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The evolution of macrophages has made them primordial for both development and
immunity. Their functions range from the shaping of body plans to the ingestion and
elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that
confer instructions and mediate communication among immune and non-immune cells.
A portfolio of cytokines is central to the role of macrophages as sentries of the innate
immune system that mediate the transition from innate to adaptive immunity. In con-
cert with other mediators, cytokines bias the fate of macrophages into a spectrum of
inflammation-promoting “classically activated,” to anti-inflammatory or “alternatively acti-
vated” macrophages. Deregulated cytokine secretion is implicated in several disease
states ranging from chronic inflammation to allergy. Macrophages release cytokines via a
series of beautifully orchestrated pathways that are spatiotemporally regulated. At the mol-
ecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein
complexes that guide cytokines from their point of synthesis to their ports of exit into the
extracellular milieu.These trafficking proteins, many of which were discovered in yeast and
commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle
fusion steps that are responsible for cytokine release.This review discusses the functions
of cytokines secreted by macrophages, and summarizes what is known about their release
mechanisms. This information will be used to delve into how selected pathogens subvert
cytokine release for their own survival.

Keywords: macrophage, cytokine, trafficking, exocytosis, proinflammatory, anti-inflammatory, Leishmania,
Mycobacterium ulcerans

INTRODUCTION: CYTOKINES AND MACROPHAGES
Macrophages are phagocytic cells of the innate immune system
that are located in various tissues. The Russian scientist Elie Metch-
nikoff received the 1908 Nobel Prize in Physiology or Medicine
for his work on immunity when he observed that when he punc-
tured starfish larvae, a population of cells migrated to the wound.
He also observed cells that were able to uptake particles that had
been placed in the digestive tracts of the larvae. Elie Metchnikoff
coined these cells as phagocytes and later called them white blood
cells for their first-line-of-defense role against infection in liv-
ing organisms (1). Later, the term macrophage was introduced
by Aschoff in 1924 to designate a set of cells of the reticuloen-
dothelial system formed not only by monocytes, macrophages,
and histiocytes, but also by fibroblasts, endothelial, and reticular
cells. After 1969, the concept of the mononuclear phagocyte sys-
tem – formed by a variety of macrophages derived from monocytes
from the bone marrow – was introduced to replace the concept of
the reticuloendothelial system, which is constituted of function-
ally and immunologically distinct cells. Most macrophages are
derived from bone marrow precursor cells that develop into mono-
cytes. These are formed in the bone marrow from stem cells of the
granulocytic–monocytic lineage that are exposed to cytokines such
as the granulocyte macrophage colony stimulating factor (GM-
CSF) and interleukin-3 (IL-3). Differentiation from stem cells is

associated with the expression of specific membrane receptors for
cytokines. Monocytes remain in the bone marrow <24 h and they
move into the bloodstream and circulate throughout the body. In
normal healthy adults, the half-life of a circulating monocyte is
estimated at 70 h. Monocytes constitute 1–6% of total leukocytes
in healthy peripheral blood. After crossing the walls of capillar-
ies into connective tissue, monocytes turn into macrophages. This
differentiation process involves many changes as the cell increases
in size from 5 to 10 times, its organelles increase both in number
and complexity, phagocytic capacity increases, etc. It is important
to note that not all macrophages, such as Langerhans cells and
brain microglia, develop from monocytes (2).

