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As well as being the primary signaling receptor for bacterial endotoxin or lipopolysaccha-
ride Toll-like receptor-4 function is modulated by numerous factors not only in the context
of microbial pathogenesis but also autoimmune and allergic diseases. TLR4 is subject to
multiple levels of endogenous control and regulation from biosynthesis and trafficking to
signal transduction and degradation. On the other hand regulation of TLR4 activity breaks
down during Gram −ve sepsis leading to systemic damage, multi organ failure, and death.
In this article, we review howTLR4 traffics from the early secretory pathway, the cis/trans
Golgi to the cell surface and endolysosomal compartments. We will present evidence
about how these processes influence signaling and can potentially lead to increased sen-
sitivity to ligand-dependent activation as well as ligand-independent constitutive activation
that may contribute to pathogenesis in sepsis. We will also discuss how sustained signal-
ing may be coupled to endocytosis and consider the potential molecular mechanisms of
immuno-modulators that modify TLR4 signaling function including the cat allergen FelD1
and endogenous protein ligands such as the extracellular matrix protein tenascin C and
calprotectin (MRP8/14).

Keywords: toll-like receptor 4, trafficking, sensitization, allergens, endogenous ligands

INTRODUCTION
Due to its importance in host innate immune response against
infection, as well as in pathogenesis of autoimmune diseases and
chronic inflammatory conditions, TLR4 signaling activity is sub-
ject to complex regulation (1). TLR4 activates two distinct path-
ways originating from different cellular locations, the cell surface,
and the endosome. This results either in inflammatory responses
mediated by the adaptor MyD88 and transcription factor NFκB
or anti-viral signaling responses transduced by TRAM/TRIF and
IRF3 (2). It is thus critical to ensure that signals are appropriately
activated at the right place and the right time, and are termi-
nated when no longer required. The roles of accessory and adaptor
molecules in the regulation of TLR4 signaling from biosynthesis
to activation and eventually to degradation have been subject to
intensive study (Table 1). CD14 and MD2, for example, are impor-
tant for recognition and delivery of ligand LPS to receptor at the
cell surface, whereas the cytosolic TIR domain-containing adap-
tors determine which pathway is activated. These two molecules,
however, have additional roles in the trafficking and localization
of TLR4 receptor, before and after LPS stimulation, which will be
discussed in Sections “Biosynthesis and Localization of TLR4” and
“Vesicular Trafficking and Signaling of TLR4.” Last year the Nobel
Prize in Physiology or Medicine was awarded for molecular studies
of vesicular trafficking, recognizing the importance of these fun-
damental processes for the biosynthesis and trafficking of secreted
proteins and for cellular regulation. Dysregulation of these path-
ways can result in over-sensitization TLR4 responses. In addition,
several non-canonical activators of TLR4, such as cat allergen
FelD1, have been described recently to induce sensitization of the

receptor. Here, we review recent advances that shed light on the
mechanisms that regulate TLR4 at the molecular and cellular level
with an emphasis on the role of protein secretory pathways.

BIOSYNTHESIS AND LOCALIZATION OF TLR4
Two chaperone molecules glycoprotein (gp) 96 and protein asso-
ciated with TLR4 (PRAT4A) are required for the correct folding of
TLR4, and other TLRs, in the ER (3–5, 32). Both chaperones inter-
act with TLR4 in the ER and depletion of either molecule results in
reduced cell surface expression of TLR4 and hence lower activity
in response to LPS stimulation [Reviewed in Ref. (33)]. In addi-
tion to its role as a co-receptor for LPS on the cell surface, MD2 is
also required for correct glycosylation of TLR4 during its biosyn-
thesis. MD2 associates with the nascent TLR4 in the ER, possibly
assisted by the chaperones, and at least in embryonic fibroblasts
from MD2−/−mice, TLR4 is not transported to the cell surface but
accumulated in the Golgi (6). This is because MD2 is required for
correct N-glycosylation of TLR4 that enables the mature receptor
complex to be trafficked to the cell surface (7, 8). Overall, cor-
rect post-translational modification of TLR4 in the ER, especially
the addition of mannosyl N-linked glycans, is important for cell
surface localization of the mature receptor, which is crucial for
ligand-dependent signaling activity.

