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Human leukocyte antigen G (HLA-G) belongs to the family of non-classical HLA class |
genes, located within the major histocompatibility complex (MHC). HLA-G has been the
target of most recent research regarding the function of class | non-classical genes. The
main features that distinguish HLA-G from classical class | genes are (a) limited protein vari-
ability, (b) alternative splicing generating several membrane bound and soluble isoforms,
(c) short cytoplasmic tail, (d) modulation of immune response (immune tolerance), and
(e) restricted expression to certain tissues. In the present work, we describe the HLA-G
gene structure and address the HLA-G variability and haplotype diversity among several
populations around the world, considering each of its major segments [promoter, coding,
and 3’ untranslated region (UTR)]. For this purpose, we developed a pipeline to reevaluate
the 1000Genomes data and recover miscalled or missing genotypes and haplotypes. It
became clear that the overall structure of the HLA-G molecule has been maintained during
the evolutionary process and that most of the variation sites found in the HLA-G coding
region are either coding synonymous or intronic mutations. In addition, only a few frequent
and divergent extended haplotypes are found when the promoter, coding, and 3’UTRs are
evaluated together. The divergence is particularly evident for the regulatory regions. The
population comparisons confirmed that most of the HLA-G variability has originated before
human dispersion from Africa and that the allele and haplotype frequencies have probably
been shaped by strong selective pressures.

Keywords: HLA-G, haplotypes, polymorphisms, variability, gene structure and diversity, non-classical HLA,

1000Genomes Project, selective pressure

INTRODUCTION

Human leukocyte antigen G (HLA-G) belongs to the family of
non-classical HLA class I genes, located within the major histo-
compatibility complex (MHC) at chromosomal region 6p21.3.
The MHC segment is considered to be the most polymorphic
region in vertebrate genome (1). Although the HLA-G product
presents the same class I classical molecule structure, its main func-
tion is not antigen presentation. HLA-G function in the immune
response regulation has been extensively studied since its discovery
by Geraghty and colleagues in 1987 (2).

The HLA-G gene has been the target of most recent research
regarding the function of class I non-classical genes. The main
features that distinguish HLA-G from classical class I genes are (a)
limited protein variability, (b) alternative splicing generating sev-
eral membrane bound and soluble isoforms, (c) short cytoplasmic
tail, (d) modulation of immune response (immune tolerance), and
(e) restricted expression to certain tissues (3).

The HLA-G molecule does not seem to stimulate immune
responses, however, it exerts inhibitory functions against natural
killer (NK) cells (4), T lymphocytes (4), and antigen-presenting

cells (APC) (5) through direct interaction with multiple inhibitory
receptors such as ILT2/CD85j/LILRB1 (ILT2), expressed by all
monocytes, B cells, some lineages of T cells, and NK cells (6);
ILT4/CD85d/LILRB2 (ILT4), only expressed by monocytes and
denderitic cells (7); and KIR2DL4/CD158d (KIR2D14) that has a
restricted expression to CD56 NK cells (8).

HLA-G role in immune tolerance was first studied in tro-
phoblast cells at the maternal—fetal interface (9). Several studies
reported an aberrant or reduced HLA-G expression in both mRNA
and protein levels. This phenomenon was observed in pathological
conditions such as preeclampsia (10) and recurrent spontaneous
abortion (11) in comparison with normal placentas.

Beyond trophoblast expression, HLA-G is related to a vari-
ety of physiological and pathological conditions. In physiological
conditions, HLA-G expression has been documented in cornea
(12), thymus (13), and erythroid and endothelial precursors (14).
On the other hand, HLA-G variation sites and/or expression
levels are associated with pathological conditions such as viral
infections (15-20), cancer (21-27), recurrent miscarriage (28—
37), pregnancy outcome and pregnancy complications (37-45),
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autoimmune diseases (46—54), transplantation outcome (55—
57), and inflammatory diseases (58-61), indicating that HLA-G
encodes a critical molecule for the immune system.

HLA-G GENETIC STRUCTURE

The HLA-G gene presents a structure that resembles other clas-
sical class I genes such as HLA-A, HLA-B, and HLA-C. HLA-G
encodes for a membrane-bound molecule with the same extracel-
lular domains presented by other class I molecules, including the
association with the $2-microglobulin. However, its main function
is not antigen presentation.

The HLA-G gene exon/intron structure and splicing patterns
are well defined, but there are inconsistencies between the National
Center for Biotechnology Information (NCBI) 1 the International
Immunogenetics Database (IMGT/ HLA?), and the Ensembl data-
base® annotations regarding its structure, mainly because the
IMGT/HLA database only presents sequences within 300 bases
upstream the coding sequence (CDS) and the database does
not consider most of the 3’ untranslated region (UTR) seg-
ment. Therefore, in the present work, the structure defined by
NCBI/Ensembl will be used throughout the text.

According to the NCBI reference sequence NC_000006.12
(GRCh38 or hg19) and transcripts such as NM_002127.5 (NCBI),
ENST00000428701, and ENST00000376828 (Ensembl), the HLA-
G gene (NCBI Gene ID: 3135) presents eight exons and seven
introns, consistent with a classical class I gene structure, and
encompasses a region of 4144 nucleotides between positions
29826979 and 29831122 at 6p21.3 (GRCh38). This gene is sur-
rounded by some of the most polymorphic genes in the human

Uhttp://www.ncbi.nlm.nih.gov
Zhttp://www.ebi.ac.uk/ipd/imgt/hla/
3http://www.ensembl.org/index.html

genome (Figure 1), such as HLA-A (115 Kb downstream), HLA-B
(1526 Kb downstream), and HLA-C (1441 Kb downstream), and
other non-classical HLA loci such as HLA-E (662 Kb downstream)
and HLA-F (103 Kb upstream). According to the NCBI annotation
and hg19, the HLA-G DNA segment encodes a full-length mRNA
of 1578 nucleotides and alternative smaller ones, as discussed
later. Considering the full-length mRNA, 1017 nucleotides repre-
sent the CDS encoding for a full-length protein of 338 amino acids,
178 nucleotides represent the 5'UTR segment, and 383 nucleotides
represent the 3'UTR segment.

There is no consensus regarding the exact location where
the HLA-G transcription may start. Considering the NCBI and
Ensembl annotations, and the transcripts NM_002127.5 from
NCBI and ENST00000428701 from Ensembl, the HLA-G tran-
scription starts 866 nucleotides upstream the initial translated ATG
(third * at Figure 1). However, other transcripts tell us a different
story: ENST00000376828 indicates that the HLA-G transcription
might start even earlier, while ENST00000360323 indicates that
the transcription starts 24 nucleotides upstream the initial trans-
lated ATG. Given these contradictory information, it is possible
that the HLA-G gene presents multiple transcription start points
depending on the presence of specific transcription factors or other
expression inducing mechanisms, but it probably presents only
one translation start point as described further. Since there is no
consensus, in the present work, we opt to use the annotation pre-
sented by both NCBI and Ensembl, considering NM_002127.5
and ENST00000428701 as references. Considering the transcrip-
tion start site indicated by NM_002127.5/ENST00000428701 or
ENST00000360323, HLA-G presents a large 5UTR segment.
Within this segment, there is an intron (intron 1) of about 688
nucleotides that is spliced out, giving rise to 5UTR of about
178 nucleotides composed of DNA segments of two adjacent
exons. Considering this transcription start point, the HLA-G 5’
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sequence presents at least three potential translation start points,
i.e., two in the 5’UTR and the third one defining the beginning
of the CDS. In the present work, we will consider the Adenine
of this third ATG, i.., the first base of the CDS, as nucleotide
+1. Although conventional nomenclature would suggest the first
transcribed base as nucleotide +1, our decision will avoid unnec-
essary confusion regarding the position of various well-established
HLA-G variation sites. All nucleotides before the CDS will be
noted as negative numbers and nucleotides in the CDS seg-
ment will be noted as positive numbers, using as a reference
sequence the one available at the official human genome hg19
or NC_000006.12.

The first ATG is found between nucleotides —154 and —152
(mRNA) or nucleotides —842 and —840 (DNA). The second
one is found between nucleotides —118 and —116 (mRNA) or
nucleotides —806 and —804 (DNA). Both of these translation start
points are in the same frame and are included in a sequence that
does not resemble the preferred translation initiation sequence
(Kozak consensus sequence) and might not initiate translation
(62). Even if the first ATG is used, it would produce a peptide of
only eight residues due to a stop codon found downstream in the
reading frame. Alternatively, if the second ATG is used, a protein
of about 136 amino acid residues would be produced. Although in
a different frame from the main translation start point (the third
one), this 136 amino acid molecule is quite similar to other human
and primate class I molecule alpha-1 domains. The third and main
ATG is compatible with the preferred Kozac sequence (62) and it
initiates the translation of the full-length 338 amino acid residues
protein and defines the beginning of the CDS segment.

The HLA-G CDS is composed of joining segments of six exons,
in which the first contains the translation start point and the last
one contains the stop codon (Table 1, Figure 1). It should be noted
that there is no consensus regarding exon and intron nomen-
clature between NCBI/Ensembl and the IMGT/HLA databases.
IMGT/HLA considers as exon 1 the first mRNA segment that is
translated, i.e., exon 2 for NCBI/Ensembl (Figure 1). The actual
exon 2, which encodes the final portion of the 5’UTR, contains the
main translation start point and in fact encodes the HLA-G leader
peptide (Figure 1). In addition, exons 3, 4, and 5 encode the alpha-
1, alpha-2, and alpha-3 domains, respectively, exon 6 encodes the
transmembrane domain, and exon 7 the cytoplasmic tail. A pre-
mature stop codon at exon 7 leads to a shorter cytoplasmic tail
when compared to other class I molecules (Figure 1, Table 1). The
segment downstream the stop codon at exon 7 extending to exon 8
composes the HLA-G 3'UTR. The HLA-G mRNA 3'UTR is short
when compared to other class I genes. This gene structure descrip-
tion highlights one of the widely spread misconceptions regarding
HLA-G gene structure: in 1987, Geraghty and colleagues proposed
the existence of an exon 7 based on homology with classical class I
genes (2). This “exon 7” was in fact part of the intron 7 (NCBI) and
itis usually absent in most of the HLA-G transcripts. Although this
“exon 7” segment has been found in alternative transcripts (e.g.,
ENST00000478519), other intron segments are also sometimes
kept in rare alternative transcripts (e.g., ENST00000478355), since
alternative splicing is an important characteristic of the HLA-G
gene as described further.

Table 1 | The HLA-G exons and introns, their size, function, and
nomenclature.

According to According to Size (nt) Function considering

NC_000006.12 IMGT/HLA the full-length

(hg19) mRNA

Exon 1 - 66 5'UTR

Intron 1 - 688 Spliced out

Exon 2 Exon 1 185 5'UTR/Leader peptide

Intron 2 Intron 1 129 Spliced out

Exon 3 Exon 2 270 Alpha-1 domain

Intron 3 Intron 2 226 Spliced out

Exon 4 Exon 3 276 Alpha-2 domain

Intron 4 Intron 3 599 Spliced out

Exon 5 Exon 4 276 Alpha-3 domain

Intron 5 Intron 4 122 Spliced out

Exon 6 Exon 5 n7 Transmembrane
domain/cytoplasmic tail

Intron 6 Intron 5 445 Spliced out

Exon 7 Exon 6 33 Cytoplasmic tail/stop
codon/3'UTR

Intron 7 - 357 Spliced out

Exon 8 - 355 3'UTR

The HLA-G gene may produce at least seven protein iso-
forms generated by alternative splicing of the primary transcript
(Figure 1). Four isoforms are membrane bound presenting the
transmembrane domain and the short cytoplasmic tail. HLA-
Gl is the full-length membrane-bound isoform with a structure
that resembles classical class I molecules. HLA-G2 lacks alpha-2
domain, HLA-G3 lacks alpha-2 and alpha-3 domains, and HLA-
G4 lacks alpha-3 domain. Three isoforms are soluble due to the
lack of the transmembrane domain. The soluble HLA-G5 and
HLA-G6 isoforms present the same extracellular domains of HLA-
G1 and HLA-G2, respectively; however, both transcript variants
retain intron 5 leading to a stop codon before the translation of the
transmembrane domain, and a tail of 21 amino acids implicated in
their solubility. HLA-G?7 transcript variant retains intron 3 leading
to a premature stop codon. Therefore, HLA-G7 isoform presents
only the alpha-1 domain linked to two amino acids encoded by
intron 2 (Figure 1) (63—65).

In the next sections, we will address the HLA-G variability
and haplotype diversity among several populations around the
world.

HLA-G VARIABILITY AS DESCRIBED IN THE 1000GENOMES
PROJECT

The 1000Genomes Project is a large survey aiming to sequence
the entire genome of thousands of individuals in several popula-
tions around the world (66). In the initial released data, the phased
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genotypes of 1092 individuals from 14 populations were available.
These data have driven several studies regarding HLA-G variability
and evolutionary aspects (67-69).

The initial genotype published by the 1000Genomes Project
was based on exome sequencing or whole genome low cover-
age sequencing and lacks several known HLA-G polymorphisms
due to limitations in the genotype detection procedures at that
moment. Among the missing polymorphic sites, we may high-
light some known indels, such as the traditionally studied 14-bp
presence or absence (insertion/deletion) in the HLA-G 3'UTR.
In addition, the method used to infer genotypes and haplotypes
failed to clearly distinguish triallelic SNPs, reporting them as bial-
lelic ones (e.g., the HLA-G promoter SNP at position —725C/T/G,
rs1233334).