The main function of macrophages is to engulf foreign agents
that enter the body. These include microbes and other particu-
late matter. In addition, they eliminate apoptotic cells and recycle
nutrients by digesting waste products from tissues. Macrophages
are hence essential not only for immunity, but also for devel-
opment and tissue homeostasis (2). These cells are normally
at rest, but can be activated by a variety of stimuli during the
immune response (3, 4). Albeit phagocytosis may provide the ini-
tial antigen stimulus, the activity of macrophages can be increased
by cytokines secreted by helper T cells, with interferon gamma
(IFN-γ) being one of the most potent macrophage activators. In
addition, these multifaceted cells are also capable of chemotaxis,
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namely the process of being attracted and displaced to a particular
location by specific molecules. Besides phagocytosis, macrophages
play a central role in inflammation. They initiate the immune
response against microorganisms, since macrophages are some
of the first cells to come in contact with these invaders. This is
in part due to their toll-like and scavenger receptors, which have
broad ligand specificity for lectins, lipoproteins, proteins, oligonu-
cleotides, polysaccharides, and other molecules. In addition to
these functions, macrophages express major histocompatibility
complex (MHC) class II molecules on their membranes, and as
such, also present antigens to lymphocytes. When macrophages
engulf a microbe, its antigens are processed and situated on
the outer surface of the plasmalemma, where they will be rec-
ognized by T helper cells. Following this recognition, T lym-
phocytes release cytokines that activate B cells, and activated
B lymphocytes then secrete antibodies specific to the antigens
presented by the macrophage. These antibodies attach to anti-
gens on microbes, or to cells invaded by microbes; in turn,
these antibody-bound complexes are phagocytosed more avidly
by macrophages.

Cytokines and chemokines are potent signaling molecules that
are as important to life as hormones and neurotransmitters. They
are low molecular weight proteins that mediate intercellular com-
munication and are produced by many cell types, primarily those
of the immune system. They were discovered in the early 60–
70s, and today, over 100 different proteins are known as cytokines
(5). These molecules orchestrate a variety of processes ranging
from the regulation of local and systemic inflammation to cellular
proliferation, metabolism, chemotaxis, and tissue repair. In other
organisms, such as fruit flies and lizards (6), cytokine-like mole-
cules are known to regulate host defense and temperature home-
ostasis. The primary function of cytokines is to regulate inflam-
mation, and as such, play a vital role in regulating the immune
response in health and disease. There are proinflammatory and
anti-inflammatory cytokines.

Each cytokine binds to a specific cell surface receptor to generate
a cell signaling cascade that affects cell function. This includes the
positive or negative regulation of several genes and their transcrip-
tion factors. This may ensue in the production of other cytokines,
in an increase in the number of surface receptors for other mole-
cules, or eventually in the suppression of the cytokine’s own effect.
Each cytokine is produced by a cell population in response to
different stimuli; they induce an array of agonist, synergistic, or
antagonistic effects that functionally alter target cells. A primary
feature of cytokine biology is that of functional redundancy: dif-
ferent cytokines share similar functions. Furthermore, cytokines
are pleiotropic since they act on many different cell types, and cells
may express more than one receptor for a given cytokine. To gen-
eralize the effect of a particular cytokine is virtually impossible.
Cytokines are classified as paracrine if the action in the vicinity
of the place of release is restricted, autocrine if the cytokine acts
on the cell that secretes it, and endocrine if the cytokine reaches
remote regions of the body. Most cytokines are short-lived and act
locally in an autocrine and paracrine fashion. Only some cytokines
present in the blood, such as erythropoietin (EPO), transforming
growth factor beta (TGF-β), and monocyte colony stimulating
factor (M-CSF), are capable of acting at a distance.

Cytokines are mainly produced by macrophages and lympho-
cytes, although they can also be produced by polymorphonuclear
leukocytes (PMN), endothelial and epithelial cells, adipocytes,
and connective tissue. Cytokines are essential to the functions
of macrophages. They mediate the unleashing of an effective
immune response, link innate and adaptive immunity, and influ-
ence the macrophage’s microenvironment (4, 7). Multiple subsets
of macrophages have been characterized depending on the ori-
gin and microenvironment in which the macrophage is found.
Contingent on activation status, macrophages have been classified
as classically and alternatively activated. In turn, these different
macrophage types drastically differ in the cytokines that they
secrete, and consequently, their functions (8). The process of
cytokine secretion is masterfully regulated by a series of interor-
ganellar exchanges that rely on vesicular trafficking and cytoskele-
tal remodeling (9). Proteins regulating neurotransmitter release,
notably members of the soluble N -ethylmaleimide-sensitive fac-
tor attachment protein receptor (SNARE) family (9, 10), and more
recently synaptotagmins (Syt) (11), are pivotal for the spatiotem-
poral regulation of cytokine secretion. In immune cells, SNAREs
and Syts have been found to regulate processes ranging from
cytokine trafficking to cell migration and phagocytosis.

