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INTRODUCTION
Macrophages are involved in inflammation
from induction to resolution. Polarization
of macrophages along the M1 (classical) or
M2 (alternative) axis occurs during inflam-
mation and can be at least partly cate-
gorized by the route of arginine metabo-
lism within the macrophage, balancing the
activities of the arginase and nitric oxide
synthase (NOS) enzyme families (1, 2).
Arginase activity is associated with tissue
repair responses (via ornithine production
and pro-proliferative effects). In contrast,
NOS2 generates nitric oxide (NO) species
with anti-proliferative effects that is neces-
sary for protection against pathogens and
aberrant cells (2, 3). Other NOS enzymes
produce NO that acts in the regulation
of smooth muscle tone and other cellular
processes (4). Macrophages preferentially
expressing the arginase or NOS2 pathways
enzymes also influence T-cell activation,
proliferation, signaling, and apoptosis in
different ways (1).

While arginase and NOS enzymes can
be used to ascertain the pathway of
macrophage activation in rodents, there
has been debate as to whether they are
present in macrophages from humans and
other mammals. The arginase and NOS
enzymes are extensively conserved, and the
NOS forms found in mammals are sim-
ilar to those in cnidarians, mollusks, and
other chordates (5, 6). These arginine-
metabolizing enzymes are present in some
human leukocytes, and there is evidence
that they are also present in macrophages
from other vertebrates, including chickens,
rabbits, cows, and primates (7–12). How-
ever, comparisons of tissue macrophages of
different species are lacking, which limits
our understanding (13). Many studies in

humans have principally focused on blood
monocytes, leading some researchers to
question the suitability of rodents as model
of macrophage activation, as there is not
always a direct correlation with human
cells. Was Robert Koch correct when he
said “Gentlemen, never forget that mice are
not humans,” or can the differing results
between species be explained, in part, by
differences in the types of monocyte or
macrophage studied? Our purpose here is
to examine this question.

ARGININE METABOLISM IN
MAMMALIAN CELLS
Many mammalian cells, including neu-
trophils, granulocytes, erythrocytes, hepa-
tocytes, cardiac myocytes, dendritic cells,
myeloid-derived suppressor cells, foam
cells, natural killer cells, endothelial cells,
and smooth muscle cells, have arginase
(12, 14–16) or NOS activity (8, 17–19),
albeit to different degrees. Macrophages
are the primary circulating cells that can
express either of these enzymes, depend-
ing on the inflammatory circumstance.
Experiments that detect NO, ornithine, or
urea production (via NOS2 or arginase)
have most often been performed on
rodent macrophages. Macrophages from
some mouse strains (e.g., the M1-biased
C57BL/6 strain) can be stimulated by
lipopolysaccharide (LPS) to produce con-
siderable quantities of NO. Macrophages
from others strains (e.g., M2-skewed
BALB/c mice) produce much less NO (20)
and produce more ornithine instead. Some
researchers did not detect any NO produc-
tion in macrophages from humans, pigs,
and rabbits (8, 11, 14, 21–23), but others
(including ourselves) have observed NOS
or arginase activity in macrophages from

rabbits, humans, and other primates (4, 7,
10, 12, 17, 24–26).

WHY IS THERE CONTROVERSY?
One main difference between the stud-
ies from laboratories is that some use
monocyte-derived macrophages (MDM),
while others study tissue macrophages
directly. A number of groups have detected
NOS or arginase activity in human mono-
cytes or macrophages (3, 27–29); but oth-
ers have not. Why is this so? Part of the
explanation lies in the fact that in vitro-
derived macrophages can generate differ-
ent responses from macrophages obtained
in vivo as discussed below (and shown in
Table 1). Another explanation is that many
groups use the identification of enzyme
protein rather than detection of enzyme
activity as evidence of enzyme expression.
Failure to detect the presence of a pro-
tein is not definitive evidence for absence
of expression (especially when consider-
ing potentially different detection thresh-
olds of antibodies or the high V max of
arginase, i.e., very little enzyme is required
for ornithine production).

MACROPHAGES PRODUCED IN VITRO
Macrophages have been produced in vitro
in a number of ways. Cells from bone mar-
row have been isolated and “differentiated”
in culture medium containing high levels
of cytokines (such as colony stimulating
factors, CSFs) to produce bone marrow-
derived macrophages (BMDM) (13,23,44–
46). Macrophages have also been produced
by isolating and culturing monocytes from
blood, to produce MDM (10, 13, 22, 30,
37, 47, 48). Production of these in vitro-
derived macrophages is cheap, simple,
and reproducible, but they may not be a
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Table 1 |The presence of arginine-metabolizing enzymes in human monocytes and macrophages varies with cell source, treatment and health

status/stress level of the individual.