Considering these technical limitations and considering the
fact that most of the bioinformatics tools used in the initial sur-
vey are now more advanced and developed, we have reevaluated
the 1000Genomes raw sequencing data regarding the HLA-G gene
using a locally developed pipeline to get genotypes and haplotypes,
to better understand the HLA-G variability around the world and
to retrieve data regarding some HLA-G missed polymorphic sites.

First, by using Samtools (70) subroutine view, we down-
loaded the BAM files (binary alignment map) containing the
1000Genomes official alignment data for the HLA-G gene
region (between positions 29793317 and 29799834 at chro-
mosome 6) directly from the 1000Genomes server (ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/). The reads downloaded
were already trimmed on both ends for primer sequences. The
download was performed for each of the initial 1092 samples
and included data from both low coverage whole genome and
exome when available. It should be mentioned that we got the
sequences (reads) from BAM files representing the HLA-G region,
thus, the next step of our pipeline used only the reads that were
previously mapped to the HLA-G region by the 1000Genomes
Consortium. Each BAM file was converted into a Fastq for-
mat file retrieving all reads that were previously mapped to the
HLA-G region. The BAM to Fastq conversion was made using
Bamtools (https://github.com/pezmaster31/bamtools/) and Perl
scripts (locally developed) to filter out duplicated reads and to
classify the reads as paired or unpaired.

Both paired and unpaired Fastq files were mapped to a masked
chromosome 6 (hgl9), in which only the HLA-G region was
available and the rest of the chromosome was masked with “N”
to preserve nucleotide positions regarding hgl9. To date, hgl9
presents a HLA-G coding region sequence compatible with the
widely spread HLA-G allele known as G*01:01:01:05. Mapping
was performed using the application BWA, subroutine ALN (71),
configured to allow the extension of a deletion up to 20 nucleotides,
in order to evaluate the 14-bp polymorphism. The resulting
BAM files from the newly mapped reads, from both paired-end
and unpaired sequences, were joined using Picard-tools (http:
//picard.sourceforge.net/index.shtml). Regions containing indels
were locally realigned by using the application GATK (72), routines
RealignerTargetCreator and IndelRealigner. This local realignment
used as reference a file containing known HLA-G indels. The Bam-
tools software was also used to remove reads mapped with low
mapping quality (MQ) scores (MQ < 40). After the procedure

described above, 16 samples were discarded because all mapped
reads (or most of them) were withdrawn due to poor MQ scores.
The GATK routine UnifiedGenotyper was used to infer genotypes
and a VCF file (variant call format) was generated.

Given the low coverage nature of the 1000Genomes data, some
genotypes called by GATK are far uncertain, mainly in situations
in which a homozygous genotype is inferred when that position
presents low depth coverage. In addition, given the polymorphic
nature and the high level of sequence similarity of HLA genes,
some level of miss-mapped reads is expected and might bias geno-
type inference. To circumvent this issue, the VCF file generated by
GATK was treated with a locally developed Perl script that applied
the rules described below. This script uses the number of differ-
ent reads detected for each allele at a given position (provided by
GATK when the VCF file was generated).

- Homozygosity was only inferred when a minimal coverage of
seven reads was achieved; otherwise, a missing allele was intro-
duced in this genotype. This procedure assures (p > 0.99) that
a homozygous genotype is called because of lack of variance at
that position and not because the second allele was not sampled.

- Genotypes, in which one allele was extremely underrepresented
(proportion of reads under 5%), were considered as homozy-
gous for the most represented allele. This procedure minimizes
the influence of miss-mapped reads to the HLA-G region and
the high level of sequencing errors that characterizes next-
generation sequencing data, and such correction was applied
only in situations characterized by high depth of coverage (20
or more reads available for the evaluated position).

- For genotypes in which one allele was mildly underrepresented
(with a proportion of reads between 5 and 20%), a missing
allele was introduced representing this underrepresented allele.
This procedure is particularly helpful in situations character-
ized by low depth of coverage (less than 20 reads available for the
evaluated position), in which a single read may indicate the exis-
tence of an alternative allele, such read may be a miss-mapped
read (false positive variant) or may represent a true unbal-
anced heterozygous genotype (true positive variant). Therefore,
the definitive status of this kind of genotype (homozygous or
heterozygous) was inferred during a final imputation step.

- Genotypes in which the proportion of reads for the less rep-
resented allele was higher than 20% were considered to be
heterozygous. This procedure assures that only high-quality
heterozygous genotypes are passed forward to the imputation
procedure.

After applying the rules described above, the HLA-G database
presented 8.42% of missing alleles, i.e., alleles that were consid-
ered uncertain because of low coverage or bad proportions. Some
single nucleotide variations (SNVs) previously detected (with low
quality) were converted into monomorphic as the alternative allele
was removed or coded as missing, thus, they were not consid-
ered for further analyses. By using the VCFtools package (73), we
removed SNVs that were no longer variable or that were repre-
sented just once in the dataset (i.e., singletons). In addition, we
predicted the functional effect of each SNV, i.e., they were classi-
fied as coding synonymous mutations, coding non-synonymous
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mutations, splice site acceptors, stop-codon generation, and oth-
ers, by using Snpeff (74). The missing alleles were imputed as well
as HLA-G haplotypes were inferred by using the PHASE algorithm
(75) as previously described (76, 77). For this purpose, a database
containing high-quality genotype information for 133 SNVs for
each of the 1076 remaining samples was used. The haplotyping
procedure generated 200 haplotypes, with a mean haplotype pair
probability of 0.7965 and with 524 samples (48.70%) presenting
a haplotype pair with a probability higher than 0.9. The results of
the procedure described above were presented separately for each
HLA-G region (coding, 3'UTR and promoter) and, finally, as fully
characterized extended haplotypes.

To characterize and explore global patterns of HLA-G diver-
sity, a population genetics approach was performed using the
ARLEQUIN 3.5.1.3 software (78, 79). The frequencies of each
HLA-G haplotype were computed by the direct counting method
and adherences of diplotype proportions to expectations under
Hardy—Weinberg equilibrium were tested by the exact test of Guo
and Thompson (80). Intrapopulational genetic diversity parame-
ters were assessed in each population by computation of gene
diversity (average expected heterozygosity across variation sites),
haplotype diversity, nucleotide diversity, and the number of pri-
vate haplotypes. Interpopulation genetic diversity was explored
by means of pair-wise Fsr estimates (81), by the exact test of
population differentiation (82), and by the analysis of molecu-
lar variance (AMOVA) (83), all based on haplotype frequencies.
Since the pair-wise Fsr and the exact test of population differ-
entiation between pairs of populations represent 91 statistical
comparisons, the Bonferroni correction was used to adjust the sig-
nificance level for multiple testing, resulting in a a = 0.0005 (i.e.,
0.05/91). Reynolds’ genetics distance was also estimated for each
pair of population samples by the ARLEQUIN 3.5.1.3 software (78,
79, 84). The resulting matrix was used to generate a multidimen-
sional scaling (MDS) using the PASW Statistics (17.0.2) software
(SPSS Inc.).

HLA-G CODING REGION VARIABILITY AND HAPLOTYPES

In contrast to classical HLA class I genes, HLA-G presents low
variability in its coding region. To date, only 50 coding alleles or
haplotypes are officially recognized by the IMGT/HLA database?
(version 3.17.0.1). Most of the SNVs in the HLA-G coding region
are either coding synonymous mutations or intronic variants.
Therefore, these 50 officially recognized HLA-G alleles encode only
16 different full-length proteins and two truncated molecules (null
alleles). This is a distinctive feature of the HLA-G gene and also of
other non-classical class I genes: only 36% of the known HLA-G
alleles are associated with different HLA-G molecules when com-
pared to classical class I genes, in which 75.4% for HLA-A, 77.8%
for HLA-B, and 73.5% for HLA-C alleles are associated with dif-
ferent molecules (IMGT/HLA). The limited HLA-G coding region
polymorphism is distributed among the alpha-1, alpha-2, and
alpha-3 domains, while for classical class I genes, polymorphisms
are found mainly around the region encoding the peptide binding
groove, i.e., alpha-1 and alpha-2 domains (1). This is particularly
evident for HLA-B, in which there is at least one recognized allele
carrying a mutation for each nucleotide of exons 2 or 3, with few
exceptions.

Generally, a SNV is considered as a polymorphic site if the
minor allele presents a frequency of at least 1%. In this matter,
some HLA-G variable sites may not be considered as true polymor-
phisms because they are rarely observed. Considering the 50 HLA-
G alleles that have been officially recognized by IMGT/HLA, and
taking into account the several studies evaluating the HLA-G cod-
ing region polymorphisms in normal or pathological conditions,
only 13 alleles encoding four different HLA-G full-length mole-
cules and a truncated one are frequently observed in worldwide
populations (3, 19, 23, 34, 36, 37, 68, 69, 76, 85-104).

Among the high-frequency HLA-G coding alleles, we may
find the G*01:01:01:01, G*01:01:01:04, G*01:01:01:05 (present at
hg19), G*01:01:02:01, G*01:01:03:01, G*01:01:05, and G*01:01:07
alleles; all carrying intronic or synonymous mutations and encod-
ing for the same full-length HLA-G molecule known as G*01:01.
HLA-G*01:01:01:01 is the reference allele used by IMGT/HLA,
it was the first one described (2) and usually the most common
allele in all populations studied so far. Among the frequent ones,
we also find the G*01:03:01:01 allele that is characterized by a
non-synonymous mutation at position 292, codon 31, exchang-
ing a Threonine by a Serine, encoding the full-length molecule
known as G*01:03. Another group of alleles are represented by
G*01:04:01, G*01:04:03, and G*01:04:04, all of them encoding
the same molecule known as G*01:04. They are characterized
by a non-synonymous mutation at position 755, codon 110,
exchanging a Leucine by an Isoleucine, and by other synonymous
mutations. The null allele, G*01:05N, which is associated with a
truncated HLA-G molecule due to a deletion of a cytosine around
codon 130 that changes the reading frame, is also very frequent
in some African, Asian, and admixed populations. Finally, the
last frequent allele is G*01:06, which is characterized by a non-
synonymous mutation at position 1799, codon 258, exchanging
a Threonine by a Methionine, encoding a molecule known as
G*01:06. Other HLA-G alleles are sporadically found around the
world, but only the ones presented above have been described at
polymorphic frequencies.

However, the variability in the HLA-G coding region may be
higher than the one presented by IMGT/HLA, because IMGT/HLA
only presents alleles that were cloned, sequenced, and properly
characterized by the researchers. In addition, most of the known
alleles are not fully characterized, presenting only some exons
sequenced. Therefore, the variability at the HLA-G coding region
may be greater than the one reported so far.

The reevaluation of the HLA-G sequencing data from the
1000Genomes Project indicated that the HLA-G coding region
is indeed much conserved and just a few new coding alleles are
frequently found worldwide. The approach described earlier evi-
denced the presence of 81 SNVs in the HLA-G coding region,
as described in Table 2. Some of these variation sites are truly
polymorphic, while some might be considered as mutations. In
addition, some of these new sites are not represented in the
IMGT/HLA database and might represent new HLA-G alleles.

As observed in Table 2, most of the 81 variation sites occur in
introns (54 sites) or in exons as synonymous changes (16 sites).
Thus, 86.4% of all variants are associated with the same HLA-
G full-length molecule, unless they somehow influence HLA-G
splicing pattern. Among the ones that might be related to different
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Table 2 | List of all variation sites found in the HLA-G coding region, their genomic positions on chromosome 6 relative to hg19 and the HLA-G

gene, and their allele frequencies considering all populations of the 1000Genomes Project (Phase 1).

