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Atherosclerotic cardiovascular disease is a chronic inflammatory disease of the blood ves-
sels that can lead to myocardial infarction or stroke. The major cell in the atherosclerotic
lesion, the macrophage, is thought to be an important contributor to the production of
inflammatory mediators that exacerbate this disease. Macrophages are generally derived
from circulating monocytes, which are in turn produced by hematopoietic stem and mul-
tipotential progenitor cells (HSPCs) in the bone marrow and other medullary organs.
Recent studies suggest that disruption in cholesterol homeostasis or prolonged exposure
to a hypercholesterolemic environment can influence HSPCs to over-produce monocytes,
resulting in monocytosis. These monocytes may carry a pre-programed ability to become
M1-like macrophages once they enter the atherosclerotic lesion. Future studies may help
to differentiate the role of such pre-programing versus responses to local environmental
cues in determining M1, M2, or other macrophage phenotypes in atherosclerotic lesions.
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Innate immunity has long been considered a driving force in
the initiation and progression of atherosclerotic cardiovascular
disease (CVD) (1). Indeed, inflammation is a process that has
attracted considerable attention as a potential therapeutic target
in atherosclerosis. It has also become well accepted that choles-
terol metabolism is intimately linked to inflammation and innate
immune processes. This close relationship is not only important
in the effector cells of atherosclerotic disease such as monocytes
(2) and macrophages (3) but cholesterol metabolism has also been
shown to play a central role in their hematopoietic precursors (4,
5). This is important as changes in cholesterol homeostasis in the
hematopoietic stem and multipotential progenitor cells (HSPCs)
control the rate of production of monocytes/macrophages, and
possibly have an influence on their function (4–6). Increased num-
bers of circulating monocytes are a predictor of cardiovascular
risk (7–14) and studies in mice have shown a causal role (4–6,
15, 16). These key studies in mice have also revealed that HSPCs
can mobilize from the bone marrow (BM) to extramedullary sites
such as the spleen (4–6, 17), where they can also produce mono-
cytes that contribute to atherogenesis (6). In this article, we will
review these topics and also explore the hypothesis that the mech-
anisms contributing to monocyte production from HSPCs could
also influence the type and function of lesional macrophages.

INNATE IMMUNE CELL PRODUCTION AND
CARDIOVASCULAR RISK
Monocytosis is associated with CVD and atherosclerotic plaque
severity in prospective and cross-sectional human studies (7, 11–
13). Monocytosis is also closely linked to plasma lipids, where

a positive correlation is observed with total cholesterol levels
(15, 18–20), and an inverse correlation with plasma high-density
lipoprotein (HDL) levels (11, 14, 20, 21). Gerrity et al. first sug-
gested that excessive monocyte production contributed to athero-
genesis in rabbit and pig l models of hypercholesterolemia and
atherosclerosis (18, 19). These studies also made the link between
hypercholesterolemia and enhanced monocyte production from
the BM using colony-forming assays and suggested that this could
be driving the atherogenic phenotype (18). Through the use of
mouse models, a causal relationship between monocyte levels and
severity of atherosclerotic lesions has been shown (4, 5, 15). Stud-
ies employing the op/op mouse that carries a mutation in the gene
encoding macrophage colony-stimulating factor (CSF-1; M-CSF)
have a gene dose-dependent decrease in monocyte levels that is
reflected by smaller atherosclerotic lesions (22). Conversely, west-
ern diet (WTD)-fed Apoe−/− mice display monocytosis that is
proportionate to the length of feeding and reflects the size of the
atherosclerotic lesion (15). We have also shown that monocyto-
sis, largely independent of activation, accelerates atherosclerosis
in mouse models (4). In addition to the abundance of monocytes
that circulate, the site of production may play an important role,
as monocytes produced in the spleen appear to have an athero-
genic phenotype (6). While monocytes may directly contribute
to atherogenesis by secreting inflammatory cytokines, ROS, and
proteases, their most important role is probably to act as pre-
cursors lesional macrophages. Macrophages are a heterogeneous
population of cells and have been categorized into two main
groups known as M1 and M2. This classification is based on func-
tion and the expression on a number of genes. M1 macrophages
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are thought to be inflammatory cells, expressing a gene signa-
ture including iNos, IL-6, Tnf-α, and IL-1β, while M2 cells are
thought to play a resolving role and expression genes such as IL-
10, Tgf-β, and Arg1. However, these cells due retain plasticity and
can sit at various points along the scale [see recent reviews on
suggested nomenclature (23, 24)]. In Apoe−/− mice, CCR2+ Ly6-
Chi monocytes preferentially enter the atherosclerotic lesion (15,
16), and this monocyte subset has been suggested to differentiate
into a macrophage with an inflammatory phenotype. Interestingly,
lesional macrophages can also undergo local proliferation to sus-
tain their population within the advanced atherosclerotic plaque
(25). The phenotype of proliferating macrophage or its product
cells has not yet been studied in detail; however, as the prolifera-
tion of these cells is dependent on SR-A (25), it could perhaps be
of the M2 variety (26). Below we will discuss how defects in cho-
lesterol metabolism pathways influence the HSPCs, monocytes,
and macrophages to promote atherosclerosis, and will make the
speculative suggestion that events in the hematopoietic stem and
progenitor populations may influence the ultimate functions of
the macrophage.