VESICULAR TRAFFICKING AND SIGNALING OF TLR4
VESICULAR TRAFFICKING OF TLR4 FROM THE ER TO THE CELL SURFACE
In the ER, correctly folded cargo for anterograde transport to
the Golgi is selected for packaging into COPII-coated vesicles
(Figure 1). Selection of folded glycoprotein cargo such as TLR4
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Table 1 | Accessory molecules that regulateTLR4 signaling activity.

Accessory

molecules

Roles in the regulation ofTLR4 signaling Reference

PRAT4A TLR4 folding in the ER (3, 4)

gp96 TLR4 folding in the ER (5)

MD2 Correct glycosylation of TLR4, and accessory

molecule for LPS recognition

(6–9)

CD14 Co-receptor for LPS on the cell surface, and

promotes LPS-induced endocytosis of the

activated receptor

(10–12)

TMED7 Trafficking of TLR4 to the cell surface/to the late

endosomea

(13, 14)

Rab10 Trafficking of TLR4 to the cell surface (15)

Rab11a Trafficking of TLR4 from endocytic recycling

compartment to E. coli -containing phagosome

(16)

Rab7b Degradation of TLR4 in the lysosome (17)

MyD88 Adaptor molecule for TLR4 signaling

transduction inside the cell

(18–20)

Mal Adaptor molecule for TLR4 signaling

transduction inside the cell

(21, 22)

TRIF Adaptor molecule for TLR4 signaling

transduction inside the cell

(23, 24)

TRAM Adaptor molecule for TLR4 signaling

transduction inside the cell

(25, 26)

SARM Negative regulator of TLR4 signaling (27–29)

CD11b Positive regulator of TLR4 signaling (30)

PLC Cγ-2 Promotes LPS-induced endocytosis of

activated TLR4

(31)

A non-exhaustive list showing molecules that play roles in regulating the activ-

ity of TLR4 signaling that ranges from the biosynthesis stage of the receptor in

the early secretory pathway to the degradation of the activated receptor in the

lysosomes. Only references that have direct connections toTLR4 are listed here.
aCurrently, there are two opposing conclusions from two independent studies on

the roles of TMED7 in the signaling of TLR4.

seems to require firstly the presence of a specific octa-mannosyl N-
linked glycan moiety (34). Other patterns of mannosylation direct
glycoproteins to the ER quality control compartment (ERQC) for
refolding or ERAD mediated destruction. A second requirement
is a cytosolic diphenylalanine motif that acts as a signal for the
assembly of the COPII coat (35). Many secreted soluble and trans-
membrane proteins do not have this motif but instead require
adaptor proteins for packaging into COP II vesicles and transport
to the Golgi.

A recent study shows that one such adaptor TMED7 is nec-
essary for anterograde trafficking of TLR4 to the cell surface
(13). TMED7 is a type I membrane protein with a N-terminal
luminal GOLD domain followed by a coiled-coil dimerization
sequence, a single transmembrane helix, and a short cytoplas-
mic tail that contains a diphenylalanine motif (36, 37). Humans
have 9 TMED7 paralogs and family members play important

roles in trafficking and membrane homeostasis as studied in yeast
model organisms. The yeast ortholog of TMED2 or Emp24p func-
tions in the secretion of glycoproteins invertase and GPI-anchored
Gas1p (38). Other roles of the TMED family range from main-
taining the structural integrity of the Golgi (39, 40), retention of
ER-resident proteins (41), and unfolded protein responses (42)
to mouse embryonic development (43). TMED7 binds stably to
the TLR4 ectodomain an interaction that requires the GOLD
and coiled-coil domains. Full length TMED7 concentrates in the
cis-golgi but removal of the diphenylalanine motif causes it to
redistribute in the endomembrane system. The truncated form
of TMED7 also causes constitutive activation of TLR4, perhaps
because it cannot be transported to the Golgi but accumulates in
the ER (13). This finding suggests that under conditions of cellular
stress such as might be found in sepsis the production of inflam-
matory mediators by TLR4 may be independent of LPS. Thus,
therapies that target receptor homo-dimerization, a key step in
the activation pathway of TLR4, may be more effective than LPS
antagonists.