Genomic SNPid HLA-G Allele 1 Allele 1 Allele 2 Allele 2 Annotation
position position (reference) frequency frequency
(hg19)
29795636 rs1630223 15 G 0.4967 A 0.5033 Synonymous
29795657 rs1630185 36 G 0.4967 A 0.5033 Synonymous
29795667 . 46 G 0.9991 T 0.0009 Non-synonymous
29795720 rs56388903 99 A 0.1120 G 0.8880 Intronic
29795747 rs6932888 126 G 0.7156 C 0.2844 Intronic
29795751 rs6932596 130 C 0.7161 T 0.2839 Intronic
29795768 rs1629329 147 T 0.4396 C 0.5604 Intronic
29795809 rs1628628 188 C 0.5669 T 0.4331 Intronic
29795822 201 A 0.9963 G 0.0037 Splice site acceptor
29795840 . 219 G 0.9967 T 0.0033 Non-synonymous
29795913 rs41551813 292 A 0.9503 T 0.0497 Non-synonymous
29795914 rs72558173 293 C 0.9986 T 0.0014 Non-synonymous
29795918 rs80153902 297 G 0.9958 A 0.0042 Synonymous
29795927 rs72558174 306 G 0.9972 A 0.0028 Synonymous
29795945 rs9258495 324 G 0.9991 T 0.0009 Synonymous
29795987 rs78627024 366 G 0.9972 A 0.0028 Synonymous
29795993 rs1130355 372 G 0.4967 A 0.5033 Synonymous
29796103 rs1626038 482 T 0.4340 C 0.5660 Intronic
29796106 rs17875399 485 G 0.9526 T 0.0474 Intronic
29796114 . 493 G 0.9991 A 0.0009 Intronic
29796115 rs1736927 494 A 0.4336 C 0.5665 Intronic
29796119 rs201510147 498 G 0.9986 A 0.0014 Intronic
29796126 rs3215482 505 A 0.4828 AC 0.5172 Intronic
29796128 507 C 0.9517 A 0.0483 Intronic
29796149 . 528 A 0.9967 C 0.0033 Intronic
29796152 rs1625907 531 G 0.4819 C 0.5181 Intronic
29796228 . 607 G 0.9981 A 0.0019 Intronic
29796234 rs375939243 613 CA 0.4991 C 0.5009 Intronic
29796245 . 624 T 0.9991 C 0.0009 Intronic
29796257 rs1625035 636 C 0.4493 T 0.5507 Intronic
29796265 rs17875401 644 G 0.9493 T 0.0507 Intronic
29796273 . 652 C 0.9981 T 0.0019 Intronic
29796306 rs1624337 685 G 0.4986 A 0.5014 Intronic
29796327 rs1130356 706 C 0.7621 T 0.2379 Synonymous
29796348 rs79303923 727 C 0.9981 T 0.0019 Synonymous
29796362 . 741 C 0.9991 G 0.0009 Non-synonymous
29796369 rs3873252 748 A 0.9345 T 0.0655 Synonymous
29796376 rs12722477 755 C 0.8053 A 0.1947 Non-synonymous
29796434 rs41557518 813 AC 0.9642 A 0.0358 Frame Shift
29796492 rs17875402 871 G 0.9944 A 0.0056 Synonymous
29796637 rs17875403 1016 C 0.9949 T 0.0051 Intronic
29796640 rs1632942 1019 T 0.4475 C 0.5525 Intronic
29796675 rs17875404 1054 G 0.9503 T 0.0497 Intronic
29796685 rs1632941 1064 T 0.4972 C 0.5028 Intronic
29796700 rs148061958 1079 C 0.9972 T 0.0028 Intronic
29796725 rs370704534 1104 C 0.9981 G 0.0019 Intronic
29796749 rs62391965 1128 C 0.9345 A 0.0655 Intronic
29796752 . 131 A 0.9991 T 0.0009 Intronic
29796768 rs1632940 1147 T 0.2040 C 0.7960 Intronic
(Continued)
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Table 2 | Continued

Genomic SNPid HLA-G IMGT Allele 1 Allele 1 Allele 2 Allele 2 Annotation
position position recognized (reference) frequency frequency

(hg19)

29796800 rs140935623 1179 A 0.9981 G 0.0019 Intronic
29796838 rs1736923 1217 * A 0.4963 G 0.56037 Intronic
29796934 rs114041958 1313 * G 0.9507 A 0.0493 Intronic
29796935 rs1632939 1314 * G 0.4972 A 0.5028 Intronic
29796986 rs1632938 1365 * G 0.4972 A 0.56028 Intronic
29797043 rs145023077 1422 C 0.9912 T 0.0088 Intronic
29797052 rs116139267 1431 C 0.9967 T 0.0033 Intronic
29797073 rs188836562 1452 G 0.9991 C 0.0009 Intronic
29797155 rs17875405 1534 * G 0.9503 C 0.0497 Intronic
29797173 rs1736920 1552 * A 0.4470 G 0.56530 Intronic
29797195 . 1574 A 0.9986 AC 0.0014 Frame Shift
29797211 rs41562616 1590 * C 0.9503 T 0.0497 Synonymous
29797380 rs200931762 1759 G 0.9991 A 0.0009 Non-synonymous
29797420 rs12722482 1799 * C 0.9698 T 0.0302 Non-synonymous
29797421 rs76951509 1800 * G 0.9963 A 0.0037 Synonymous
29797448 rs17875406 1827 * G 0.9554 A 0.0446 Synonymous
29797553 rs1632937 1932 * G 0.4972 C 0.56028 Intronic
29797639 rs1049033 2018 * C 0.7742 T 0.2258 Synonymous
29797696 rs1130363 2075 * A 0.4470 G 0.5530 Synonymous
29797782 rs1611627 2161 * T 0.5627 C 0.4373 Intronic
29797899 rs1632934 2278 * T 0.4972 C 0.56028 Intronic
29797933 rs1632933 2312 * C 0.4972 T 0.5028 Intronic
29797951 rs1736912 2330 * A 0.4972 G 0.5028 Intronic
29798029 . 2408 T 0.9991 A 0.0009 Intronic
29798033 rs17179080 2412 G 0.9707 A 0.0293 Intronic
29798039 rs1632932 2418 * G 0.4972 A 0.5028 Intronic
29798083 rs114038308 2462 * C 0.9345 T 0.0655 Intronic
29798140 rs915667 2519 * A 0.5084 G 0.4916 Intronic
29798248 rs186170315 2627 G 0.9991 A 0.0009 Intronic
29798419 rs915670 2798 * G 0.7742 A 0.2258 Intronic
29798425 rs915669 2804 * G 0.4480 T 0.5520 Intronic
29798459 rs915668 2838 * C 0.4480 G 0.56520 Intronic

*Denotes a variation site that is recognized by the IMGT/HLA database.

HLA-G full-length proteins, we may find two frameshift muta-
tions: the first associated with the G*01:05N null allele and the
second representing a low-frequency variation site not recog-
nized by IMGT/HLA (genomic position 29797195); one variation
site associated with a splicing acceptor site (genomic position
29795822, HLA-G position +201) and eight non-synonymous
modifications, most of them recognized by IMGT/HLA. Interest-
ingly, one synonymous modification was found presenting a high
frequency (2.93%) and is not associated with any known HLA-
G allele described so far (HLA-G position + 2412, rs17179080,
Table 2). Although a triallelic SNV is described at exon 2 (HLA-G
position + 372), associated with the G*01:04:02 allele, we did not
find the third allele in the present data.

As described earlier, haplotypes were inferred considering all
variation sites found in the HLA-G region. When the coding
region is isolated from these haplotypes, we found 93 different

HLA-G coding haplotypes, a number far higher than the num-
ber of HLA-G alleles officially recognized. The complete table of
haplotypes is available upon request. Table 3 describes all cod-
ing haplotypes presenting a minimum global frequency of 1%
and the closest known HLA-G allele in terms of sequence sim-
ilarity. It should be mentioned that non-variable positions for
the haplotypes presented in Table 3 were removed. Although 93
different haplotypes were inferred, only 11 present a frequency
higher than 1%. Of those, 10 were compatible with a specific
allele described at the IMGT/HLA database and mentioned ear-
lier as high-frequency alleles that usually occur in any population,
and 1 is a new allele that is close to G*01:01:01:01 but presents
the frequent nucleotide change at position + 2412, not recog-
nized by IMGT/HLA. As previously observed in other studies,
the most frequent HLA-G allele is G*01:01:01:01, followed by
G*01:01:02:01 and G*01:04:01. These 11 haplotypes or coding
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Table 3 | List of HLA-G coding haplotypes presenting a global frequency higher than 1%, considering all populations of the 1000Genomes
Project (Phase 1).

HLA-G Genomic position SNPid b 2 3 3 S 3 S S 3 Z 3
position on chromosome é g ‘_S__ § ‘_8__ § E §_ § § *5
6 (hg19) : s g & & & ¢ &2 B & °©
2 § ¢ £ &8 & & o© o
o = o o o o o
e
Q
15 29795636 rs1630223 G G G G A A G A A A A
36 29795657 rs1630185 G G G G A A G A A A A
99 29795720 rsb6388903 G G G A G G G G G G G
126 29795747 rs6932888 C C G G G G G G G G G
130 29795751 rs6932596 T T C C C C C C C @ C
147 29795768 rs1629329 T T T T C C C C C C C
188 29795809 rs1628628 C C C C T C C T T T T
292 29795913 rs41551813 A A A A A A T A A A A
372 29795993 rs1130355 G G G G A A G A A A A
482 29796103 rs1626038 T T T T C C C C C C C
485 29796106 rs17875399 G G G G G G T G G G G
494 29796115 rs1736927 A A A A C C C C C C C
505 29796126 rs3215482 - - - - C C - C C C C
507 29796128 C C C C C C A C C C C
531 29796152 rs1625907 G G G G C C G C C C C
613 29796234 rs375939243 A A A A - - A - - - -
636 29796257 rs1625035 C C C C T T T T T T T
644 29796265 rs17875401 G G G G G G T G G G G
685 29796306 rs1624337 G G G G A A G A A A A
706 29796327 rs1130356 C C C C T C C C C T T
748 29796369 rs3873252 A A A A A T A A A A A
755 29796376 rs12722477 C C C C C C C A A C C
813 29796434 rs41557518 C C C C C C C C C - C
1019 29796640 rs1632942 T T T T C C C C C C C
1054 29796675 rs17875404 G G G G G G T G G G G
1064 29796685 rs1632941 T T T T C C T C C C C
1128 29796749 rs62391965 C C C C C A C C C C C
1147 29796768 rs1632940 C C T T C C T C C C C
1217 29796838 rs1736923 A A A A G G A G G G G
1313 29796934 rs114041958 G G G G G G A G G G G
1314 29796935 rs1632939 G G G G A A G A A A A
1365 29796986 rs1632938 G G G G A A G A A A A
1534 29797155 rs17875405 G G G G G G C G G G G
1652 29797173 rs1736920 A A A A G G G G G G G
1590 29797211 rs41562616 C C C C C C T C C @ C
1799 29797420 rs12722482 C C C C C C C C C C T
1827 29797448 rs17875406 G G G G G G G G A G G
1932 29797553 rs1632937 G G G G C C G C C C C
2018 29797639 rs1049033 C C C C T C C C C T T
2075 29797696 rs1130363 A A A A G G G G G G G
2161 29797782 rs1611627 T T T T C T T C C C C
2278 29797899 rs1632934 T T T T C C T C C C C
2312 29797933 rs1632933 C C C C T T C T T T T
2330 29797951 rs1736912 A A A A G G A G G G G
2412 29798033 rs17179080 G A G G G G G G G G G
2418 29798039 rs1632932 G G G G A A G A A A A

(Continued)
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Table 3 | Continued

HLA-G  Genomic position SNPid S 2 p:3 3 S 8 ) S 3 2 3
- - - = s 54 -
position on chromosome E g e e 3 8 g i 3. s °
6 (hg19) 2 b k= 2 e 2 e g 2 & ©
e s £ & & & & © o
o 2 o o o 0] 0]
o
*
o
2462 29798083 rs114038308  C C C C o T o C C o o
2519 29798140 rs915667 A A A A G G A G G G G
2798 29798419 rs915670 G G G G A G G G G A A
2804 29798425 rs915669 G G G G T T T T T T T
2838 29798459 rs915668 c C o c G G G G G G G

Global haplotype frequency (2n=2152)

0.2528 0.0200 0.0376 0.0911

0.1445 0.0627 0.0446 0.1329 0.0404 0.0330 0.0283

HLA-G coding haplotypes were converted into coding alleles based on the International Immunogenetics Database (IMGT/HLA). The new HLA-G allele presenting a

frequency of about 1% is defined with the suffix “new.”

alleles do represent 88.8% of all HLA-G coding haplotypes and
are associated with only four different HLA-G full-length mole-
cules and a truncated one. Moreover, taking into account these
11 haplotypes, at least 60.87% of all HLA-G full-length mol-
ecules would be the same (from G*01:01:01:01, G*01:01:02:01,
G:01:01:03:03, G*01:01:01:04, and G*01:01:01:0lnew) and a
higher proportion is expected if other rare haplotypes are con-
sidered.

The haplotypes listed in Table 3 do present heterogeneous
frequencies among the 1000Genomes populations (Table 4).
The G*01:01:01:01 allele, for example, is very frequent among
Europeans and Asians, presents intermediate frequencies among
admixed populations and lower frequencies in African popula-
tions, while an opposite pattern is observed for the G*01:05N
null allele. In addition, allele G*01:01:03:03 is absent or very rare
in African populations, and the G*01:04:04, G*01:01:01:04, and
G*01:01:01:01new alleles are absent in Asians.

HLA-G 3 UNTRANSLATED REGION VARIABILITY AND
HAPLOTYPES

The reevaluation of the HLA-G sequencing data indicated that its
3'UTR presents several high-frequency variation sites in a short
segment. The approach described earlier evidenced as much as 17
variation sites in this short region, as described in Table 5. Some
of these variation sites are polymorphic and have been previously
described in several studies that evaluated the HLA-G 3'UTR (38,
69, 76, 88, 105-117), while some might be considered as muta-
tions. In general, nine variation sites can be considered as true
polymorphisms. It should be noted that the nomenclature used
to designate HLA-G 3'UTR variation sites is based on our pre-
vious reports, being designated as UTR-1, UTR-2, and so forth
(88). In this matter, the 14-bp insertion (rs371194629), although
less frequent and not represented in the hgl9 human genome, is
considered to be the ancestral allele and should be counted for
designate HLA-G 3'UTR positions.