CHOLESTEROL EFFLUX PATHWAYS LINK HSPC
PROLIFERATION, MONOCYTE PRODUCTION, AND
ATHEROSCLEROSIS
Impaired cholesterol efflux has long been associated with athero-
sclerosis, and more recently, the ability of HDL to promote efflux
from cholesterol loaded cells was shown to be a stronger predictor
or atherosclerotic burden than HDL cholesterol or apoA-I levels
(27). In line with this is the experimental evidence in animal mod-
els of atherosclerosis where increasing HDL levels either therapeu-
tically (rHDL infusions) (28) or genetically (ApoA-I transgene) (5,
29) is protective. This is thought to be due to the ability of HDL or
ApoA-I to prevent foam cell formation, inhibit leukocyte adhesion,
and protect the endothelium from activation (30, 31). However,
recent studies have shown that HDL via cholesterol removal from
the cell membrane can regulate the production of innate immune
cells (4, 5, 32), particularly monocytes, by acting on HSPCs (4,
5). In respect to the anti-atherogenic properties of HDL, this may
be an important function that could affect the types and/or func-
tions of the downstream cells that eventually mature into lesional
macrophages.

The removal of cholesterol from HSPCs can be facilitated
by a number of pathways. We discovered that HSPCs express
Abca1, Abcg1, and Apoe at high levels and these key efflux genes
could further be induced in vivo by the administration of Liver-
X-Receptor (LXR) agonists (4). Co-deletion of two key choles-
terol efflux genes ATP bind cassette transporter (ABC) A1 and
Abcg1, in the hematopoietic compartment and transplantation
into Ldlr+/− mice resulted in prominent monocytosis and neu-
trophilia, which was accompanied by a dramatic acceleration in
atherosclerotic lesion formation (5). A myeloproliferative pheno-
type was suggested, as myeloid cells infiltrated many major organs,
including the spleen, liver, and intestine. Mice with Abca1/g1 KO
BM had a dramatic expansion of the HSPCs, which were pro-
liferating at higher rates compared to mice that received WT
BM. The enhanced proliferation in the Abca1/g1 KO HSPCs was
found to be due to an increase in the expression of the common

β subunit of the IL-3/GM-CSF receptor (IL-3Rβ; aka CD131),
making these cells more sensitive to these cytokines. Promoting
cholesterol efflux with an apoA-I transgene reversed the prolif-
erative defects and reduced the severity of the atherosclerosis.
Abca1−/−, Abcg1−/−, and Apoe−/− HSPCs also mobilized into the
circulation in increased amounts and established extramedullary
hematopoiesis in the spleen and other organs (17). These sites
of extramedullary hematopoiesis provide an important reservoir
for monocytes in acute coronary disease (33), highlighting the
multiple links between hypercholesterolemia, defective choles-
terol efflux pathways, and the over-production of monocytes and
neutrophils that contribute to atherosclerosis.