Cell origin Cell Treatment NOS test ARG test Result Reference

Blood monocytes Monocyte,

mono-mac

0, 2, 3, or 5d culture RNA, citrulline,

FC

RNA, urea NOS, ARG1 and ARG2 levels vary

between monocyte subpopulations

(27)

Blood monocytes Monocyte,

mono-mac

0, 3, or 7d culture or

7d M-CSF, 0.75d

IFNγ/LPS, or IL4

Gene array No difference (≤ 2-fold cut-off, therefore

genes with smaller differences

discounted)

(30)

Blood monocytes

(filaria-infected)

Monocyte 1d culture RNA RNA ↑ARG1, ↓NOS2 (28)

Blood monocytes

(burns victims)

Monocyte 2d culture Urea ↑ARG1 (29)

Blood monocytes Monocyte 2d microfilaria,

M-CSF, IL4, or

IFNγ/LPS

RNA RNA Most donors had low but detectable

NOS2 and ARG1 RNA expression which

did not change with any treatment.

(31)

Blood monocytes Mono-mac 3d IFNγ and/or IL4

(No M-CSF)

RNA ↓ARG1, but detectable in all conditions (32)

Monocyte/macrophage

cell line (U937)

Mono-mac ?d LPS and/or IFNγ Transcription

run-on assay

No induction of NOS2 gene

transcription (for that particular region of

the promoter region)

(33)

Monocyte/macrophage

cell line (U937)

Mono-mac 1d selenomethionine

and 1d LPS and/or

IFNγ

Griess, RNA

Western

Selenomethionine ↓LPS-induced NOS2

expression (RNA and protein) and nitrite

production

(34)

Blood monocytes,

peritoneal macrophages

Mono-mac,

macrophage

?d culture, 2d LPS,

IFNγ, or

TNFα/GM-CSF

Griess, amino

acid HPLC

No nitrite, ornithine, citrulline

production, no arginine consumption

(22)

Blood monocytes,

peritoneal macrophages

Monocyte,

mono-mac

0d or 3d LPS or

cytokine

RNA, IB, ICC,

biopterin,

citrulline, Griess

NOS2 mRNA and protein present in

monocytes, ↑peritoneal macrophages

(↑ with LPS). Both cell types produce

neopterin, nitrite/nitrate and citrulline

(low levels)

(35)

Blood monocytes (MS

sufferers)

Macrophage 6d GM-CSF 0.75d

IL4, IFNγ, LPS, or

TNFα

RNA, Griess RNA, WB,

urea

ARG1 and NOS2 mRNA and nitrite

production in MS and controls, ↑with

M1 or M2 cytokine challenge. ARG1

protein and urea production present in

controls, ↑in MS

(36)

Blood monocytes Macrophage 8d M-CSF, 5d oxLDL RNA No change in ARG1 levels (10)

Blood monocytes Macrophage 10d M-CSF, 1d IL4,

or IL10

Urea, WB

arginine

No ARG1 after induction by IL4 or IL10 (14)

Blood monocytes Macrophage 14d IFNγ/LPS Griess No nitrite production (37)

Alveolar macrophages

(volunteers)

Macrophage IFNγ Griess, citrulline No NO production, no effect of NOS

inhibitor

(21)

Alveolar macrophages Macrophage ?d (short), 0.8d IL4,

or forskolin (i.e.,

↑cAMP)

Urea Untreated macrophages have ARG

activity similar to unstimulated RAW

cells. ↑ARG with IL4/forskolin but not

IL4 alone

(38)

Alveolar macrophages

(cancer suffers,

volunteers)

Macrophage 0.75d IFNγ/LPS or

IL-10

RNA, WB RNA ↑ARG with IL10 stimulated cells,

↑NOS2 with IFNγ/LPS stimulated cells

(39)

(Continued)
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Table 1 | Continued

Cell origin Cell Treatment NOS test ARG test Result Reference

Alveolar macrophages

(TB patients,

volunteers)

Macrophage None IHC, WB, RNA,

diaphorase

45–49% of cells from TB patients have

NOS2. Smoking controls had some

NOS2-positive macrophages,

non-smoking controls have few

NOS2-positive cells

(24)

Alveolar macrophages

(TB patients)