When the 3'UTR segment is isolated from the 200 extended
haplotypes found, we observe 41 different haplotypes for this
region. Table 6 presents all haplotypes that reached a global fre-
quency higher than 1% and the complete table of haplotypes is

available upon request. Monomorphic positions considering these
high-frequency haplotypes are removed from Table 6. Consider-
ing the global frequency of each haplotype, it is noteworthy that
only nine haplotypes account for more than 95% of all haplotypes
found. These haplotypes were named according to the previous
studies addressing the HLA-G 3'UTR variability (38, 69, 76, 88,
105-117).

The haplotypes found considering the reevaluation of the
1000Genomes data are consistent with the ones found in sev-
eral other populations, and some haplotypes that were previ-
ously considered as rare ones (such as UTR-10 and UTR-18)
are actually more frequent than previously thought considering
all populations pooled together (global frequency). Some rare
SNVs that were previously described using Sanger sequencing,
such as the one at position +3001 (69, 110, 111), and others
that were described in studies evaluating the 1000Genomes data,
such as 43032, +3052, +3092, +3121, and +3227, were also
detected in this reevaluation (Table 5). In addition, it should be
pointed out that the 14-bp polymorphism, which is absent at the
1000Genomes initial released VCF files, was retrieved from the
raw sequence data and its genotypes were inferred for most of the
samples.

Similar to the HLA-G coding region, a heterogeneous distri-
bution of these nine 3'UTR haplotypes is observed among the
1000Genomes populations (Table 7). The UTR-1 haplotype, for
example, is very common in European populations, but presents
lower frequencies in populations from Africa. The UTR-7 hap-
lotype is absent or rare in populations of African ancestry, and
haplotypes UTR-6 and UTR-18 are absent or rare in Asia. The
3'UTR haplotype frequencies in admixed populations are close to
the ones reported for other admixed populations such as Brazil-
ians (76,88,110,111).In addition, the frequencies observed for the
1000Genomes African populations are close to the ones reported
for other African populations described in isolated reports (108,
116, 117). Moreover, the frequencies reported here are close to the
ones presented for the same data in another manuscript (69), with
some minor differences since this latter manuscript only imputed
the 14-bp polymorphism and used the original 1000Genomes VCF
data.
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Table 4 | The most frequent HLA-G coding haplotypes and their frequencies among the 1000Genomes Project (Phase 1) populations.

HLA-G coding Europe Asia Africa Admixed
alleles according
to IMGT/HLA?

CEU TSI GBR FIN IBS CHB CHS JPT YRI LWK ASW MXL PUR CLM
2n=170 2n=196 2n=174 2n=184 2n=28 2n=192 2n=200 2n=178 2n=174 2n=188 2n=118 2n=124 2n=110 2n=116

G*01:01:01:01 0.3824 0.2755 0.2989 0.3370 0.2857 0.2813 0.3900 0.2360 0.0690 0.1489 0.1271 0.2339 0.2182 0.1810
G*01:01:02:01 0.1824 0.1735 0.1954 0.1196 0.2500 0.0938 0.0350 0.1742 0.1379 0.1436 0.1780 0.2097 0.1000 0.1552
G*01:04:01 0.0647 0.1020 0.0517 0.0543 0.0714 0.2656 0.2400 0.3764 0.0402 0.0106 0.0339 0.15632 0.1364 0.1810
G*01:01:01:05 0.1529 0.1429 0.1092 0.2609 0.1071 0.0469 0.0150 0.0056 0.0632 0.0319 0.0339 0.0806 0.1182 0.1293
G*01:01:03:03 0.0529 0.0408 0.0920 0.0435 0.0357 0.1719 0.2050 0.0337 0.0000 0.0000 0.0085 0.0484 0.0455 0.0086
G*01:03:01:02 0.0353 0.0306 0.0230 0.0163 0.0000 0.0260 0.0000 0.0169 0.0690 0.0798 0.1186 0.0968 0.0818 0.0603
G*01:04:04 0.0235 0.0306 0.0115 0.0054 0.0000 0.0000 0.0000 0.0000 0.2299 0.0745 0.1102 0.0081 0.0273 0.0259
G*01:01:01:04 0.0118 0.0153 0.0632 0.0109 0.0714 0.0000 0.0000 0.0000 0.0747 0.10M 0.0763 0.0403 0.0727 0.0603
G*01:05N 0.0059 0.0408 0.0000 0.0109 0.0000 0.0417 0.0150 0.0056 0.1207 0.0638 0.0847 0.0242 0.0000 0.0172
G*01:06 0.0412 0.0714 0.0632 0.0272 0.1071 0.0260 0.0100 0.0056 0.0000 0.0053 0.0085 0.0242 0.0273 0.0431
G*01:01:01:01Tnew 0.0059 0.01563 0.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0460 0.0585 0.0593 0.0242 0.0364 0.0345

?HLA-G coding haplotypes were converted into coding alleles based on the International Immunogenetics Database (IMGT/HLA). The new HLA-G allele presenting high frequencies is defined with the suffix “new.”
CEU, Utah residents with Northern and Western European ancestry, TSI, Toscani from lItaly; GBR, British from England and Scotland; FIN, Finnish from Finland, IBS, Iberian populations from Spain; CHB, Han Chinese
from Beijing; CHS, Han Chinese from South China, JPT, Japanese from Tokyo, Japan; YRI, Yoruba from Ibadan, Nigeria, LWK, Luhya from Webuye, Kenya; ASW, people of African ancestry from the southwestern
United States; MXL, people of Mexican ancestry from Los Angeles, California; PUR, Puerto Ricans from Puerto Rico; CLM, Colombians from Medellin, Colombia.

Haplotypes are ordered according to their global frequency.
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Table 5 | List of all variation sites found in the HLA-G 3’ untranslated region, their positions regarding hg19 and the HLA-G gene, and their allele

frequencies considering all populations of the 1000Genomes Project (Phase 1).

Genomic SNPid HLA-G Allele 1 Allele 1 Allele 2 Allele 2
position position (reference) frequency frequency
hg19 (Chr6)

29798563 2942 T 0.9986 C 0.0014
29798581 rs371194629 2960 G 0.7068 GATTTGTTCATGCCT 0.2932
29798608 3001 C 0.9986 T 0.0014
29798610 rs1707 3003 C 0.1152 T 0.8848
29798617 rs1710 3010 G 0.4610 C 0.5390
29798634 rs17179101 3027 C 0.9359 A 0.0641
29798639 rs146339774 3032 G 0.9967 C 0.0033
29798642 rs17179108 3035 C 0.8829 T 0.1171
29798659 3052 C 0.9991 T 0.0009
29798699 rs180827037 3092 G 0.9986 T 0.0014
29798728 rs138249160 3121 T 0.9967 C 0.0033
29798749 rs1063320 3142 C 0.4484 G 0.5516
29798784 3177 G 0.9991 T 0.0009
29798790 rs187320344 3183 G 0.9991 A 0.0009
29798794 rs9380142 3187 A 0.7045 G 0.2955
29798803 rs1610696 3196 C 0.7625 G 0.2375
29798834 rs1233331 3227 G 0.9707 A 0.0293

Table 6 | The most frequent HLA-G 3’ untranslated region haplotypes presenting frequencies higher than 1% considering all populations of the

1000Genomes Project (Phase 1).

dbSNP rs371194629 rs1707 rs1710 rs17179101 rs17179108 rs1063320 rs9380142 rs1610696 rs1233331 Global
HLA-G position 2960 (14 bp) 3003 3010 3027 3035 3142 3187 3196 3227 frequency,
HG19 (Chr6) 29798581 29798610 29798617 29798634 29798642 29798749 29798794 29798803 29798834 2n=2152
UTR-1 Del T G C C C G C G 0.2904
UTR-2 Ins T C C C G A G G 0.1938
UTR-3 Del T C C C G A C G 0.1938
UTR-4 Del C G C C C A C G 0.1083
UTR-7 Ins T C A T G A C G 0.0558
UTR-10 Del T C C C G A G G 0.0367
UTR-5 Ins T C C T G A C G 0.0358
UTR-18 Del T G C C C A C A 0.0283
UTR-6 Del T G C C C A C G 0.0125
Maijor allele Del T C C C G A C G

Frequency 0.7068 0.8848 0.5390 0.9359 0.8829 0.5516 0.7045 0.7625 0.9707

HLA-G 3 untranslated region haplotypes were named following the same nomenclature used in the previous studies (69, 76, 88, 110).

Haplotypes are ordered according to their global frequency.

HLA-G 5 PROMOTER REGION VARIABILITY AND
HAPLOTYPES

As previously discussed, there is no consensus regarding
where the HLA-G transcription starts. Considering NCBI and
NM_002127.5, the HLA-G transcription starts 866 nucleotides
upstream the initiation codon ATG. However, most of the stud-
ies performed so far regarding the HLA-G promoter structure did
consider 1500 nucleotides upstream the main initiation codon
ATG as the HLA-G promoter region. In this scenario, only SNVs
above —866 should be considered as promoter SNVs (or SNVs

from the upstream regulatory region) and the ones between —866
and —1 should be considered as 5’UTR SNVs. Nevertheless, despite
of this inconsistency and considering the fact that there is no
consensus yet regarding the HLA-G initial transcription starting
point, in the present work we considered all SNVs upstream the
main translation start point as promoter (5" upstream regulatory
region) SNVs.

The approach described earlier evidenced the presence of 35
SNVs in the HLA-G promoter region, as described in Table 8.
Among them, 26 of all variable sites (74.3%) can be considered
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Table 7 | The most frequent HLA-G 3’ untranslated region haplotypes and their frequencies among the 1000Genomes Project (Phase 1) populations.

HLA-G Europe Asia Africa Admixed
3'UTR
haplotypes®
CEU TSI GBR FIN IBS CHB CHS JPT YRI LWK ASW MXL PUR CLM

2n=170 2n=196 2n=174 2n=184 2n=28 2n =192 2n=200 2n=178 2n=174 2n=188 2n=118 2n=124 2n=110 2n=116
UTR-1 0.3882 0.2959 0.3333 0.3533 0.3214 0.2865 0.4200 0.2472 0.1322 0.2287 0.2288 0.2823 0.2909 0.2241
UTR-3 0.0882 0.1276 0.0575 0.0652 0.0714 0.2813 0.2600 0.4944 0.2989 0.1170 0.1610 0.1532 0.1818 0.2328
UTR-2 0.2471 0.2398 0.2644 0.1739 0.3929 0.1510 0.0500 0.1685 0.1667 0.2340 0.2627 0.2419 0.1000 0.2155
UTR-4 0.1529 0.1378 0.1092 0.2826 0.1071 0.0469 0.0200 0.0056 0.1322 0.1117 0.0508 0.0887 0.1273 0.1466
UTR-7 0.0471 0.0408 0.0747 0.0435 0.0357 0.1563 0.1800 0.0281 0.0000 0.0000 0.0085 0.0403 0.0455 0.0000
UTR-10 0.0000 0.0714 0.0230 0.0380 0.0000 0.0313 0.0100 0.0225 0.0977 0.0585 0.0339 0.0161 0.0364 0.0345
UTR-5 0.0353 0.0255 0.0172 0.0163 0.0000 0.0156 0.0000 0.0169 0.0460 0.0479 0.1017 0.0806 0.0909 0.0431
UTR-18 0.0118 0.0153 0.0517 0.0109 0.0714 0.0000 0.0000 0.0000 0.0172 0.0798 0.0508 0.0323 0.0727 0.0603
UTR-6 0.0059 0.0153 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0747 0.0266 0.0254 0.0081 0.0091 0.0000
others 0.0235 0.0306 0.0690 0.0163 0.0000 0.0313 0.0600 0.0169 0.0345 0.0957 0.0763 0.0565 0.0455 0.0431

“HLA-G 3 untranslated haplotypes were named following the same nomenclature used in the previous studies (69, 76, 88, 110).

CEU, Utah residents with Northern and Western European ancestry, TSI, Toscani from lItaly; GBR, British from England and Scotland; FIN, Finnish from Finland, IBS, Iberian populations from Spain; CHB, Han Chinese
from Beijing; CHS, Han Chinese from South China, JPT, Japanese from Tokyo, Japan,; YRI, Yoruba from Ibadan, Nigeria;, LWK, Luhya from Webuye, Kenya; ASW, people of African ancestry from the southwestern
United States; MXL, people of Mexican ancestry from Los Angeles, California; PUR, Puerto Ricans from Puerto Rico; CLM, Colombians from Medellin, Colombia.

Haplotypes are ordered according to their global frequency.
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Table 8 | List of all variation sites found at the HLA-G 5’ promoter region, their positions regarding hg19 and the HLA-G gene, and their allele

frequencies considering all populations of the 1000Genomes Project (Phase 1).