As mentioned above, we and others have also reported that
WTD-fed Apoe−/− mice display prominent monocytosis (4, 15,
16). We found that this was also due to expansion and prolifera-
tion of the HSPCs as a result of increased expression of the IL-3Rβ.
Treating Apoe−/− mice with reconstituted HDL (rHDL; CSL-111)
to promote cholesterol efflux normalized this proliferative defect
(4). The role for the IL-3Rβ in promoting HSPC proliferation
and monocytosis in Apoe−/− mice was confirmed in mice with
deficiency of both genes (34). Through the use of competitive
BM transplant (cBMT) studies, we found that these efflux path-
ways at least partly functioned in a cell intrinsic manner (4). For
example, deletion of Apoe in cells marked by CD45.2 produced
more monocytes and lesional macrophages compared to WT cells
marked by CD45.1 that were transplanted into the same recipi-
ents. We also found that the Ldlr−/− mice that received the mix
of Apoe−/−(CD45.2)/WT(CD45.1) had larger lesions compared
to those that received WT(CD45.2)/WT(CD45.1). The increase in
lesion size was independent of monocyte activation and supports
the idea that increased production of monocytes directly impacts
lesion monocyte/macrophage content, size, and severity. However,
we speculate that other explanations may be involved, including
that increased entry of Apoe−/−monocytes results in macrophages
that have an altered phenotype/function, or that alterations in
cholesterol metabolism in HSPCs pre-program their daughter
cells (i.e., monocytes and macrophages) into an inflammatory
phenotype (Figure 1).

To further explore the contribution of cholesterol efflux in
macrophages versus HSPCs,cell specific knockouts of Abca1/Abcg1
have been employed to examine the role of these transporters
in cells down stream of HSPCs (35). Using the Lysozyme M
Cre mouse crossed with Abca1flox/flox Abcg1flox/flox mice (Mac-
DKO), Westerterp et al. (35) were able to reduce the expres-
sion of Abca1/Abcg1 by approximately half in the granulocyte-
macrophage progenitors (GMPs) and monocytes, and by ~90% in
macrophages. Transplantation of the MacABCDKO BM into Ldlr−/−

mice resulted in a ~1.7-fold increase in atherosclerosis plaque
area compared to the mice that received the control BM. How-
ever, the lesions in the mice that received Abca1/g1 KO BM has
significantly larger lesions (~3-fold) compared to control and
MacABCDKO mice (~1.7-fold). This implies that there is a major
effect of cholesterol efflux in cells upstream of macrophages in
controlling atherosclerosis, likely HSPCs.

The studies of Westerterp et al., in the MacABCDKO mice also
provided a novel insight on effects of altered cholesterol home-
ostasis in regulating the production of monocytes from the BM.
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FIGURE 1 | How alterations in cholesterol metabolism and myeloid
skewing contribute to atherosclerosis. In the setting of
hypercholesterolemia, inflammatory signals could be sensed by
receptors such as TLR4 on HSPCs to trigger a number of downstream
signaling events. This could (1) inhibit key cholesterol efflux pathways
(ABCA1, ABCG1, ApoE), which would result in cellular accumulation. The
increase in membrane cholesterol could lead to (2) increased cell surface
expression of cytokine receptors such as IL-3Rβ and the M-CSFR due to
a failure to activate E3-ubiquitin ligases (E3-UL). (3) Sustained signaling
from myeloid cytokines (IL-3, GM-CSF, M-CSF) along with the
hypercholesterolemic environment could pre-program the HSPC via PU.1

to produce more myeloid cells. As these cells mature in to CMPs and
GMPs, they have the potential to carry more cellular cholesterol if their
cholesterol efflux pathways are suppressed. (4) Once the blood
monocyte is circulating, more lipid is acquired and it can carry this into
the atherosclerotic plaque. (5) These lipid-laden monocytes could then
differentiate into an M1-like macrophage that can also undergo local
proliferation, which enhance inflammation by producing a number of
cytokines and chemokines. These M-1 cells may also have a defect in
Nr4a1 and lack the ability to convert into M-2 resolving macrophages.
Triangle indicates cellular cholesterol accumulation as the myeloid cells
mature (orange to yellow).

Macrophages deficient in Abca1/Abcg1 produced more M-CSF,
G-CSF, and MCP-1, key cytokines involved in myelopoiesis and
monocyte emigration from the BM (36). Interestingly, there
was also a significant number of lipid-laden foam cells in the
BM and spleen of the MacABCDKO mice, probably represent-
ing BM monocytes and macrophages. Consistent with this idea,
there was a significant portion of the blood monocytes from
the MacABCDKO mice that were loaded with cholesterol. Thus,
deletion of Abca1/Abcg1 in hematopoietic progenitors (i.e., GMPs)