This review will present the functions of macrophage cytokines
and, where known, summarize findings on how these cytokines are
released. The types of macrophages that secrete these cytokines
will also be depicted. To illustrate the importance of macrophage
cytokines in health and disease, we will describe selected examples
of how pathogens use cytokines to their advantage.

THE MACROPHAGE CYTOKINE PORTFOLIO
PROINFLAMMATORY CYTOKINES
When macrophages are exposed to inflammatory stimuli, they
secrete cytokines such as tumor necrosis factor (TNF), IL-1, IL-6,
IL-8, and IL-12. Although monocytes and macrophages are the
main sources of these cytokines, they are also produced by acti-
vated lymphocytes, endothelial cells, and fibroblasts. Additionally,
macrophages release chemokines, leukotrienes, prostaglandins,
and complement. All of these molecules, in concert, may induce
increased vascular permeability and recruitment of inflamma-
tory cells. Aside from local effects, these mediators also produce
systemic effects such as fever and the production of acute inflam-
matory response proteins. The inflammatory response is beneficial
for the host when the aforementioned cytokines are produced in
appropriate amounts, but toxic when produced in a deregulated
fashion. For example, excessive production of IL-1β and TNF trig-
gers an acute generalized inflammatory response characteristic of
septic shock and multi-organ failure (12).

TNF
Tumor necrosis factor (formerly known as TNF-α) is a 185-
aminoacid glycoprotein that was initially described for its ability
to induce necrosis in certain tumors (13). It stimulates the acute
phase of the immune response. This potent pyrogenic cytokine is
one of the first to be released in response to a pathogen, and is able
to exert its effects in many organs (12). As such, TNF is one of the
main cytokines responsible for septic shock. In the hypothalamus,
TNF stimulates the release of corticotropic releasing hormone,
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suppresses appetite, and induces fever. In liver, it stimulates the
acute inflammatory response by elevating the synthesis of C-
reactive protein and other mediators. TNF induces vasodilation
and loss of vascular permeability, which is propitious for lympho-
cyte, neutrophil, and monocyte infiltration. It helps recruit these
cells to the inflammation site by regulating chemokine release.
TNF, in concert with IL-17, triggers the expression of neutrophil-
attracting chemokines CXCL1, CXCL2, and CXCL5 (14) and can
also augment the expression of cell adhesion molecules (15) that
facilitate diapedisis. This in turn increases CXCR2-dependent neu-
trophil migration to the inflammation site. Being an inducer of the
inflammatory response, excess amounts of TNF have been found
to play pathological roles in ailments such as inflammatory bowel
disease, psoriasis, rheumatoid arthritis, asthma, cancer, infectious
diseases, and other auto-immune pathologies. Some of these con-
ditions are currently co-treated with monoclonal antibodies that
neutralize this cytokine (16).