Genomic SNPid HLA-G Allele 1 Allele 1 Allele 2 Allele 2 Allele 3 Allele 3
position position (reference) frequency frequency frequency
hg19 (Chr6)

29794317 rs1736936 —1305 G 0.4995 A 0.5005
29794443 rs1736935 -1179 A 0.4466 G 0.5534
29794467 rs3823321 —1155 G 0.8020 A 0.1980
29794482 rs1736934 —1140 A 0.6952 T 0.3048
29794484 rs17875389 -1138 A 0.9493 G 0.0507
29794501 rs3115630 1121 T 0.0428 C 0.9572
29794524 rs146374870 —1098 G 0.9972 A 0.0028
29794658 rs1632947 —964 G 0.4986 A 0.5014
29794700 rs370338057 -922 C 0.9981 A 0.0019
29794812 rs182801644 -810 C 0.9986 T 0.0014
29794860 rs1632946 —762 C 0.4972 T 0.5028
29794897 rs1233334 —725 G 0.0953 C 0.8550 T 0.0497
29794906 rs2249863 -716 T 0.4963 G 0.5037
29794933 rs2735022 —689 A 0.4963 G 0.5037
29794956 rs356674592 —666 G 0.4981 T 0.5019
29794976 rs17875391 —646 A 0.9749 G 0.0251
29794989 rs1632944 —633 G 0.4995 A 0.5005
29795076 rs201221694 —546/-540 A 0.9744 AG 0.0256
29795081 rs368205133 —541/-533 GA 0.9545 G 0.0455
29795083 rs112940953 —539 A 0.9967 G 0.0033
29795101 rs138987412 —521 C 0.9986 A 0.0014
29795113 rs17875393 —509 C 0.9559 G 0.0441
29795136 rs1736933 —486 A 0.4991 C 0.5009
29795139 rs149890776 —483 A 0.9717 G 0.0283
29795145 rs1736932 —477 C 0.4461 G 0.5539
29795179 rs17875394 —443 G 0.9638 A 0.0362
29795222 rs17875395 —400 G 0.9559 A 0.0441
29795231 rs17875396 —391 G 0.9559 A 0.0441
29795253 rs1632943 —369 C 0.4480 A 0.5520
29795267 rs191630481 —355 G 0.9967 A 0.0033
29795338 —284 G 0.9991 A 0.0009
29795366 . —256 TC 0.9958 T 0.0042
29795421 rs1233333 —201 G 0.4967 A 0.5033
29795472 . —150 C 0.9977 T 0.0023
29795566 rs17875397 —56 C 0.9503 T 0.0497

as true polymorphisms (minor allele frequency above 1%), and
at least 11 present frequencies around 50%. In addition, the tri-
alleic SNP at position —725, as well as other known indels at the
promoter region, was properly recovered.

When the promoter region is isolated from the 200 extended
haplotypes found, we observe 64 haplotypes for this region. Table 9
presents all haplotypes that reached a frequency higher than 1%
and the complete table of haplotypes is available upon request.
Monomorphic positions considering these frequent haplotypes
were removed from Table 9. Considering the global frequency
of each haplotype, it is worth mentioning that only nine haplo-
types account for more than 95% of all haplotypes found. These
haplotypes were named according to previously published works
addressing the HLA-G promoter region variability (76, 118-120).

As previously observed for both the coding and 3’UTR regions,
promoter haplotype frequencies greatly vary among populations
(Table 10).

HLA-G EXTENDED HAPLOTYPES

As described earlier, 200 extended haplotypes were inferred con-
sidering the whole HLA-G sequence encompassing the promoter,
coding, and 3'UTR segments. Since there is no official nomencla-
ture for the entire MHC genes, the HLA-G extended haplotypes
were named according to the nomenclature adopted for each HLA-
G segment. As already observed for some populations (76, 88,
118-120), the promoter haplotypes are usually associated with the
same coding and 3'UTR haplotypes (Table 11). For example, pro-
moter haplotype 010101a is usually associated with the coding
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Table 9 | The most frequent HLA-G 5’ promoter region haplotypes presenting frequencies higher than 1% considering all populations of the

1000Genomes Project (Phase 1).

SNV Identification

HLA-G Promoter Haplotypes

HG19 (Chr6) SNPid HLA-G 010102a 010101a 010104a 010101b 010101f 010101c 010104b 010101d 0103a  0103e
position
29794317 rs1736936 —1305 A G A G G G A G G G
29794443 rs1736935 -1179 G A G A A A G A G G
29794467 rs3823321 —1155 G G A G G G A G G G
29794482 rs1736934 —1140 T A A A A A A A A A
29794484 rs17875389 —1138 A A A A A A A A G G
29794501 rs3115630 1121 C C C C C T C C C C
29794658 rs1632947 —-964 A G A G G G A G G G
29794860 rs1632946 —762 T C T C C C T C C C
29794897 rs1233334 -725 C C C G C G C C T T
29794906 rs2249863 -716 G T G T T T G T T T
29794933 rs2735022 —689 G A G A A A G A A A
29794956 rs35674592 —666 T G T G G G T G G G
29794976 rs17875391 —646 A A A A A A A A A G
29794989 rs1632944 —633 A G A G G G A G G G
29795076 rs201221694 —546 - - - - - - - - G -
29795081 rs368205133 —541 A A A A - A A A A A
29795113 rs17875393 -509 C C C C C C C C G G
29795136 rs1736933 —486 C A C A A A C A A A
29795139 rs149890776 —483 A A A A A A A G A A
29795145 rs1736932 —477 G C G C C C G C G G
29795179 rs17875394 —443 G G G G G G A G G G
29795222 rs17875395 —400 G G G G G G G G A A
29795231 rs17875396 —391 G G G G G G G G A A
29795253 rs1632943 —369 A C A C C C A C A A
29795421 rs1233333 -201 A G A G G G A G G G
29795566 rs17875397 —56 C C C C C C C C T T
29795636 rs1630223 15 A G A G G G A G G G
Global Frequency (2n=2152) 0.2825 0.2728 0.1501 0.0520 0.0446 0.0418 0.0353 0.0260 0.0191 0.0149

HLA-G promoter haplotypes were named following the same nomenclature used in the previous studies (76, 118).

Haplotypes are ordered according to their global frequency.

allele G*01:01:01:01 and the 3'UTR haplotype named UTR-1.
The same phenomenon is observed for each of the main HLA-
G promoter, coding, or 3 UTR haplotypes. In this matter, only
24 extended HLA-G haplotypes were found presenting a mini-
mum frequency of 0.5% and representing more than 85% of all
haplotypes, and only 15 present frequencies higher than 1%.

The extended haplotypes shown in Table 11 were classified
according to previously defined HLA-G lineages (76, 118). It
becomes clear that most of the extended haplotypes are associated
with the same encoded full-length molecule and functional poly-
morphisms are mainly present at the regulatory regions. In fact,
many polymorphisms in the regulatory regions do present high
frequencies (around 50%), what is compatible with the evidence
of balancing selection acting on the HLA-G regulatory regions (3,
69, 76, 88, 115, 118, 121). For example, lineages HG010101 (a,
b or ¢) and HG010102 are associated with HLA-G coding alle-
les that usually encode the same HLA-G molecules (exception

made to the G*01:06 and G*01:05N alleles), but the promoter
and 3’UTR haplotypes are the most divergent ones compared to
each other.

Recently, the Neanderthal genome sequence corresponding to
a sample dating 40,000 years was published (122). The same
pipeline described above was applied to this Neanderthal genome
and we found that this unique sample does present a HLA-G
haplotype found among modern humans with a frequency of
0.00604 (G010101{/G*01:01:01:04/UTR-6) and another haplotype
that was not found in the present series and is composed of a
recombined promoter, an unknown HLA-G coding allele close to
G*01:01:02:01 and UTR-2.

HLA-G WORLDWIDE DIVERSITY

Human leukocyte antigen G worldwide intrapopulational genetic
diversity was evaluated by means of different population genet-
ics parameters (Table 12). Except for the number of private
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Table 10 | The most frequent HLA-G 5’ promoter region haplotypes and their frequencies among the 1000Genomes Project (Phase 1) populations.

Promoter Europe Asia Africa Admixed
haplotypes?
CEU TSI GBR FIN IBS CHB CHS JPT YRI LWK ASW MXL PUR CLM
2n=170 2n=196 2n=174 2n=184 2n=28 2n=192 2n=200 2n=178 2n=174 2n=188 2n=118 2n=124 2n=110 2n=116

010102a 0.2824 0.3418 0.3908 0.2283 0.4286 0.3385 0.2750 0.2360 0.2586 0.2713 0.2881 0.2742 0.1636 0.2328
010101a 0.3941 0.2704 0.3103 0.3370 0.3214 0.2813 0.4150 0.2303 0.1379 0.2394 0.1695 0.2419 0.2182 0.1810
010104a 0.0882 0.1327 0.0575 0.0652 0.0714 0.1979 0.1800 0.3820 0.2701 0.0904 0.1356 0.0806 0.1455 0.0862
010101b 0.0471 0.0510 0.0230 0.1902 0.0000 0.0417 0.0100 0.0056 0.0805 0.0266 0.0339 0.0645 0.0455 0.0690
010101f 0.0118 0.0255 0.0747 0.0109 0.0714 0.0000 0.0050 0.0056 0.0747 0.1277 0.0847 0.0484 0.0909 0.0603
010101¢ 0.1059 0.0867 0.0862 0.0870 0.1071 0.0052 0.0050 0.0000 0.0000 0.0053 0.0085 0.0161 0.0727 0.0603
010104b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0781 0.0800 0.0899 0.0000 0.0000 0.0085 0.0726 0.0273 0.1379
010101d 0.0059 0.0153 0.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0632 0.0691 0.0763 0.0403 0.0636 0.0431
0103a 0.0235 0.0153 0.0115 0.0163 0.0000 0.0156 0.0000 0.0169 0.0000 0.0000 0.0339 0.0887 0.0364 0.0345
0103e 0.0059 0.0051 0.0057 0.0000 0.0000 0.0104 0.0000 0.0000 0.0402 0.0479 0.0339 0.0081 0.0273 0.0259

?HLA-G promoter lineages were named according to the previous studies (76, 118).
CEU, Utah residents with Northern and \Western European ancestry, TSI, Toscani from Italy; GBR, British from England and Scotland, FIN, Finnish from Finland, IBS, Iberian populations from Spain; CHB, Han Chinese
from Beijing; CHS, Han Chinese from South China, JPT, Japanese from Tokyo, Japan; YRI, Yoruba from Ibadan, Nigeria;, LWK, Luhya from Webuye, Kenya;, ASW, people of African ancestry from the southwestern
United States; MXL, people of Mexican ancestry from Los Angeles, California; PUR, Puerto Ricans from Puerto Rico; CLM, Colombians from Medellin, Colombia.

Haplotypes are ordered according to their global frequency.
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Table 11 | The most frequent HLA-G extended haplotypes presenting frequencies higher than 0.5% considering all populations of the

1000Genomes Project (Phase 1).

Promoter Coding allele? 3'UTR HLA-G lineage® Global Extended haplotype®

haplotype? haplotype® frequency

010101a G*01:01:01:01 UTR-1 HG010101a 0.24257 G010101a/G*01:01:01:01/UTR-1
010102a G*01:01:02:01 UTR-2 HG010102 0.11803 G010102a/G*01:01:02:01/UTR-2
0104a G*01:04:01 UTR-3 HGO0104 0.09108 G0104a/G*01:04:01/UTR-3

010102a G*01:01:03:03 UTR-7 HG010103 0.05112 G010102a/G*01:01:03:03/UTR-7
010101b G*01:01:01:05 UTR-4 HG010101¢ 0.04786 G010101b/G*01:01:01:05/UTR-4
010101¢c G*01:01:01:05 UTR-4 HG010101¢ 0.04136 G010101¢/G*01:01:01:05/UTR-4
0104a G*01:04:04 UTR-3 HGO0104 0.03810 G0104a/G*01:04:04/UTR-3

0104b G*01:04:01 UTR-3 HG0104 0.03392 G0104b/G*01:04:01/UTR-3

010101f G*01:01:01:04 UTR-18 HG010101b 0.02835 G010101/G*01:01:01:04/UTR-18
010102a G*01:06 UTR-2 HG010102 0.02556 G010102a/G*01:06/UTR-2

010101d G*01:01:01:01new UTR-1 HG010101a 0.01859 G010101d/G*01:01:01:01new/UTR-1
010102a G*01:05N UTR-10 HG010102 0.01812 G010102a/G*01:05N/UTR-10

0103a G*01:03:01:02 UTR-5 HG0103 0.01766 G0103a/G*01:03:01:02/UTR-5
010102a G*01:05N UTR-2 HG010102 0.01255 G010102a/G*01:05N/UTR-2
010102a G*01:01:02:01 UTR-10 HG010102 0.01115 G010102a/G*01:01:02:01/UTR-10
0104a G*01:04:01-Like UTR-3 HG0104 0.00883 G0104a/G*01:04:01-Like/UTR-3
010101d G*01:01:01:04-Like UTR-1 HG010101a 0.00651 G010101d/G*01:01:01:04-Like/UTR-1
0103¢ G*01:03:01:02 UTR-5 HG0103 0.00651 G0103c/G*01:03:01:02/UTR-5
0101011 G*01:01:01:04 UTR-6 HG010101b 0.00604 G010101/G*01:01:01:04/UTR-6
010101a G*01:01:01:06 UTR-4 HG010101* 0.00604 G010101a/G*01:01:01:06/UTR-4
010102a G*01:01:03:03 UTR-7-Like HG010103 0.00604 G010102a/G*01:01:03:03/UTR-7-Like
0103e G*01:03:01:02 UTR-13 HG0103 0.00558 G0103e/G*01:03:01:02/UTR-13
010102a Unknown/new UTR-2 HG010102 0.00558 G010102a/unknown/UTR-2

010101a G*01:01:09 UTR-4 HG010101* 0.00558 G010101a/G*01:01:09/UTR-4

aHLA-G promoter haplotypes were named according to the previous studies (76, 118).
PHLA-G coding haplotypes were converted into coding alleles based on the International Immunogenetics Database (IMGT/HLA). When a haplotype is close to one
known haplotype, except for a single nucleotide modification, suffix “-Like” was added. The new HLA-G allele is defined with the suffix “new.”