It remains unclear how TMED7 and TLR4 interact with each
other in the ER and how they dissociate during trafficking to cell
surface. On the other hand, it is known that the small GTPase
Rab10 co-localizes with TLR4 in the Golgi and enhances TLR4
signaling activity by increasing the rate of TLR4 trafficking to the
cell surface from the Golgi when cells are stimulated with LPS
(15). Rab10, a member of the Ras family, is likely to assist this
process by positively regulating vesicle formation and fusion with
the target compartments. Rab10 expression is elevated in den-
dritic cells and macrophages after LPS stimulation, which acts as a
positive feedback to ensure more TLR4 receptors are translocated
to the cell surface so that cells remain responsive to LPS. How-
ever, Rab10 is a soluble cytosolic protein and cannot itself select
cargo for vesicular trafficking to the cell surface (44). Thus, it is
likely that a transmembrane trafficking adaptor is required to act
as a specific cargo receptor to couple Rab10 to TLR4, a role that
could also be carried out by TMED7. Another family member, the
mammalian TMED2, and its cargo molecule, the 7-TM protease-
activated receptor 2 (PAR2) may provide a relevant analogy. Like
TMED7 and TLR4, TMED2 forms complexes with its cargo PAR2
that require the GOLD and dimerization motifs of the adaptor
and an extracellular loop of the receptor (45). In order for PAR2
to traffic to the surface, TMED2 is dissociated from the complex
by the activation of Arf1, another member of the small GTPase
superfamily. Interestingly, LPS stimulation leads to a significant
reduction in the amount of TMED7/TLR4 complexes present in
the cell consistent with the idea that Rab10 plays a similar role in
trafficking to that fulfilled by Arf1 in the case of PAR2.

ENDOCYTIC TRAFFICKING OF TLR4
Activation of TLR4 by LPS appears to be coupled to internaliza-
tion and this depletes the cell surface TLR4 receptors, which could
cause cells to become desensitized to the stimuli. Indeed a study
has shown that internalization of TLR4 in the absence of LPS,
induced by an anti-CD14 antibody on the cell surface, reduced
LPS responsiveness in human primary monocytes and THP-1 cells
(46). Constant translocation of TLR4 from the Golgi to the cell sur-
face is therefore required to replenish the level of cell surface TLR4
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FIGURE 1 |Trafficking ofTLR4. A simplified schematic of TLR4 trafficking in
the early secretory and endocytic pathways. (1) Upon translation, folding, and
glycosylation of the protein in the ER, nascent TLR4 is recognized by TMED7
cargo receptor to be trafficked anterogradely in COP II-coated vesicles toward
the Golgi complex (13). (2) Following maturation within the Golgi complex,
mature TLR4, along with MD2 (not shown in diagram), is transported to the
cell surface via vesicular trafficking that is Rab10 dependent (15). (3)
Alternatively, mature TLR4 can be translocated to endosomal recycling
compartment (ERC) where it forms a distinct intracellular pool of receptors

that can recognize phagocytosed Gram-negative bacteria such as E. coli (16).
From here, activated TLR4 can mount innate immune responses intracellularly
independent of the cell surface receptor. It is likely that the ERC also act as a
recycling organelle for new and old receptors back to the cell surface to
resensitize the cell. (4) Finally, upon receptor activation on the cell surface,
receptor is endocytosed into early endosome where TRIF/TRAM pathway is
initiated. Eventually, the early endosome matures into late endosome fuse
with the lysosome where the receptor will be degraded to terminate the
signaling. This process is Rab7b-dependent.

in the presence of LPS and to allow a sustained signaling response
(47). Endocytosis of the activated receptor complex from the cell
surface into the early endosome has two important consequences:
the activation of the TRAM/TRIF pathway and the termination of
the signaling (12). Activation on the cell surface and endocytosis
are coupled by CD14 and TRAM and the endocytosis process is
clathrin and dynamin-dependent (10, 48, 49).

SENSITIZATION OF TLR4 RESPONSES BY ALLERGENS,
METALS, AND ENDOGENOUS LIGANDS
The activation of innate pattern recognition receptors such as
TLR4 is required to initiate both innate and adaptive immune
responses. These recognition and signaling processes also play a
central role in the development of inflammatory and autoimmune
diseases such as rheumatoid arthritis, asthma, and septic shock
(50). In the case of TLR4, the identification of bonafide ligands
and agonists has been hindered due to the ubiquity of LPS in the
environment causing contamination of ligand preparation. Nev-
ertheless a consensus is emerging that direct ligands that can bind
the receptor and induce dimerization are limited to LPS, nickel
and other divalent transition metals, the synthetic cationic lipid,
di-C14 amidine, and paclitaxel (1, 51, 52, Lonez et al., submitted).
There are, however, a number of other molecules that enhance the
activity of TLR4 but may not be direct ligands of the receptor.
These include allergens such as FelD1, high-mobility group pro-
tein B (HMGB), tenascin, proteoglycans, calprotectin [also known

as the cytosolic myeloid related proteins (MRP) 8 and 14 and
S100A8/9] (53–57).