In macrophages, TNF is released to the extracellular milieu via
the constitutive secretion pathway, and its trafficking is the best
understood of all cytokines (9, 17, 18). Details on TNF trafficking
will be discussed in another article of this issue. After synthesis in
the ER, the SNARE proteins Stx6, Stx7, Vtib mediate the fusion of
TNF-containing vesicles from the Golgi complex with VAMP3+-
recycling endosomes (17, 19). Thence, the Stx4/SNAP23/VAMP3
complex facilitates the passage of TNF from recycling endosomes
to the cell membrane (17, 18). Rho1 and Cdc42, two proteins
that govern cell shape via actin remodeling, also regulate the post-
recycling endosome trafficking of TNF to the plasmalemma (20).
Moreover, LPS was found to increase the expression of vesicle
trafficking proteins that regulate TNF trafficking (17, 18). Finally,
release of mature TNF from the plasmalemma requires cleav-
age of the membrane-bound precursor by the TNF-α-converting
enzyme (TACE) (21). The process of phagocytosis requires exten-
sive membrane exocytosis from several organelles that also partake
in TNF secretion (7). Interestingly, it was found that TNF is not
only secreted to the extracellular milieu at the plasma membrane,
but also in a polarized manner at the phagocytic cup (17). This
highlights an efficient and elegant strategy where macrophages can
promptly release cytokines at the same time that they phagocytose
microbial invaders. The importance of regulating TNF secretion
implies that there exist negative regulators for its secretion. One
such regulator is the recently characterized protein Syt XI, which
associates to recycling endosomes and lysosomes in macrophages
(11, 22). Syts constitute a group of membrane proteins that regu-
late vesicle docking and fusion in processes such as exocytosis (11,
23) and phagocytosis (11, 24, 25). Syts control vesicle fusion by
virtue of their Ca2+-binding C2 domains (26). However, Syt XI
cannot bind calcium and inhibits vesicle fusion (27). Upon LPS
stimulation of macrophages treated with siRNA to Syt XI, more
TNF and IL-6 are released. The inverse is true when Syt XI is
overexpressed (11). Though the mechanism for this finding is not
yet known, Syt XI likely regulates cytokine release by interacting
with members of the SNARE complex. Indeed, Syt XI was found
to interact with the Golgi SNARE Vti1a (28), raising the ques-
tion of whether Syt XI regulates SNARE complex formation at the
Golgi.

IL-1
Three forms of IL-1 are known: IL-1α, IL-1β and IL-1Ra. Although
both IL-1α and IL-1β are strongly proinflammatory, perform
many of the same functions and bind to the IL-1 receptor (IL-1R),
there is only 25% aminoacid homology between them. Similarly
to TNF, IL-1β is also an endogenous pyrogen that is produced
and released at the early stages of the immune response to infec-
tions, lesions, and stress. Although monocytes and macrophages
are the main sources of IL-1β, it is also released by NK cells, B
cells, dendritic cells, fibroblasts, and epithelial cells. During inflam-
mation, IL-1β stimulates the production of acute phase proteins
from the liver and acts on the central nervous system to induce
fever and prostaglandin secretion. In mast cells, IL-1β induces
the release of histamine, which in turn elicits vasodilation and
localized inflammation. It is also a chemoattractant for granulo-
cytes, enhances the expansion and differentiation of CD4 T cells
(29), and increases the expression of cell adhesion molecules on
leukocytes and endothelial cells. Additionally, IL-1β augments the
expression of genes that produce it (30). To quell the proinflam-
matory action of IL-1α and IL-1β, IL-1Ra competes for the same
receptor. IL-1Ra is secreted via the classical secretory, though the
exact mechanism is not well known. Its binding to the IL-1R does
not induce the proinflammatory signaling program induced by
IL-1α and IL-1β.