°HLA-G 3 untranslated haplotypes were named according to the previous studies (69, 76, 88, 110).

4HLA-G lineages were named according to a previous study (76).
¢Names proposed for the HLA-G extended haplotypes.
*Denotes possible crossing overs among known lineages
Haplotypes are ordered according to their global frequency.

alleles, which is greatly influenced by sample sizes and the num-
ber of different samples from a same geographic area (group),
African populations exhibited higher levels of genetic diversity
in comparison with Europeans and Asians. Admixed populations
sampled in America also revealed high levels of diversity. These
findings are consistent with the current knowledge that older and
admixed populations are prone to exhibit larger diversity than
younger and non-admixed populations. Similar observations are
made when the promoter (Table 13) and coding (Table 14) regions
are considered separately. Since these differences between Africans
and non-Africans are not as substantial as those observed for
neutral markers (123), such similar levels of diversity may be
reflecting both demographic events and the action of balancing
selection. However, when the 3’UTR is considered (Table 15), a
different pattern arises, regarding gene and nucleotide diversity.
For instance, Europeans present the highest levels while Africans
presents the lowest levels. This finding does not present a straight-
forward explanation, although one may suppose that a stronger

signature of balancing selection over HLA-G 3'UTR may have dis-
torted demographic signatures, resulting in a higher diversity in
Eurasia. It should be emphasized that, as previously reported for
a Brazilian population sample (76) and also for the populations
of the 1000Genomes Project (69), both the promoter and 3’UTR
diversity have been shaped by a strong balancing pressure.

The comparison of the three different HLA-G regions
(Tables 13-15) also reveals interesting aspects. The average
expected heterozygosity (gene diversity) for variation sites at the
3'UTR is ~20% higher (0.2730) than the estimated ones for the
promoter (0.2323) and coding (0.2244) regions. As a consequence,
nucleotide diversity is 4.5 times higher for the 3'UTR (2.8640%)
than for the promoter (0.6331%) and coding (0.6432%) regions.
Nucleotide diversity at HLA-G 3'UTR is almost 40 times higher
than the human genome average (0.075%) (118, 124), resulting
in an astonishing average of 8.19 differences when two ran-
domly chosen 3’UTR (286-bp long) haplotypes are compared.
Balancing selection favors the maintenance of different alleles in
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Table 12 | Genetic diversity parameters and probability of adherence of diplotype frequencies to Hardy-Weinberg equilibrium expectations
(pHWE), considering whole HLA-G haplotypes.

Population sample

Gene diversity

Private haplotypes

Haplotype diversity

Nucleotide diversity (%)

pHWE

Africa (2n=362)
LWK (2n=188)
YRI (2n=174)

Europe (2n=752)
CEU (2n=170)
FIN (2n=184)
GBR (2n=174)
IBS (2n=28)
TSI (2n=196)

Asia (2n=570)
CHB (2n=192)
CHS (2n=200)
JPT (2n=178)

Admixed (2n=468)

ASW (2n=118)
CLM (2n=116)
MXL (2n=124)
PUR (2n=110)
Total (2n=2152)

0.2913+0.1949
0.3108 £0.1888
0.3175+0.1722
0.2663 £0.2162
0.3315+0.1902
0.2940£0.1828
0.3234 £0.2036
0.4330+£0.1566
0.3055+0.2078
0.2675+0.2013
0.3185+0.1816
0.3362£0.1953
0.2710+0.1617
0.2908 £0.1999
0.32563+£0.1908
0.3337+£0.1786
0.3508 +£0.1774
0.3220+0.1687
0.2345+0.2149

36
24
10
33
6
17
8
0
9
41
5
19
4
26

~N W oo

0.9417 +£0.0054
0.9497 £0.0075
0.9118+0.0121
0.8622 +£0.0088
0.8210+0.0231
0.8501 £0.0187
0.8679+0.0168
0.8492 £0.0412
0.8883 £0.0141
0.8503 +£0.0090
0.8560 £0.0141
0.81414+0.0204
0.8468 £0.0141
0.9332+£0.0059
0.9483 £0.0092
0.9237£0.0113
0.9110£0.0146
0.9296 £0.0140
0.9068 £0.0040

0.7643 +0.3690
0.7815+0.3781
0.7283 £0.3531
0.7399 £0.3570
0.7384 £0.3579
0.6679 £0.3243
0.7632 4 0.3696
0.7737 £0.3867
0.7546 £ 0.3653
0.6782 £0.3280
0.7093 £0.3439
0.6898 £0.3345
0.5857 £0.2854
0.7890 £0.3805
0.8108 +0.3933
0.7655+0.3718
0.8045 £ 0.3902
0.7599 £0.3693
0.7548 £0.3637

0.6582 £0.0137
0.7200£0.0130
0.56892 +£0.0134
0.82194+0.0113
0.5821+£0.0133
0.4973+£0.0142
0.31294+0.0126
0.6021 £0.0065
0.7044 £0.0125
0.6628 £0.0137
0.3700£0.0131
0.6625+0.0134
0.5297 £0.0136
0.6699 £+ 0.0136
0.7233£0.0130
0.3765+0.0131
0.6571+£0.0129
0.3774+£0.0134
0.9025+0.0089

CEU, Utah residents with Northern and Western European ancestry, TSI, Toscani from Italy; GBR, British from England and Scotland; FIN, Finnish from Finland; IBS,
Iberian populations from Spain; CHB, Han Chinese from Beijing, CHS, Han Chinese from South China, JPT, Japanese from Tokyo, Japan; YRI, Yoruba from Ibadan,
Nigeria; LWK, Luhya from Webuye, Kenya; ASW, people of African ancestry from the southwestern United States; MXL, people of Mexican ancestry from Los Angeles,

California; PUR, Puerto Ricans from Puerto Rico; CLM, Colombians from Medellin, Colombia.

Table 13 | Genetic diversity parameters and probability of adherence of diplotype frequencies to Hardy-Weinberg equilibrium expectations

(pHWE), considering HLA-G promoter haplotypes.

Population sample

Gene diversity

Private haplotypes

Haplotype diversity

Nucleotide diversity (%)

PHWE

Africa (2n=2362)
LWK (2n=188)
YRI (2n=174)

Europe (2n=752)
CEU (2n=170)
FIN (2n=184)
GBR (2n=174)
IBS (2n=28)
TSI (2n=196)

Asia (2n=570)
CHB (2n=192)
CHS (2n=200)
JPT (2n=178)

Admixed (2n=468)

ASW (2n=118)
CLM (2n=116)
MXL (2n=124)
PUR (2n=110)
Total (2n=2152)

0.2908 £0.2034
0.300040.1941
0.3154+£0.1907
0.2401 £0.2252
0.2818+0.2120
0.2584 +0.2054
0.2970+£0.2193
0.4400+0.1504
0.2723+£0.2249
0.2517£0.2189
0.2878+£0.2038
0.3403+£0.2187
0.2574 +0.1806
0.2927 £0.1958
0.3128+0.1907
0.3136+0.1923
0.3241+£0.18561
0.3097 £0.1790
0.2323+0.2208

7

-
——
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0.8438+£0.0092
0.8397 £0.0147
0.8269£0.0149
0.7725+0.0091
0.7471+£0.0217
0.7899 £0.0164
0.7379+0.0216
0.716940.0559
0.7848+0.0176
0.75636 £0.0076
0.7627 +0.0155
0.7166 +£0.0183
0.7409+0.0171
0.8700 £ 0.0081
0.8573+£0.0189
0.8777 £0.0147
0.8432+£0.0185
0.8881 £0.0142
0.81454+0.0047

0.6604 £ 0.3380
0.6590 £0.3382
0.6447 £0.3315
0.5998 +0.3088
0.5972 £0.3090
0.56476 4 0.2852
0.6069 £0.3135
0.6000+0.3202
0.6183+£0.3188
0.5524 £0.2864
0.5664 £ 0.2941
0.5672 £0.2944
0.4871 £0.2564
0.6868 £ 0.3502
0.6867 £0.3525
0.6884 +0.3533
0.6870 £0.3525
0.6798 £0.3494
0.6331+£0.3243

0.4466 £0.0127
0.7370£0.0110
0.0849 £0.0051
0.5186+0.0138
0.9768 +0.0026
0.2223 +0.0107
0.0324 £0.0036
0.6445+0.0027
0.3980+£0.0125
0.56938 £0.0129
0.6127+£0.0108
0.5743+0.0112
0.3093 £0.0104
0.3354 £0.0122
0.3945+£0.0122
0.3855+0.0108
0.56318+0.0100
0.7863 £0.0092
0.4803+£0.0142

CEU, Utah residents with Northern and Western European ancestry; TSI, Toscani from Italy; GBR, British from England and Scotland; FIN, Finnish from Finland; IBS,

Iberian populations from Spain; CHB, Han Chinese from Beijing, CHS, Han Chinese from South China, JPT, Japanese from Tokyo, Japan; YRI, Yoruba from Ibadan,

Nigeria; LWK, Luhya from Webuye, Kenya; ASW, people of African ancestry from the southwestern United States; MXL, people of Mexican ancestry from Los Angeles,

California; PUR, Puerto Ricans from Puerto Rico; CLM, Colombians from Medellin, Colombia.
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Table 14 | Genetic diversity parameters and probability of adherence of diplotype frequencies to Hardy-Weinberg equilibrium expectations
(pHWE), considering HLA-G coding region haplotypes.

Population sample

Gene diversity

Private haplotypes

Haplotype diversity

Nucleotide diversity (%)

pHWE

Africa (2n=362)
LWK (2n=188)
YRI (2n=174)

Europe (2n=752)
CEU (2n=170)
FIN (2n=184)
GBR (2n=174)
IBS (2n=28)
TSI (2n=196)

Asia (2n=570)
CHB (2n=192)
CHS (2n=200)
JPT (2n=178)

Admixed (2n=468)

ASW (2n=118)
CLM (2n=116)
MXL (2n=124)
PUR (2n=110)
Total (2n=2152)

0.2983 £0.2036
0.3100+0.1981
0.3306 +£0.1808
0.2588 £0.2233
0.3348+£0.1930
0.3019+0.1893
0.3151+0.2112
0.4308+£0.1625
0.3070+£0.2151
0.2631 £0.2097
0.3089 +£0.1866
0.35667 £0.2013
0.2649+0.1712
0.2834 £0.2095
0.3200£0.1953
0.3335+0.1958
0.3482£0.1815
0.3264 +£0.1823
0.2244+£0.2219

— — —
w N o1 W - 0N W oo o N b O P>

0.9177 +£0.0053
0.9255+£0.0077
0.8934 £0.0116
0.8292 £0.0085
0.7908 £0.0221
0.8011 £0.0192
0.8449+0.0163
0.8492 £0.0412
0.8563 +0.0136
0.7914 +0.0095
0.8106 +0.0144
0.7495+0.0187
0.7645+0.0188
0.8970 £ 0.0060
0.912640.0107
0.8888 £0.0127
0.8624 £0.0149
0.8992 +0.0138
0.8780£0.0038

0.6649 +0.3266
0.6691+£0.3295
0.6436+£0.3175
0.6229£0.3063
0.6162+0.3045
0.5665 +0.2808
0.6358 £0.3138
0.6405+0.3262
0.6411£0.3161
0.5772+£0.2848
0.5903 £0.2920
0.5934 £0.2934
0.4969+0.2478
0.6621+£0.3251
0.6796 £0.3355
0.6494 £0.3212
0.6655+0.3287
0.6471+£0.3202
0.6432 £0.3156

0.6983 £0.0122
0.6843 £0.0121
0.6841+0.0110
0.6674+0.0132
0.5567 £0.0117
0.5260£0.0133
0.18184+0.0096
0.5893 £0.0067
0.91384+0.0062
0.4079£0.0135
0.3012+0.0107
0.4342 £0.0131
0.3456+0.0110
0.4418+0.0136
0.4556 £0.0131
0.2857 £0.0113
0.9311£0.0048
0.56820+0.0123
0.56692 +0.0143

CEU, Utah residents with Northern and Western European ancestry, TSI, Toscani from Italy, GBR, British from England and Scotland; FIN, Finnish from Finland; IBS,
Iberian populations from Spain;, CHB, Han Chinese from Beijing, CHS, Han Chinese from South China; JPT, Japanese from Tokyo, Japan, YRI, Yoruba from Ibadan,
Nigeria; LWK, Luhya from Webuye, Kenya; ASW, people of African ancestry from the southwestern United States; MXL, people of Mexican ancestry from Los Angeles,

California; PUR, Puerto Ricans from Puerto Rico; CLM, Colombians from Medellin, Colombia.

Table 15 | Genetic diversity parameters and probability of adherence of diplotype frequencies to Hardy-Weinberg equilibrium expectations
(pHWE), considering HLA-G 3’'UTR haplotypes.