The lipid A moiety of LPS is sufficient to activate TLR4. The acyl
chains of immunostimulatory LPS intercalate into the β-sandwich
fold of MD-2. One of the six fatty acyl chains is partially exposed on
the surface of MD-2, creating a hydrophobic patch that can form
an interface with another TLR4/MD-2 heterodimer (58). Ionic
interactions mediated by the glucosamine phosphate backbone
of LPS further stabilize this MD-2-TLR4 interface and promote
the formation of a secondary homo-dimerization site between
the lateral surfaces of the receptor’s leucine rich repeat (LRR)
solenoids (59). This leads to the assembly of an “M” shaped het-
erotetramer that positions the C-termini of the LRR solenoids in
close proximity, allowing the cytosolic TIR domains of the recep-
tor to dimerize. By contrast, divalent metal ions such as Ni2+

and Co2+ that can induce contact dermatitis in humans act by
binding to specific histidine residues in the secondary receptor
homo-dimerization site, again leading to assembly of the active
heterotetramer (60). A recent study has identified another direct
mechanism for TLR4 activation. In this case the cationic, di-acyl
lipid di-C14 amidine activates TLR4 by a mechanism that is inde-
pendent of MD-2. Instead di-C14 amidine is predicted to bind
to a hydrophobic crevice in the receptor homo-dimerization site,
stabilizing the formation of this interface.

By contrast to the activators described above another group
of immuno-modulators do not directly induce assembly of the
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activated TLR4/MD-2 heterotetramer. The major cat allergen, the
dander protein FelD1, enhances TLR4 signaling by about 10-fold
but does not bind to TLR4/MD-2 (53). Instead, it is likely that
FelD1 can sequester environmental LPS and other lipid TLR ago-
nists. Thus, dander proteins loaded with environmentally derived
PAMPs may associate with cell membranes, facilitating lipid pre-
sentation, and transfer to accessory molecules such as CD14 or
directly to receptor complexes. Alternatively, FelD1 may promote
greater clustering of TLR4-bearing lipid rafts, leading to increased
receptor activation. DerP2 from the dust mite and Canf6 from
dog, two allergens that are structurally distinct from FelD1, also
enhance TLR4 activity suggesting that this may be a common
feature of allergen action. It is possible that this lipid transfer
or raft stabilization mechanism may underlie the properties of
endogenous TLR activators as well. For example, the Mrp8/Mrp14
protein complex calprotectin enhances LPS activation of TLR4
when presented extracellularly. Mrp8/14 are calcium binding EF-
hand proteins and they associate with lipid raft structures (61).
A third class of endogenous activator is the large extracellular
matrix protein tenascin C. Tenascin C is induced by tissue damage
and the C-terminal fibrinogen globe (FBG) module causes acti-
vation of TLR4 in chronic inflammatory disease such as rheuma-
toid arthritis (56). Attempts to show direct binding of FBG to
TLR4/MD-2 have not been successful suggesting an indirect mode
of action for FBG.

CONCLUSION
In conclusion, TLR4 responsiveness to its bonafide ligand, LPS,
can be further regulated by its cellular localization and the clus-
tering effect induced by immuno-modulatory molecules such as
the cat allergen FelD1. The regulation of the recycling and traf-
ficking of many membrane receptors, especially TLR4, is dynamic
and involves cargo receptors and small GTPase molecules. This
provide an additional control to receptor signaling activity in
addition to gene expression control, post-translational modifica-
tions prior to the arrival of signal, and recruitment of various
adaptor molecules and kinases downstream of the receptor activa-
tion by ligands. Compartmentalization is particularly important
for TLR4 as it dictates which pathway is activated upon recep-
tor stimulation (16). These studies provide insight into a different
mode of receptor regulation through membrane-bound vesicu-
lar trafficking. Allergens and endogenous activators may display
a second non-canonical mode of regulation of TLR4 by func-
tioning as lipid binding proteins or membrane microdomain
stabilizers (31, 62).
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