could predispose these and their daughter cells (monocytes) to
accumulate cholesterol. This could result in monocytes carrying
lipid into the atheroma and perhaps facilitating their maturation
into M1 macrophages as the macrophages from the MacABCDKO

mice also displayed enhanced inflammatory gene expression
(Figure 1). Additionally, in vitro migration studies revealed a
severe migratory defect of cultured macrophages deficient in
Abca1/Abcg1 (37), how this translates into the in vivo setting is
unknown.
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MONOCYTE TO MACROPHAGE DIFFERENTIATION
The origin of the macrophage itself is not always from a blood
monocyte (38). Yolk-sac derived tissue macrophages can sustain
their population under steady-state conditions, without recruit-
ment of blood monocytes (39–41). After an inflammatory insult,
blood monocytes can be recruited to increase the macrophage pool
and to enhance the inflammatory response (39–41). In the heart,
an organ with abundant resident macrophages that are estab-
lished during embryonic development, it was found that CCR2+

Ly6-Chi monocyte-derived macrophages coordinate the inflam-
matory response after cardiac injury by AngII infusion (39) or
myocardial infarction (MI) (39). These Ly6-Chi monocytes express
Nr4a1, a transcription factor critical in the development of Ly6-
Clo monocytes (42), at low levels (43). However, in the healing
phase after a MI, Nr4a1 (Nur77) levels are increased permitting
the maturation and differentiation of Ly6-Chi monocytes into Ly6-
Clo monocyte/macrophages (43). These macrophages contribute
to healing and tissue remodeling by producing factors such as
TGF-β, IL-10, and VEGF-α. In essence, these studies revealed that
the Ly6-Chi monocyte orchestrate the initial inflammatory event,
likely by forming M1 macrophages and then also develop into the
reparative, M2-like macrophage (43).

Extending these key findings to the atherosclerotic lesion, as
M1 macrophages can develop into M2 macrophages after Nr4a1
induction (43), and deletion of Nr4a1 results in M1 polarized
macrophages and increased atherosclerosis (44), it is possible that
the environment of the atherosclerotic lesion could affect the M1
macrophages resulting in a failure to upregulate Nr4a1 and pre-
vents the differentiation into M2 cells (Figure 1). It should also
be noted that Ly6-Clo monocytes do enter the lesion (45), and
while these cells could become M2-like macrophages, they may not
frequent the lesion in large enough numbers to make an impact.

Another newly discovered macrophage subset is the Mox
macrophage. These macrophages are distinct to the classical M1
or M2 macrophage, as these cells display a unique gene expres-
sion profile with induction of redox-related genes including heme
oxygenase-1 under the control of the transcription factor Nrf2
(46). Mox macrophages also display a decrease in phagocytic and
chemotactic capacity. Interestingly, both M1 and M2 macrophages
can differentiate into the Mox macrophage when incubated with
oxidized phospholipids. The in vivo relevance of these cells is noted
as approximately 30% of all lesional macrophages are of the Mox
phenotype.

HYPERCHOLESTEROLEMIA INFLUENCES HSPCs TO
PRODUCE ATHEROGENIC MACROPHAGES
It is clear from animal studies that a hypercholesterolemic envi-
ronment enhances the production of myeloid cells, namely mono-
cytes, which contribute to atherogenesis. However, a hypercholes-
terolemic environment could also induce a “memory” effect in
the HSPCs, which could also alter the function of their daugh-
ter cells. This hypothesis was recently explored by Seijkens and
co-workers (47). Similar to our studies (4), they found that hyper-
cholesterolemic Ldlr−/− mice had an expanded pool of HSPCs in
the BM. Interestingly, when they harvested the BM from hyperc-
holesterolemic Ldlr−/−mice and transplanted it competition with
BM from normocholesterolemic mice, they found that the BM

from the hypercholesterolemic mice had an enhanced propensity
to produce myeloid cells (47). This was even observed in a normo-
cholesterolemic environment. Evidence was provided to support
the hypothesis that the hypercholesterolemic-primed HSPCs pro-
duced atherogenic (i.e., M1) macrophages as the macrophages
from these HSPCs produced higher amounts of TNF-α, IL-6, and
MCP-1. It was also found in the subsequent atherogenesis stud-
ies that hypercholesterolemic-primed HSPCs produced leukocytes
that more readily entered the atherosclerotic lesion. This resulted
in larger more macrophage-rich lesions.