Population sample

Gene diversity

Private haplotypes

Haplotype diversity

Nucleotide diversity (%)

PHWE

Africa (2n=362)
LWK (2n=188)
YRI (2n=174)

Europe (2n=752)
CEU (2n=170)
FIN (2n=184)
GBR (2n=174)
IBS (2n=28)
TSI (2n=196)

Asia (2n=570)
CHB (2n=192)
CHS (2n=200)
JPT (2n=178)

Admixed (2n=468)

ASW (2n=118)
CLM (2n=116)
MXL (2n=124)
PUR (2n=110)
Total (2n=2152)

0.2833+£0.1700
0.3326 +£0.1626
0.2965+0.1268
0.3276 +£0.1795
0.3938+0.1332
0.3268+£0.1294
0.3802 £0.1585
0.4352 £0.1545
0.3515+0.1613
0.3045+0.1569
0.3849+0.1194
0.3006 +0.1598
0.3086 £0.1024
0.31474+0.1855
0.3598 £0.1835
0.3702 £0.0917
0.3958+£0.1545
0.3338+£0.1180
0.2730+£0.1921

o - OO0 = O 0ol O o = 0O = = O 0l Ww o

0.8583+0.0073
0.8573+£0.0124
0.8350£0.0143
0.7885+0.0084
0.7577 £0.0203
0.7612+£0.0173
0.7986 £0.0189
0.7460+0.0537
0.8158 +£0.0141
0.7507 £0.0098
0.7920£0.0133
0.7234+£0.0198
0.6681 £0.0253
0.8385+0.0077
0.84154+0.0172
0.8273+£0.0139
0.8270+£0.0178
0.8459+£0.0184
0.8223 £0.0041

2.6744 +1.3827
2.9077 £1.4972
2.3841+1.2486
2.9784+£1.5247
3.0292 £ 1.55658
2.6197 +1.3603
3.1900 + 1.6321
3.3476 £ 1.7617
2.9499 £1.5169
2.6613+1.3750
2.9605 + 1.5222
2.62744+1.3634
2.2658 £1.1920
2.9705+ 15222
3.1446 +1.6150
2.7185+1.4119
3.1832 £ 1.6327
2.6841 +1.3962
2.8640+ 1.4692

0.1986 4+0.0098
0.5067 £0.0116
0.6058 £ 0.0091
0.5801 +0.0127
0.8857 £0.0057
0.914640.0043
0.0704 £0.0059
0.8526 +£0.0025
0.5941 £0.0105
0.1824 +0.0093
0.3045 £0.0084
0.3031+£0.0104
0.6259 £0.0076
0.3325+0.0117
0.2936 £0.0101
0.9862 £0.0011
0.9469 +£0.0039
0.0933 £0.0045
0.2546+£0.0118

CEU, Utah residents with Northern and Western European ancestry; TSI, Toscani from Italy; GBR, British from England and Scotland; FIN, Finnish from Finland; IBS,

Iberian populations from Spain; CHB, Han Chinese from Beijing; CHS, Han Chinese from South China, JPT, Japanese from Tokyo, Japan, YRI, Yoruba from Ibadan,

Nigeria; LWK, Luhya from Webuye, Kenya; ASW, people of African ancestry from the southwestern United States; MXL, people of Mexican ancestry from Los Angeles,

California; PUR, Puerto Ricans from Puerto Rico, CLM, Colombians from Medellin, Colombia.
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Table 16 | Matrix of pair-wise Fgr values based on whole HLA-G haplotype frequencies (below the diagonal) and probabilities associated with

pair-wise Fgr values (above the diagonal) for the 14 populations analyzed in the present study.

CEU TSI GBR FIN IBS CHB JPT CHS YRI LWK ASW MXL PUR CLM
CEU 0.0360 0.3423 0.1081 0.3604 0.0000* 0.0000* 0.0090 0.0000* 0.0901 0.0180 0.0541 0.1892  0.0451
TSI 0.0086 0.3694 0.0000* 0.6396 0.0180 0.0000* 0.0180 0.0180 0.2342 0.1532 0.3063 0.0451 0.4775
GBR 0.0005 —-0.0012 0.0090 0.8288 0.0000* 0.0000* 0.0090 0.0000* 0.1441 0.0360 0.2342 0.0541  0.1171
FIN 0.0083 0.0391* 0.0288 0.0270 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0180 0.0000*
IBS —-0.0018 -0.0123 -0.0150 0.0411 0.1261  0.0090 0.0991 0.0721 0.3514 0.5135 0.6577 0.1441  0.3694
CHB 0.0679* 0.0251 0.0385* 0.1219* 0.0246 0.0270 0.0180 0.0090 0.0000* 0.0270 0.0000* 0.0000* 0.0270
JPT  0.1434* 0.0772* 0.1067* 0.2037* 0.0981 0.0203 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*
CHS 0.0366 0.0179 0.0233 0.0707* 0.0249 0.0152 0.0610* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0180
YRl 0.0562* 0.0174 0.0365* 0.0940* 0.0270 0.0182 0.0362* 0.0317* 0.0000* 0.0360 0.0090 0.0000* 0.1712
LWK 0.0070 0.0028 0.0037 0.0294* —0.0020 0.0469* 0.1041* 0.0331* 0.0221* 0.15632  0.1622 0.2883 0.3153
ASW 0.0237 0.0044 0.0087 0.0659* —0.0056 0.0252 0.0767* 0.0344* 0.0130 0.0035 0.7748  0.0270  0.2883
MXL 0.0142 0.0006 0.0021 0.0535* —-0.0101 0.0236* 0.0810* 0.0256* 0.0191 0.0029 —0.0057 0.0541  0.3423
PUR 0.0053 0.0128  0.0111 0.0151 0.0178 0.0625* 0.1287* 0.0311* 0.0369* 0.0027 0.0183  0.0128 0.1982
CLM 0.0164 —0.0011 0.0074 0.0450* 0.0005 0.0235 0.0677* 0.0180 0.0054 0.0009 0.0015 0.0000 0.0055

CEU, Utah residents with Northern and Western European ancestry; TSI, Toscani from Italy; GBR, British from England and Scotland; FIN, Finnish from Finland; IBS,
Iberian populations from Spain; CHB, Han Chinese from Beijing, CHS, Han Chinese from South China, JPT, Japanese from Tokyo, Japan; YRI, Yoruba from Ibadan,
Nigeria; LWK, Luhya from Webuye, Kenya; ASW, people of African ancestry from the southwestern United States; MXL, people of Mexican ancestry from Los Angeles,
California; PUR, Puerto Ricans from Puerto Rico; CLM, Colombians from Medellin, Colombia.

Statistically significant Fs; values are in boldface (p < 0.05) or italicized boldface (p < 0.01). Statistically significant values at a 5% significance level after Bonferroni

correction are marked with an asterisk (p < 0.0005).

a population, resulting in a proportionally higher average pair-
wise difference as compared with the measure of diversity based
on the number of polymorphic sites. The worldwide nucleotide
diversity at the whole HLA-G locus (0.7548%) is as expected
slightly higher than that observed for the Brazilian population
sample (0.00643%) (76). The direct comparison of haplotype
diversity between the three regions could not be performed, since
the very different lengths and number of variation sites of the three
regions (Tables 2, 5, and 8) may bias any retrieved conclusions.
Two independent approaches were used to evaluate the extent
of differentiation between pairs of populations (interpopulation
diversity): Fst and the exact test of population differentiation
based on haplotype frequencies. Although these analyses have
the same purpose and may provide similar results, both were
performed to provide more reliable and robust conclusions. The
analysis of the pair-wise FsT matrix revealed a large range of vari-
ation of Fsr values: from —0.0150, between British from England
and Scotland (GBR) and Iberian populations from Spain (IBS),
to 0.2037, between Finnish (FIN) and Japanese (JPT) (Table 16).
While only 1 out of 6 (16.7%) pairs of admixed populations and
4 out of 10 (40%) European populations differed significantly
at the 5% unadjusted significance level; it is noteworthy that the
two African populations, as well as the three Asian populations,
differed. IBS presented the lowest number of significant compar-
isons (2 out of 13), a fact that is clearly related to the lack of
statistical power due to the small sample size. On the other hand,
JPT (all comparisons), CHB (12 out of 13), CHS (12 out of 13),
FIN (12 out of 13), and YRI (11 out of 13) presented the largest
number of significant comparisons. An overall stronger differenti-
ation was observed by the matrix composed of non-differentiation
probability values obtained through the exact test of population

differentiation (Table 17). While only 3 out of 10 (30%) European
populations differed significantly at the 5% significance level, it
is noteworthy that the two African populations, as well as the
three Asian populations and four admixed populations, differed.
IBS presented the lowest number of significant comparisons (4
out of 13), while JPT, CHB, CHS and YRI differed in all pair-
wise comparisons including them. To sum up, both the exact test
of population differentiation based on haplotype frequencies and
the Fsr estimate revealed the existence of highly significant differ-
ence between the 14 populations. Since the more frequent HLA-G
haplotypes are shared between most of the populations, these pair-
wise population differences may be due to the existence of many
low-frequency haplotypes that are restricted to two or three pop-
ulations (22.5% of the 200 identified haplotypes) or are private to
a single population (63% of the 200 haplotypes).

To further explore the genetic relationships between popula-
tions,an AMOVA was performed assuming a hierarchical structure
in which the 14 populations were divided into four groups: African,
Asian, European, and admixed populations (Table 18). Consider-
ing the whole HLA-G gene, differences between the four groups
account for only 2.45% of the variance, whereas 1.64% of the vari-
ance occurs as a consequence of differences between populations
that belong to a same group. Almost all the variance (95.91%)
is observed within populations. This same pattern is observed
when each HLA-G region, i.e., promoter, coding, and 3'UTR, is
considered separately, with the exception of the 3'UTR where the
variance among groups (0.65%) gets even lower than the variance
among populations that belong to a same group (1.32%), and is
statistically non-significant.

Since the group composed of admixed populations represent an
assembly of populations whose individuals present varying levels
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Table 17 | Matrix of non-differentiation probabilities obtained by means of exact tests of population differentiation based on haplotype

frequencies for the 14 populations analyzed in the present study.

CEU TSI GBR FIN IBS CHB JPT CHS YRI LWK ASW MXL PUR CLM
CEU
TSI 0.2109
GBR  0.1051 0.0765
FIN 0.0062 0.0004* 0.0000*
IBS 0.6345  0.9226  0.9772  0.2932
CHB 0.0000* 0.0000* 0.0000* 0.0000* 0.0057
JPT  0.0000* 0.0000* 0.0000* 0.0000* 0.0002* 0.0000*%
CHS 0.0000* 0.0000* 0.0000* 0.0000* 0.0001* 0.0105 0.0000*
YRI 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*
LWK  0.0000* 0.0000* 0.0000*% 0.0000* 0.3488 0.0000* 0.0000* 0.0000* 0.0000*
ASW 0.0000* 0.0000*% 0.0000* 0.0000* 0.3020 0.0000* 0.0000* 0.0000% 0.0000* 0.1072
MXL  0.0000* 0.0004* 0.0000* 0.0000* 0.4085 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0004*
PUR 0.0007* 0.0048 0.0006 0.0000* 0.7816 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0677
CLM  0.0000* 0.0000* 0.0000* 0.0000* 0.5290 0.0000* 0.0000* 0.0000* 0.0000* 0.0000* 0.0001* 0.0437 0.0117

CEU, Utah residents with Northern and Western European ancestry; TSI, Toscani from Italy; GBR, British from England and Scotland; FIN, Finnish from Finland; IBS,
Iberian populations from Spain;, CHB, Han Chinese from Beijing, CHS, Han Chinese from South China; JPT, Japanese from Tokyo, Japan, YRI, Yoruba from Ibadan,

Nigeria; LWK, Luhya from Webuye, Kenya; ASW, people of African ancestry from the southwestern United States; MXL, people of Mexican ancestry from Los Angeles,

California; PUR, Puerto Ricans from Puerto Rico;, CLM, Colombians from Medellin, Colombia.

Statistically significant Fsr values are in boldface (p < 0.05) or italicized boldface (p < 0.01). Statistically significant values at a 5% significance level after Bonferroni

correction are marked with an asterisk (p < 0.0005).

Table 18 | Analysis of molecular variance (AMOVA) for HLA-G haplotype frequencies, according to two different hierarchical structures and four

different HLA-G datasets.

Groups composing the HLA-G Variance
hierarchical structure 2 data type
Among groups (Fct) Among populations within  Within populations (Fgr)
groups (Fsc)
Africa: LWK, YRI; Promoter 3.09% (p=0.009840.0033) 1.57% (p=0.00004+£0.0000) 95.34% (p=0.000040.0000

Asia: CHB, CHS, JPT, Coding region

(

2.99% (p=0.0049+0.0020)
(
(

( ( )
1.81% (p=0.000040.0000)  95.20% (p=0.000040.0000)
( ( )
( ( )

Europe: CEU, FIN, GBR, IBS, TSI; 3'UTR 0.65% (p=0.0665+0.00000 1.32% (p=0.0000+0.0000) 98.02% (p=0.0000+0.0000
Admixed: ASW, CLM, MXL, PUR Whole gene 2.45% (p=0.0029+0.0016)  1.64% (p=0.0000+0.0000) 95.91% (p=0.0000+0.0000
Africa: LWK, YRI; Promoter 4.28% (p=0.0156 +0.0039) 2.01% (p=0.0000+0.0000) 93.71% (p=0.0000 £ 0.0000)
Asia: CHB, CHS, JPT: Coding region  4.14% (p=0.0147+0.0042)  2.28% (p=0.00004+0.0000) 93.58% (p=0.0000+0.0000)
Europe: CEU, FIN, GBR, IBS, TSI 3'UTR 1.00% (p=0.03324+0.0065)  1.32% (p=0.0010£0.0010) 97.68% (p=0.0000=+0.0000)

Whole gene 3.42% (p=0.0166 £+ 0.0000) 1.99% (p=0.000040.0000) 94.59% (p=0.0000+0.0000)

of ancestry that can be assigned to Africans, Amerindians/Asians,
and Europeans, this group was removed from a second round of
analysis (Table 18). As a result, levels of variance between groups
increased, although still lower than the expected ones for neutrally
evolving sequences (123). Therefore, one may conclude that this
analysis reflects the fact that most of the HLA-G diversity, par-
ticularly that from the 3'UTR, (a) originated from Africa before
Homo sapiens dispersion to other continents and (b) has been
maintained in worldwide populations by non-neutral evolution-
ary forces, particularly balancing selection. These conclusions are
corroborated by previous data on HLA-G (68, 69, 76, 89, 121).
Moreover, many different low-frequency haplotypes are being
generated within populations by mutation and recombination.