Macrophage None IHC Macrophages in TB granulomas stain

for NOS1, NOS2 and nitrotyrosine (i.e.,

active)

(26)

Alveolar macrophages

(TB patients)

Macrophage None IHC IHC ARG1 in macrophages in TB

granulomas, few have Arg2. Some

macrophages on outer margins have

both NOS2 and ARG1, some near

center have NOS2, NOS3 and ARG1

(12)

Atherosclerotic plaque

macrophages

Macrophage None ISH, IHC NOS2 in macrophages and smooth

muscle cells, co-localized with oxidized

lipoproteins and peroxynitrite (i.e.,

NOS is active)

(7)

Atherosclerotic plaque

macrophages

Macrophage None IHC, WB Fatty streaks: no NOS2. Advanced

plaques: NOS2 present in

macrophages near necrotic core,

associated with ceroid accumulation

and nitrotyrosine (i.e., active)

(25)

Atherosclerotic plaque

foamy macrophages

Macrophage None IHC ↑ARG1 in macrophages in superficial

layers, ↓ARG1 in macrophages

surrounding lipid core

(10)

Atherosclerotic plaque Macrophage None IHC, ISH NOS2 and nitrotyrosine localized to

smooth muscle cells, macrophages

and foam cells (i.e., active)

(17)

Oral macrophages Macrophage None IHC, nitrate NOS2 present in macrophages from

gingivitis samples

(40)

Placental macrophages Macrophage None FC Some M2 macrophages have ARG1 (16)

Skin macrophages

(wound)

Macrophage None IHC, HPLC IHC, WB,

ELISA,

HPLC

NOS2 present in macrophages, some

have ARG2, but none have ARG1.

Controls: no ARG2

(41)

Tumor-associated

macrophages

Macrophage None IHC NOS2 present in some macrophages

(bladder)

(42)

While changes in RNA expression of arginine-metabolizing enzymes have been used to identify macrophage activation states, protein changes [such as western

blotting (WB) or immunohistochemistry (IHC)] are also useful. Nitric oxide synthase (NOS) activity can be assessed directly [e.g., production of citrulline or NO (e.g.,

Griess assay)] or by the presence of markers of NO production (such as peroxynitrite, nitrotyrosine or ceroid, a complex of oxidized lipids and proteins). Arginase

(ARG) activity can be measured as urea or ornithine production (e.g., urea assays, amino acid HPLC).

d, number of days; ?d, unspecified number of days; FC, flow cytometry; M-CSF, macrophage colony-stimulating factor; IFNγ, interferon-γ; LPS, lipopolysaccharide;

IL, interleukin; TNFα, tumor necrosis factor-α; GM-CSF, granulocyte-macrophage colony-stimulating factor; IB, immunoblot; ICC, immunocytochemistry; MS, multiple

sclerosis; oxLDL, oxidized low density lipoprotein; TB, tuberculosis; ISH, in situ hybridization; Griess, Griess assay for nitrite/nitrate production.

It should be noted that NO production below the detection levels of this relatively insensitive assay may still have functional effects (43).

full representative of tissue macrophages,
as the preparation and culture proce-
dures may not be sufficient to induce
cell activation (4). The differences between
tissue macrophages and in vitro-derived

macrophages are at least partly dependent
on cell source, time in culture, and the
degree of manipulation in culture. Each
research group will use different types and
sources of culture media and sera, which

vary greatly in the concentrations of factors
that influence NOS2 or arginase expres-
sion, such as transforming growth factor
β (TGFβ) (4, 20, 49). Another confound-
ing issue is that circulating monocytes and
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tissue macrophages arise from different
stem cell populations (50), although some
macrophages found at sites of infection or
inflammation may derive from infiltrat-
ing monocytes (51). Together, these factors
may account for many of the differences
observed in NO and urea production in
these macrophages (8, 20).

