of
glycolysis, might also dampen effector cytokine production (right).

study cannot distinguish whether the observed increase is due to
an increased number of functional mitochondria or the appear-
ance of giant non-functional mitochondria (35). From the limited
available data, it would appear that T cells utilize OXPHOS during
infections with both LCMV and HIV; however, it remains to be
investigated whether T cells specific to different pathogens being
primed in different locations in the body establish distinct meta-
bolic profiles. Furthermore,when examining human infections the
length of time post-infection may also be a deciding factor in the
metabolic fate of T cells, as repeated turnover may lead to mito-
chondrial dysfunction and a switch toward extra-mitochondrial
metabolism (36).

One hallmark of immune senescence is the accumulation of
late-differentiated effector T cells characterized by the loss of CD28
expression (9, 37, 38). Exhausted T cells have been described
to also display an effector memory T cell phenotype (39). Sig-
naling through CD28 has been demonstrated to increase gly-
colysis and therefore effector function in CD4+ T cells. Both
PD-1 and importantly CTLA-4, a direct competitor of CD28,
interfere with CD28 signaling (40, 41), their increased expres-
sion on exhausted T cells is therefore likely to dampen down a
metabolism suitable to sustain effector functions. While the CD28
co-stimulation pathway is considered to be important for T cell
activation, alternative co-stimulatory pathways belonging to the
TNF/TNF receptor (TNFR) family have been described. Signaling
through CD137:CD137L (4-1BB) has been demonstrated to pro-
mote proliferation of CD8+CD28− T cells and is an important
co-stimulator for human anti-viral CD8 T cells, as a CD137 ago-
nist given alongside PD-L1 blockade resulted in an enhanced and
stable expansion of LCMV-specific CD8+ T cells (42).

Furthermore, while not directly examining exhaustion Chang
et al. have shown using mice infected with Listeria that forcing
CD4+ T cells to use OXPHOS induced elevated PD-1 expres-
sion, a loss of proliferation and defective IFN-γ production (43).

However, what is hard to reconcile from this study is quiescent
memory T cells, which utilize OXPHOS do not express PD-1 (2,
32), therefore, the elevated levels of PD-1 observed in this sce-
nario may be controlling activation. Additionally, in vivo it is
questionable whether T cells will find themselves in a situation
where they are forced to utilize OXPHOS. T cell exhaustion and
senescence is pathogen specific with generally little impact on the
overall response to other infections and T cells specific to vari-
ous different viruses can accumulate in the same location (44).
Finally, memory, effector, and dysfunctional T cells can share the
same environment, while displaying distinct metabolism, suggest-
ing that a regulation through predominantly T cell intrinsic rather
than extrinsic factors. So the question of what drives the metabolic
phenotype of dysfunctional cells remains.

INFLUENCE OF METABOLIC REGULATORS ON SENESCENT
AND EXHAUSTED CD8 T CELLS
Metabolism can be controlled by many different immunologi-
cal and metabolic signals [reviewed in Ref. (45)], how chronic
infections influence these metabolic checkpoints remains to be
determined (Figure 2). Cytokines have been shown to regulate
metabolism, indeed IL-2 can induce the expression of glucose
transporter 1 (glut1) and enhance glycolysis (46). Both exhausted
and senescent T cells show no or reduced production of IL-2.
In line with this human senescent CD8+ T cells show a reduced
expression of glut1 (17). The glut1 level on exhausted T cells has
not been examined. The homeostatic cytokines IL-7 and IL-15 also
regulate metabolism, IL-7 promotes glycolysis in T cells (47, 48)
and IL-15 has been demonstrated to regulate oxidative metabo-
lism by enhancing mitochondrial biogenesis in memory CD8+ T
cells but not effectors (2). Type 1 IFN, a prevalent cytokine dur-
ing viral infections induces the production of IL-15 (49), which
may also add to the oxidative switch during viral infections. Addi-
tionally, type 1 IFN has also been demonstrated to modulate lipid
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metabolism (50), while lipid metabolism is crucial for memory T
cells, a role for this cytokine in the control of metabolism dur-
ing senescence and exhaustion, where effector T cells dominate is
unclear.