These features are responsible for the relatively poor resolution of
the MDS plot (Figure 2) obtained with the matrix of Reynolds’
genetic distance based on the whole HLA-G gene. Unexpectedly,
(a) populations from a same geographic group, for example Asians
(CHB, CHS and JPT), are distributed across large distances in the
plot and (b) admixed populations (CLM, MXL, and PUR) that
present major European, intermediate Amerindian, and minor
African ancestry contributions (66), as revealed by the analysis
of Ancestry Informative Markers (data not shown), are clustered
together with African populations. These unexpected findings
support the hypothesis that a strong signature of balancing selec-
tion over HLA-G may have distorted the expected demographic
signatures.
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FIGURE 2 | Multidimensional scaling (MDS) plot revealing the genetics relationships between the 14 populations of the 1000Genomes Project
(Phase 1).

HLA-G EVOLUTION ASPECTS

The MHC class I molecules evolved by a series of events that
include chromosomal duplication, gene recombination, and selec-
tion probably driven by pathogens (125-127). Apparently, MHC-
G, the HLA-G homologous sequence in non-human primates, is
the oldest class I gene and it would be responsible for the origin
of the whole class I loci (127). In fact, MHC class I genes from the
New World primates, such as the cotton-top tamarin (Saguinus
oedipus), are much closer to the human HLA-G than other human
classical class I genes (127). This primate lineage separated from
the one that gave rise to the Old World monkeys (or anthropoids)
about 38 million years ago. It is noteworthy that the HLA-G and
MHC-G molecules are functionally different despite the high iden-
tity among exonic sequences (128). New World primates’s MHC-G
plays a role in antigen presentation that is uncommon for human
HLA-G, and this fact suggests that they are not orthologous as the-
orized in the past (129, 130). In contrast, the cotton-top tamarin
presents two MHC-C molecules with inhibitory properties that
interact with KIR receptors (131). The regulation of MHC levels
(in this case, MHC-C) in these non-human primates seems to be
one of the responsible mechanisms for fetal acceptance as well as
for the shorter pregnancy period (132).

Old World primates have a peculiar MHC-G molecule. It
presents just the a1 domain due to a stop codon at codon 164
(133), which may not hinder fetal protection against maternal
NK cells, unless there is a mechanism in which the stop codon is
ignored, allowing translation to continue (which is not discarded).
In addition, gorillas and chimpanzees present a conserved MHC-G
coding segment with few variations (3, 128, 129). Even the preg-
nancy period being shorter than in human beings, these species are
polygamous, which would expose the female to different allogeneic

fetuses during the fertile age. Orangutans on the other hand have
long-lasting relationships and five MHC-G variants have been
found so far — the polymorphism levels are low but more simi-
lar to human beings (3). Orangutans and humans are separated
by about 15 million years of evolution. Possibly, the differences
between maternal-fetal relationships among different species are
responsible for each MHC-G peculiarities and for its function and
variation levels.

In addition to alignments between human and other primates
coding MHC-G sequences, analyses of HLA-G non-coding regions
have proved to be highly informative about the evolutionary his-
tory of this gene. For example, the polymorphism of 14-pb located
on HLA-G exon 8 (3’UTR) is exclusively found in the human lin-
eage, suggesting that UTR haplotypes bearing the deletion such
as UTR-1 are more recent than the ones that present the 14-bp
fragment (134).

An interesting finding confirmed recently is that one of
the most frequent HLA-G coding allele (global frequency of
0.24257), G*01:01:01:01, which is usually associated with UTR-
1 and the promoter haplotype G010101a [described in Ref. (76)
and Table 11], is probably the most recent haplotype. These data
were established by the association between G*01:01:01:01/UTR-
1 with an Alu insertion (AluyHG) that occurred before human
dispersion from Africa, in a location 20 Kb downstream HLA-G
3'UTR. The frequency of this Alu element increases with distance
from Africa (68).

Given the HLA-G immunomodulatory properties and the
unique tissue expression patterns, HLA-G expression levels must
be maintained under a fine regulatory control. In addition, the
lack of variability found in its coding region and limited number
of proteins coded by this gene lead us to believe that this region
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is under tight evolutionary forces that limit variation. The differ-
ences on mammalian pregnancy and species-specific pathogens
must be considered when studying the evolution of the immune
system molecules.

HLA-G TRANSCRIPTION REGULATION

Most of the studies already performed to understand HLA-G
regulation considered as the HLA-G promoter 200 nucleotides
upstream the first translated ATG and within 1.5 Kb upstream the
CDS. The HLA-G regulation is unique among all class I genes
[reviewed at Ref. (67)]. Generally, HLA class I genes present two
main regulatory modules in the proximal promoter region (within
200 bases upstream the CDS) that includes [reviewed at Ref. (67)]
(a) the Enhancer-A (EnhA) that interacts with NF-kB family of
transcription factors, which are important elements to induce
HLA class I genes expression (135); (b) the interferon-stimulated
response element (ISRE) that consists of a target site for inter-
feron regulatory factors (IRF), which might act as class I activators
(IRF-1) or inhibitors (IRF-2 and IRF-8) (135). The ISRE module
is located adjacent to the EnhA element, and both work coopera-
tively controlling HLA class I genes expression; (c) the SXY module
in which the transcription apparatus is mounted.

However, the HLA-G gene presents regulation peculiarities that
differ from other class I genes [reviewed at Ref. (67)]. First, the
HLA-G EnhA is the most divergent one among the class I genes
and is unresponsive to NF-kB (136) and might only interact with
p50 homodimers, which are not potent HLA class I gene transac-
tivators (137). In addition, the HLA-G ISRE is also unresponsive
to IFN-y (138) due to modified ISRE. In fact, the HLA-G locus
presents the most divergent ISRE sequence among the class I
genes (135, 136), what could explain the absence of IFN-y induced
transactivation. The ISRE is also a target for other protein com-
plexes that may mediate HLA class I transactivation. However,
both HLA-G EnhA and ISRE seem to bind only the expressed
factor Sp1, which apparently does not modulate the constitutive
or IFN-induced transactivation of HLA-G (136). Some polymor-
phisms in promoter region, such as —725 C > G/T, are close to
known regulatory elements. In this matter, the —725 G allele was
related with higher HLA-G expression levels (120).

The SXY module comprises the S, X1, X2, and Y boxes and is an
important target for regulatory binding elements and HLA class I
genes transactivation. Box X1 is a target for the multiprotein com-
plex regulatory factor X (RFX), including RFX5, RFX-associated
protein, and RFXANK (137, 139-141). The RFX members use to
interact with an important element for HLA class II transactiva-
tion (CIITA), also important to HLA class I gene transactivation
(139). The X2 box is a binding target for activating transcrip-
tion factor/cAMP response element binding protein (ATF/CREB)
transcription factor family (142) and Y box is a binding target for
nuclear factor Y (NFY), which includes subunits alpha, beta, and
gamma (NFYA, BFYB, and NFYC) (67, 139). For HLA-G, the SXY
module presents sequences compatible only with S and X1 ele-
ments, but divergent from X2 and Y. Because CIITA is dependent
of a functional SXY module, which includes X2 and Y elements, the
SXY module does not transactivate HLA-G gene (139, 143—146).

Other regulatory elements within the HLA-G promoter have
been described, such as heat shock element, located at —469/—454

position, that bind with heat shock factor-1 (HSF-1), important
elements involved in immune responses modulation (147), and
progesterone, which is a steroid hormone secreted from corpus
luteum and placenta, involved with endometrium maintenance
and embryo implantation [reviewed at Ref. (67)]. The mecha-
nism involved in HLA-G expression induced by progesterone is
primarily mediated by the activation of progesterone receptor and
a subsequent binding to a progesterone response element, found
in the promoter region (148). The transactivation of HLA-G tran-
scription has also been demonstrated by leukemia inhibitory factor
(LIF) (149) and methotrexate cell exposure (150). In addition,
it was demonstrated an increased HLA-G transcription level in
choriocarcinoma cell JEG3 line after the treatment with LIF. Fur-
thermore, LIF induces HLA-G expression in the presence of endo-
plasmic reticulum aminopeptidase-1 (ERAP1), expressed in the
endoplasmic reticulum, and repression of ERAP1 culminates in
HLA-G downregulation, indicating that ERAP1 has an important
role in HLA-G regulation (151). Finally, it is necessary to highlight
the importance of methylation status of the HLA-G promoter,
since it appears to be very important for HLA-G transcription
(152, 153).

Although some HLA-G regulatory elements are known, it is
not clear why balancing selection is maintaining divergent lin-
eages since most of the polymorphisms would not theoretically
influence HLA-G transcription by the known mechanisms, mainly
because they do not coincide with known regulatory elements
[reviewed at Ref. (67)]. It should be noted that the same SNVs
described for the HLA-G promoter in other manuscripts are also
found in the present analysis.

HLA-G POST-TRANSCRIPTIONAL REGULATION

HLA-G might also be regulated by post-transcriptional mecha-
nisms such as alternative splicing and microRNAs. Several studies
have reported polymorphisms influencing splicing, mRNA stabil-
ity, and also the ability of some microRNAs to bind to the HLA-G
mRNA. The HLA-G 3'UTR segment is a key feature for its regula-
tion mainly by the binding of microRNAs and influencing mRNA
stability. HLA-G 3'UTR presents several polymorphic sites that
influence gene expression [reviewed at Ref. (67)].

The 14-bp presence or absence (insertion or deletion) poly-
morphism was implicated in the HLA-G transcriptional levels
and mRNA stability. The presence of the 14 bases segment in
trophoblast samples has been associated with lower mRNA pro-
duction for most membrane-bound and soluble isoforms (98,
154), and the absence of this segment seems to stabilize mRNA
with a consequent higher HLA-G expression (98, 155, 156). In
addition, HLA-G transcripts presenting the 14 bases segment
can be further processed with the removal of 92 bases from the
complete mRNA (98), giving rise to a shorter HLA-G transcript
reported to be more stable than the complete isoform (157). The
alternative splicing associated with the presence of the 14 bases
segment is probably driven by other polymorphic sites in Linkage
Disequilibrium with this polymorphic site (3).

The SNP located at position +3142 has been associated
with differential HLA-G expression, because it might influence
microRNA binding (158). The presence of a Guanine at the + 3142
is associated with a stronger binding of specific microRNAs,
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such as miR-148a, miR-148b, and miR-152, decreasing HLA-G
expression by mRNA degradation and translation suppression (3,
158, 159). In addition, the 14-bp region might also be a target for
specific microRNAs and other 3'UTR polymorphisms might also
influence microRNA binding (159). Another polymorphicsite that
would influence HLA-G expression is located at +3187. The allele
+3187A is associated with decreased HLA-G expression because it
extends an AU-rich motif that mediates mRNA degradation (106).

UTR-1 (Table 6) is the only frequent 3'UTR haplotype that do
not carry the 14-bp sequence, and both the high expression alle-
les +3142G and +3187A. Therefore, it was postulated that this
haplotype would be associated with high HLA-G expression; this
was confirmed by another study evaluating soluble HLA-G levels
and 3'UTR haplotypes (109). In addition, as already introduced,
this haplotype (together with the coding allele G*01:01:01:01) is
probably the most recent one (109) and its frequency might be
increased worldwide due to its high-expressing feature.

CONCLUDING REMARKS

Due to the key features of HLA-G on the regulation of immune
response and immune modulation, particularly during pregnancy,
the overall structure of the HLA-G molecule has been maintained
during the evolution process. This is evident when the variabil-
ity of more than a thousand individuals is taking into account,
and only few encoded different molecules are frequently found.
Most of the variation sites found in the HLA-G coding region are
either synonymous or intronic mutations. The HLA-G promoter
region presents numerous polymorphic sites, with several exam-
ples of variation sites in which both alleles are equally represented.
Although the mechanisms underlying why some divergent pro-
moter haplotypes are preferentially selected are still unclear, just a
few divergent and frequent promoter haplotypes are found world-
wide. The HLA-G 3'UTR variability is quite expressive considering
the fact that most of the SNVs are true polymorphisms, they are
equally represented, and this segment is of short size. These obser-
vations, for both promoter and 3'UTR, are compatible with the
evidences of balancing selection acting on these regions. Finally,
the population comparisons confirmed that most of the HLA-G
variability has arisen before human dispersion from Africa and
that the allele and haplotype frequencies might have been shaped
by strong selective pressures.
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