In stimulated macrophages, IL-1α is synthesized de novo and
can be actively secreted (31) or passively released from apoptotic
cells (32). It can also exert its effects in an intracrine fashion
and act as a transcription factor (29, 30). IL-1β is synthesized as
a leaderless precursor that must be cleaved by inflammasome-
activated caspase-1. After activation, autophagy plays a major
role in the release of this cytokine. Autophagy is a highly con-
served process in eukaryotes in which the cytoplasm, aberrant, or
damaged organelles are sequestered in double-membrane vesi-
cles and released into the lysosome for breakdown and even-
tual recycling of resulting macromolecules (33). This process
plays a crucial role in adaptation to changing environmental
conditions, starvation, cellular remodeling during development,
and senescence. Autophagy is characterized by the formation of
double-membrane vesicles, called autophagosomes, which cap-
ture and transport cytoplasmic material to acidic compartments
where material is degraded by hydrolytic enzymes (33). Autophagy
has also been recognized to mediate the secretion of proteins
(34) – such as IL-1β and IL-18 (35, 36) – that would other-
wise not enter the classical secretory pathway due to lack of
a leader peptide. In the case of IL-1β, the autophagic protein
Atg5, the Golgi protein GRASP55, and Rab8a are essential for
translocating IL-1β-containing cargo to the outside of the cell.
In peritoneal macrophages, it has been shown that IL-1β is trans-
ported to the extracellular milieu via membrane transporters (37);
knockdown of ABC transporters inhibits IL-1β secretion (38).
Additionally, exocytosis of P2X7R-positive multivesicular bodies
containing exosomes has also been reported to play an important
role in the release of this cytokine (39). The various modes of IL-
1 secretion highlight the exquisite machinery that macrophages
have evolved as a means for rapidly responding to inflammatory
stimuli.
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IL-6
IL-6 is a pleiotropic cytokine that has both proinflammatory and
anti-inflammatory functions that affect processes ranging from
immunity to tissue repair and metabolism. It promotes differ-
entiation of B cells into plasma cells, activates cytotoxic T cells,
and regulates bone homeostasis. As with other proinflammatory
cytokines, IL-6 is has been implicated in Crohn’s disease and
rheumatoid arthritis (40). Similar to TNF and IL-1β, IL-6 is an
endogenous pyrogen that promotes fever and the production of
acute phase proteins from liver. Proinflammatory properties are
elicited when IL-6 signals in trans via soluble IL-6 receptors bind-
ing to gp130, which is ubiquitous in all cells. Inhibition of trans
signaling via gp130 blockade in murine sepsis models rescues mice
from widespread inflammation and death (41). IL-6 trans signal-
ing also leads to recruitment of monocytes to the inflammation
site (42), promotes the maintenance of Th17 cells, and inhibits T
cell apoptosis and development of Tregs (43). In contrast, anti-
inflammatory properties are elicited when IL-6 signals through
the classical pathway, which occurs via the IL-6 receptor that only
few cells express. The anti-inflammatory properties of IL-6 are
illustrated by IL-6−/− mice, which exhibit hepatosteatosis, insulin
resistance, and liver inflammation (44). IL-6 classic signaling also
mediates apoptosis inhibition and the regeneration of intestinal
epithelial cells (43).

IL-6 is a soluble cytokine that is synthesized in the ER and,
unlike TNF, is not processed as a membrane-bound precursor.
Upon stimulation of macrophages with LPS, IL-6 starts accu-
mulating in the Golgi after 4 h of stimulation (45). From the
Golgi, IL-6 exits in tubulovesicular carriers that may also con-
tain TNF. Golgi-derived vesicles then fuse with VAMP3-positive
recycling endosomes. Three-dimensional reconstruction of flu-
orescence images showed that recycling endosomes can harbor
both TNF and IL-6, albeit both occupy different subcompartments
(45). The post-Golgi trafficking of IL-6 follows a route that is also
dependent on Stx6 and Vti1b, which form a complex with cog-
nate SNARE VAMP3 at recycling endosomes (17, 18). Knockdown
and overexpression of these SNAREs decreases and augments IL-
6 release, respectively (45). Syt XI may be negatively modulating
the secretion of this cytokine by regulating the formation of these
SNARE complexes (11, 28). Unlike TNF, IL-6 is not secreted at the
phagocytic cup (45).

IL-12
IL-12 is produced primarily by monocytes, macrophages, and
other antigen-presenting cells; it is essential for fighting infectious
diseases and cancer. IL-12 is a heterodimeric cytokine comprised of
the p35 and p40 subunits, which come together after their synthe-
sis. Deletions within the p40 gene have been observed in patients
suffering from concurrent multiple bacterial infections (46, 47).
IL-12 promotes cell-mediated immunity via stimulation of Th1
cells. It synergizes with TNF and other proinflammatory cytokines
in stimulating IFN-γ production, as well as the cytotoxicity of NK
and CD8 T cells (48). IL-12 can also inhibit angiogenesis through
IFN-γ-mediated upregulation of the anti-angiogenic chemokine
CXCL10. The involvement of this cytokine in these processes has
made it a target in both auto-immune pathologies and cancer (46,
47). After protein synthesis, both p40 and p35 subunits associate at

the ER, where they undergo subsequent glycosylation steps prior
to being released at the cell membrane (49). Although the pre-
cise post-Golgi trafficking mechanisms in macrophages are not
known, the release route is likely to resemble that of TNF and
IL-6 (9). Data from neutrophils localized the SNAREs VAMP2,
VAMP7, Stx2, Stx6, and SNAP23 in the granules that contain and
secrete IL-12 (50, 51). Although macrophages do not possess secre-
tory granules, IL-12 release from these cells may involve some of
the same SNARE complexes. Furthermore, IL-12 is secreted in a
polarized manner from lymphocytes; this process is dependent
on Cdc42 (52), which also regulates release of TNF to the plasma
membrane. This raises the interesting prospect that IL-12 may be
released in a polarized fashion, along with TNF (17), at nascent
macrophage phagosomes.