Monocyte-derived macrophages or
BMDM from different strains of mice
can differ in their response to interferon-γ
(IFNγ), LPS, and tumor necrosis factor-α
(TNFα) (4, 8), and differences in the rodent
background can result in differences in
macrophage gene expression (13, 20, 49).
Human in vitro-derived macrophages also
show variability in their responses to LPS
(4, 22, 46). It may be that the same stimulus
is able to generate quite different responses
in genetically diverse individuals, as it does
between mouse strains (38, 49, 52). In
general, human macrophages are not as
responsive to LPS as mouse macrophages,
possibly because of the lower environmen-
tal exposure of humans to LPS. It is also
possible that human monocytes may be
more effectively stimulated to become M1-
activated macrophages by cytokines other
than IFNγ and LPS/TNFα (e.g., IFNα) (4,
18, 43). Human macrophages take longer
time to respond to the stimulatory factors
in vitro than mouse macrophages, and
some experiments using human MDM
may have ended before a response was
detected (48). There are other indications
that the timing and length of the exposure
of the cells to varying cytokines in vitro
are important. For example, when M1-
polarizing cytokines were removed from
the culture medium, NOS2 levels in mouse
BMDM were reduced and NO production
(measured as nitrite) ceased (45). In addi-
tion, whichever arginase or NOS enzyme
was induced earliest, the alternative
enzyme decreased in expression and activ-
ity, unless arginine was present in excess
(15, 45, 53). Macrophages require the local
environment to continuously give appro-
priate activation cues. Changes in envi-
ronmental cues can stimulate macrophage
populations in vitro to express varying per-
centages of M1 or M2 dominant activity
(54). When activation cues are reduced or
removed, macrophages may become deac-
tivated (e.g., M2c) or indeterminate (e.g.,
have features of M1 and M2).

MACROPHAGES OBTAINED IN VIVO
Macrophages can be identified in whole
tissues and organs or isolated in large
numbers from in vivo sources such as
the peritoneum or granulomas, and either
examined immediately or used ex vivo.
Macrophages obtained in vivo or made
from monocytes can respond differently to
the same stimulus (35, 47). In one study,
monocytes and tissue macrophages were
obtained from patients with an inflamma-
tory disease (either rheumatoid or pso-
riatic arthritis). Compared with tissue
macrophages, the MDM had a blunted
response to the M2 cytokines interleukin-
4 (IL-4) and IL-13, at least partly due to a
reduction in some of the receptor elements
for these cytokines (47). These results sug-
gest that the response of the macrophages
to M2 cytokines may be source specific,
but it is possible that these cytokines
alone were not sufficient to fully stimu-
late the MDM (38). Several lines of evi-
dence suggest that macrophages in vivo
express functional NOS2. Blood mono-
cytes and peritoneal macrophages obtained
from women during laparoscopic proce-
dures contained NOS2 mRNA and pro-
tein. The macrophages had higher NOS
levels than the monocytes, and this could
be increased by treatment with LPS. The
monocytes and macrophages also pro-
duced neopterin, nitrite/nitrate, and cit-
rulline (suggesting that the enzyme was
active). Although the production of NO
from these macrophages was low, it would
probably have been sufficient to cause
functional changes (35).

Macrophages can also be obtained from
alveolar aspirates, skin, and the placenta
(10, 16, 21, 38, 39, 55, 56). For exam-
ple, sponges placed subcutaneously into
mice, rats, or rabbits attract large num-
bers of macrophages. The sponges can
be removed from the animal and the
macrophages were isolated and purified
(10, 55, 56). It is a little more difficult
to obtain and purify macrophages from
other tissues, such as atherosclerotic vessels
(44), but intact biopsy, surgical, or cadav-
eric specimens can also be investigated. It
should be noted that resident macrophages
from different tissues observed at dif-
ferent times (and different health states)
may not necessarily have identical proper-
ties (51, 57).

In order to perform their full range of
functions, macrophage populations exhibit
“plasticity” of phenotype (52, 58), regard-
less of whether they are found in vivo or
derived in vitro. As macrophages adapt or
change their functions, they can simultane-
ously express markers of M1 and M2 acti-
vation, including NOS2 and arginase-1 (12,
59, 60). For example, tissue macrophages
(and MDM) from Mycobacterium tubercu-
losis-infected cynomolgus macaques have
been observed to co-express functional
NOS and arginase enzymes (12). We sug-
gest that macrophages display a spectrum
of activation phenotypes, and it is the rel-
ative (and not absolute) proportion of M1 or
M2 markers that we can use as a ‘handle’ to
determine the type of activation state.

EFFECT OF DISEASE AND TRAUMA ON
MACROPHAGE ACTIVATION
Blood monocytes from healthy volunteers
do not usually need to produce NOS
or arginase, so it is not surprising that
many studies have not detected NOS or
arginase in these cells (10, 14, 21, 22,
29, 30, 37). However, studies performed
on tissue or cells from people undergo-
ing stress, trauma [e.g., burns (29)], preg-
nancy (16), or disease {such as infection
[e.g., tuberculosis (12, 24, 26) or filarial
infection (28)], atherosclerosis (7, 10, 17,
25), autoimmune diseases (27, 36) and
cancer (42, 61)} demonstrate that human
macrophages (and sometimes monocytes)
can produce active forms of the arginine-
metabolizing enzymes (Table 1).