The distinct nature of the metabolic changes seen during
chronic infection suggests additional regulatory steps in the meta-
bolic reprograming of T cells. The transcription factor mammalian
target of rapamycin (mTOR), as well as being a critical regulator
of CD8+ memory formation (51), is a key molecule sensing intra-
cellular amino acids and ATP (52), and regulates fatty acid metab-
olism in memory T cells (1). The pro-inflammatory cytokine
IL-12 increases mTOR expression in antigen-stimulated CD8+

T cells, promoting CD8+ T effector differentiation and metabo-
lism. Blockade of mTOR by rapamycin led to inhibition of IL-12
induced expression of the transcription factor T-bet and skewed
the CD8 response toward eomesodermin dependent memory for-
mation (53). T-bet is important in maintaining the limited effector
capacity of T cells in chronic infections (54) and IL-12 enhances
functionality of exhausted T cells in chronic HBV by increasing
T-bet (55). It has recently been shown that senescent CD8+ T cells
display very little mTOR activity and predominantly use mTOR-
independent pathways to control their metabolic requirements
(17). This is in line with the concept that the transition to a
memory phenotype is associated with a metabolic switch from
anabolism to catabolism (41, 52) via the inhibition of mTOR (51).
This limited mTOR activity also corresponds to the lower level of
glut 1 observed on senescent T cells compared to other memory
populations (17).

This review has focused on the changes occurring to glycol-
ysis and oxidative metabolism during chronic infections. How-
ever, alternative energy sources, such as the β-oxidation of fatty
acids or autophagy may be utilized differentially by senescent and
exhausted T cells. A recent article by the Pearce group has demon-
strated that the fatty acids required by memory T cells are produced
de novo via the non-classical lysosomal acid lipase (LAL) pathway
to mobilize fatty acids for β-oxidation (56). This study uses the
mouse OVA system together with cytokines to generate effector
and memory cells, but the observed pathways have not yet been
shown to occur in humans. Furthermore, while both senescent and
exhausted T cells are not highly proliferative, like memory cells,
they do make cytokine and senescent T cells also express high lev-
els of effector molecules necessitating a higher catabolic demand.
Macroautophagy (autophagy) is another alternate nutrient source
when extracellular nutrient uptake is insufficient to meet the cel-
lular energy demands (57). The lysosomal digestion of organelles
and other materials by autophagy can generate the required meta-
bolic precursors for metabolism (57). Furthermore, mouse models
have shown autophagy to support glycolysis and autophagy com-
petence is required for cells to proliferate and expand (58). Senes-
cent human CD8+ T cells display low-autophagic activity (17, 59),
which was regulated via p38 MAPK independently of mTOR (17).
However, the role of both fatty acid metabolism and autophagy
during T cell exhaustion remains to be determined.

SUMMARY
Although the interest in metabolism has grown significantly and
our understanding of the specific requirements of T cells with it,

there is still very little understanding of how T cells fuel their energy
demand during chronic viral infections. We have highlighted here
the distinct phenotypes and functions of exhausted and senes-
cent CD8 T cells and have outlined the current knowledge of
their metabolic requirements. However, many questions remain
open: it remains to be seen, how much influence the environment
the T cell is located in at any given stage during the infection
has. Are metabolic phenotypes at least partially imprinted dur-
ing T cell priming in the acute phase of the infection or do they
only develop over time? How big is the influence of the antigen
presenting cell and the local environment during priming? For
example, HBV/HCV-specific T cells are likely to encounter their
cognate antigen for the first time in the liver and be primed there,
whereas EBV-specific T cells might be primed in the tonsils. The
liver milieu is naturally high in suppressive cytokines (60, 61),
which control and dampen T cell activation and might influ-
ence the metabolic pathway used. Furthermore, it is likely that
the immune response differs when taking place in a hypoxic envi-
ronment compared to one with higher oxygen supply. Finally, the
infecting virus itself will influence the T cell response by manip-
ulating cytokine, chemokine, and co-stimulatory or co-inhibitory
receptor expression.

These questions have so far not been taken into account when
investigating chronic infections, since most studies have utilized
only the murine LCMV model to study T cell dysfunction. The
limitation being that, specific changes in T cell phenotype and
function caused by distinct infections have not been addressed.
Ultimately, the aim will have to be to better understand human
T cell responses in order to allow the development of novel
immunotherapies. Albeit the difficulties of establishing reliable
in vitro models and understanding the mechanisms governing
human anti-viral immunity, studies making use of human samples
need to be further encouraged.
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