IL-18
IL-18 is a member of the IL-1 family and also an inducer of IFN-γ
production. It synergizes with IL-12 to activate T cells and NK cells.
Albeit the fact that IL-18 signals similarly to IL-1β, IL-18 is not a
pyrogen, and can even attenuate IL-1β-induced fever (53). Lack
of fever induction may be explained by the fact that IL-18 signals
through the MAPK p38 pathway instead of the NF-κB pathway,
which is used by IL-1β (54). IL-18 trafficking is similar to that of
IL-1β, with secretory autophagy also playing a major role in its
release (35, 36).

IL-23
IL-23 is also an IFN-γ inducer and T cell activator that is involved
in a variety of diseases ranging from psoriasis to schizophrenia
(47). It is similar to IL-12 in that both induce inflammation. More-
over, both IL-12 and IL-23 share the IL-12p40 subunit and thus
have similar signaling pathways. In contrast to IL-12, IL-23 aug-
ments IL-10 release and induces IL-17 synthesis by activated naïve
T cells (55).

IL-27
IL-27 is a member of the IL-12 family, and is composed of sub-
units p28 and Epstein–Barr virus-induced gene 3. Similar to TNF,
it is produced early in monocytes and macrophages stimulated
with LPS and IFN-γ. Knockout of its receptor ensues in increased
susceptibility of mice to bacterial and parasitic infections due to
impaired IFN-γ production (56). In addition to favoring the dif-
ferentiation of naïve T cells to Th1 cells via IFN-γ induction, IL-27
can also inhibit the differentiation of Th17 cells (57). IL-27 also
has anti-inflammatory properties, which are exemplified by the
fact that IL-27 receptor-deficient mice are more susceptible to
auto-immune encephalomyelitis, which correlates with increased
levels of Th17 cells (55). The fact that this cytokine has selective
inflammatory and anti-inflammatory properties supports the con-
cept that the inflammatory response is prompt, but also carefully
calibrated to avoid damage to the host.

ANTI-INFLAMMATORY CYTOKINES
IL-10
Inflammation is tightly regulated by multiple inhibitors and antag-
onists. IL-10 is a 35 kD cytokine identified in 1989, and is produced
by activated macrophages, B cells, and T cells (58). Its main
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activities concern the suppression of macrophage activation and
production of TNF, IL-1β, IL-6, IL-8, IL-12, and GM-CSF (59). IL-
10 suppresses MHC-II expression in activated macrophages and is
thus a potent inhibitor of antigen presentation (60). Of particular
interest is that IL-10 inhibits the production of IFN-γ by Th1 and
NK cells, and induces the growth, differentiation, and secretion of
IgGs by B cells (61, 62). Macrophages themselves are affected by
IL-10 in that exposure to this cytokine lowers their microbicidal
activity and diminishes their capacity to respond to IFN-γ (63,
64). Experiments in murine models have shown that blocking or
neutralizing IL-10 leads to increased levels of TNF and IL-6; on
the contrary, exogenous IL-10 improves survival and reduces the
levels of inflammatory cytokines (65). It has been observed that
reduced levels of IL-10 favor the development of gastrointestinal
pathologies such as inflammatory bowel disease (65). Recombi-
nant IL-10 has indeed been effective in the treatment of some of
these diseases.