Trauma results in a pattern of gene
expression in macrophages that is consis-
tent with a wound-healing response, with
an initial increase in NOS followed by
decreased NOS production and activity,
elevated IL-4, IL-10, and TGFβ levels, and
increased arginase expression and activ-
ity, resulting in decreased plasma arginine
levels (28, 29, 62).

Disease, however, causes different pat-
terns of gene expression. For example,
monocytes from multiple sclerosis suffer-
ers not only have higher levels of arginase-
1 and increased urea production, but
also have increased NOS2 mRNA and
nitrite production (particularly when stim-
ulated by M1 cytokines or LPS) (36).
Macrophages from patients with inflam-
matory diseases, such as tuberculosis,
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malaria, or rheumatoid arthritis, have
increased levels of NOS2 mRNA and active
protein (4, 8, 24, 26, 63), which may con-
tribute to elevated plasma NO levels (64).
Atherosclerosis is another inflammatory
disease with a considerable macrophage
contribution, with oxidized low-density
lipoproteins taken up by macrophages
during their transformation into foam
cells. Plaque macrophages express NOS2
RNA and protein, as well as markers
of NOS activity (including the presence
of nitrotyrosine or ceroid) (4, 7, 17,
25). Plaque macrophages and foam cells
express arginase-1 (10), and macrophages
laser-dissected from plaque have upregu-
lated levels of arginase-2 and NOS2 (65).
Macrophages present in some neoplas-
tic diseases also produce active NOS2 (4,
42, 66). Reducing the local levels of argi-
nine has been proposed as a treatment for
these diseases, by reducing inflammation-
triggered immune dysfunction, tumor
escape, fibrosis, and immunosuppression
(61). Possible pharmacological interven-
tions include treatment with arginine
degrading enzymes, NOS competitors and
inhibitors, asymmetric dimethylarginine,
NO-releasing aspirins, cyclooxygenase, and
phosphodiesterase or arginase inhibitors
(8, 61). These studies suggest that an inflam-
matory environment is necessary in order to
observe NOS or arginase in human mono-
cytes and macrophages. The in vitro exper-
iments that do not demonstrate arginase or
NOS expression may simply be lacking the
additional cues needed for expression rather
than demonstrating an inability to actually
express these factors.

CONCLUSION
The modulation of macrophages to express
NOS or arginase has clear benefits for treat-
ing disease in humans (and other species).
To do this, one needs to either determine
suitable signals to stimulate these pathways
or obtain a sufficient number of human
macrophages (e.g., by tissue culture) that
function like tissue macrophages.

Because macrophages from different
inbred strains of mice vary greatly in
their macrophage NOS and arginase bal-
ance, one would predict similar variabil-
ity to be found in humans as well. In
addition, the source of the macrophages
being studied has been found to be impor-
tant. Several groups have reported that

human monocytes from healthy volun-
teers that have been differentiated or
manipulated in vitro using current pro-
tocols tend not to have detectable levels
of arginase and NOS enzymes, whereas
MDM from diseased or stressed indi-
viduals or tissue macrophages obtained
from normal, diseased, or stressed indi-
viduals do express NOS and/or arginase.
Together these observations suggest that
the current system of differentiating
macrophages from human peripheral
monocytes in vitro needs further refine-
ment before it can be considered to be
an accurate model of human macrophage
behavior in vivo (63). In turn, we need
to understand the differences and simi-
larities between the different species and
the cells being studied to develop exper-
imental models that will answer some
of the outstanding questions regarding
macrophage M1/M2 or other activation
states: What regulates macrophage acti-
vation in tissues? What mechanisms reg-
ulate macrophage plasticity and stabil-
ity? How does plasticity of phenotype
affect tissue macrophages? What are the
full in vivo ramifications of the M1/M2
paradigm?

Further work is important to be sure
that our observations of the human sys-
tem in vitro are real, and not due to
our cell source, measurements, or manip-
ulations. We suggest that macrophages
obtained from mice remain useful for
investigating aspects of these ques-
tions in humans/human macrophages. So,
although mice are not men (as Robert
Koch observed), we agree with Rudolf Vir-
chow that “Between animal and human
medicine there is no dividing line – nor
should there be. The object is different
but the experience obtained constitutes the
basis of all medicine” [Rudolph Virchow,
1821–1902].
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