The cBMT studies into hypercholesterolemic and normocho-
lesterolemic mice suggest that there is a memory effect in the
HSPCs (47). This idea was recently brought to light by Kampen
et al., who discovered that BM harvested from WTD-fed mice has
a loss of epigenetic control of key myeloid genes such as PU.1
and IRF8 (48). Transplantation of the BM from the WTD-fed
mice into Ldlr−/− recipients, like the studies of Seijkens et al.,
also resulted in larger lesion compared to recipient mice that
received BM from chow fed donors. Consistent with the changes in
PU.1 and IRF8, the WTD-conditioned BM produced more leuko-
cytes, particularly of the myeloid variety. There were also signs
of extramedullary hematopoiesis as the WTD-conditioned BMT
mice had splenomegaly. However, one caveat of this study was the
mice that received the WTD-conditioned BM-developed hyper-
glycemia, which has been shown to have independent effects on
BM progenitors to induce monocyte production and contribute
to atherosclerosis (49).

Another important point to note is that these studies either
performed BMTs using total BM or the total pool of HSPCs and
not just the long-term repopulating cells. Thus, as we have also
noted, a predominant expansion of the multipotential progenitor
2 (MMP2) HSPCs that is thought to give rise to myeloid cells in
Apoe−/−mice (4), it is possible that hypercholesterolemia-priming
promotes the expansion of a subset of HSPCs that preferentially
produces atherogenic myeloid cells.

EARLY MYELOID LINEAGE SKEWING IN ATHEROSCLEROSIS:
EMERGING CONCEPTS
The idea is emerging that signaling events in hematopoietic stem
cells (HSCs) are able to influence lineage selection in these cells.
Recently, it was discovered that HSCs express the M-CSF recep-
tor and the engagement with M-CSF activated the myeloid master
regulator, PU.1 (50). Injection of mice with LPS increased M-
CSF levels and PU.1 expression in HSCs, which is likely to be
the initiating step of myeloid lineage skewing in response to an
infection. However, the LPS receptor TLR4 is also expressed on
BM stem and progenitor cells (51) and could have been an addi-
tional contributor to the early lineage selection in these studies.
Linking these findings with cholesterol metabolism, macrophages
deficient in either Abca1 and/or Abcg1 express more TLR4 on their
surface and like Apoe−/− macrophages are more responsive to
TLR4 ligands (3, 52, 53). Thus, it is also conceivable that defec-
tive cholesterol efflux pathways in HSCs could lead to enhanced
expression of TLR4 that could sense endogenous ligands, prim-
ing these cells to sense myeloid promoting cytokines. Whether
ligands of pattern recognition receptors (PRRs) such as damage
associated molecular pattern (DAMPs) (including S100A8/A9 and
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HMGB1), heat shock proteins, and modified LDL particles (54),
some of which are increased in people with CVD, are present
in the BM and bind to TLR4 on HSPCs is unknown. Assum-
ing TLR4 ligands are present within the stem cell niche, it is
possible that their interaction with TLR4 on HSPCs could down-
regulate Abca1, Abcg1 (55), and Apoe (56) by the activation of
IRF3, preventing LXR activating these target genes (57). This lead
to increased cholesterol in the cell membrane and increased lev-
els of cytokine receptors (4, 5). This could occur through the
prevention of key feedback loops, such as activation of the E3-
ubiquitin ligase c-CBL, which we recently reported was perturbed
in progenitor cells lacking ABCG4 (32), and is also reported to
downregulate the M-CSFR (58). Taken together, it is conceiv-
able that defective cholesterol efflux and a hypercholesterolemic
environment could influence the HSCs to respond to myeloid
promoting cytokines to produce more monocytes that may have
an altered function, which could ultimately contribute to the
pool of inflammatory lesional macrophages in the atherosclerotic
plaque.

Dissecting out the contribution of changes in the HSPCs to the
function of the macrophage will be critical in further understand-
ing the mechanisms contributing to not only atherogenesis but
also lesion regression. The lesion milieu is also critically important,
and is a dynamic environment with the newly recruited cells also
contributing to and being influenced by the environment. How-
ever, taken together, the emerging theme from recent literature
suggests that therapeutic interventions aimed at targeting HSPCs
(i.e., cholesterol efflux pathways) may be an effective strategy to
treat atherosclerosis by not only inhibiting monocyte production
and entry into lesions but also to change the function/phenotype
of the mature macrophage.
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