The mechanism of IL-10 trafficking and release resembles that
of TNF and IL-6 (66). IL-10 traffics from Golgi tubular carri-
ers associated with p230/golgin-245 along with TNF-containing
vesicles, or in golgin-97-associated tubules. The Golgi-associated
p110δ isoform of PI3K was also found to be a positive regulator
of IL-10 release. From the Golgi, IL-10-containing vesicles move
to recycling endosomes, where VAMP3 and Rab11 then modulate
the transit of this cytokine – and of TNF and IL-6 – to the cell sur-
face. Independent of recycling endosomes, IL-10 was also observed
to exit directly from the Golgi to the cell surface in apoE-labeled
vesicles (66).

TGF-β
Together with IL-10, TGF-β is another powerful anti-
inflammatory cytokine that acts on many target cells and tones
down the inflammatory effects of TNF, IL-1β, IL-2, and IL-12, etc.
(61, 67, 68). TGF-β is a potent suppressor of both Th1 and Th2
cells, but foments the maintenance and function of Tregs (67, 69).
The importance of TGF-β in the immune system is highlighted by
the fact that mice lacking the TGF-β1 isoform, which is predom-
inant in cells of the immune system, develop severe multi-organ
inflammation and die by week 4 (70). TGF-β is also implicated
in hematopoiesis and has a crucial role in embryogenesis, tissue
regeneration, and cell proliferation and differentiation.

Transforming growth factor beta is synthesized as a precursor
and is directed to the ER by virtue of its signal peptide. Cleav-
age by the endoprotease furin, which can happen at the ER or
in the extracellular environment, is required for activation of this
cytokine (70). Although the secretory mechanism of this cytokine
has not been explored, it is possible that it follows a post-Golgi
pathway similar to that of TNF, IL-6, or IL-10.

CHEMOKINES
Chemokines are a special family of heparin-binding cytokines
that are able to guide cellular migration in a process known
as chemotaxis. Cells that are attracted by chemokines migrate
toward the source of that chemokine. During immune surveil-
lance, chemokines play a crucial role in guiding cells of the immune
system to where they are needed (71). Some chemokines also
play a role during development by promoting angiogenesis, or

by guiding cells to tissues that provide critical signals for the
cell’s differentiation. In the inflammatory response, chemokines
are released by a wide variety of cells involved in both innate and
adaptive immunity (71). As already mentioned, chemokine release
is often induced by proinflammatory cytokines such as TNF, IL-6,
and IL-1β. Below is a description of the main chemokines released
by macrophages.

CXCL1 and CXCL2 (MIP-2α)
CXCL1 and CXCL2 (also known as macrophage inflammatory
protein 2-α, MIP) share 90% amino acid similarity and are
secreted by monocytes and macrophages to recruit neutrophils
and hematopoietic stem cells (72, 73). Both chemokines are angio-
genic and may promote the development of tumors such as
melanomas (74).

CCL5 (RANTES)
CCL5, or the regulated upon activation normal T cell expressed
and secreted (RANTES), is an inflammatory chemoattractant for
T cells, basophils, eosinophils, and dendritic cells to the site of
inflammation (75). Aside from this role, it can also mediate the
activation of NK cells into chemokine-activated killers (CHAK)
(76). Similar to CXCL1 and 2, it promotes tumorigenesis and
metastasis (74). CCL5 is synthesized in the ER and traffics to
the Golgi complex before being exported outside of the cell.
The secretory carrier membrane protein (SCAMP)5, a recycling
endosome-associated protein, governs post-Golgi trafficking of
CCL5 to the plasmalemma. Stimulation of macrophages with ion-
omycin induces SCAMP5 translocation to the plasma membrane,
where it colocalizes and interacts with Syt I and II, which in turn
mediate interactions with various SNAREs (77).

CXCL8 (IL-8)
CXCL8 is a potent chemoattractant for neutrophils, in which it
also induces degranulation and morphological changes (78, 79).
Since macrophages are some of the first cells to respond to an anti-
gen, they are likely the first cells to release CXCL8. Other cells such
as keratinocytes, endothelial cells, eosinophils, and basophils also
respond to this chemokine. The importance of IL-8 has made this
chemokine important in inflammatory diseases such as psoriasis,
Crohn’s disease, and cancer (80, 81).

CXCL9 (MIG)
CXCL9, also known as monokine induced by gamma interferon
(MIG), is a strong T cell chemoattractant to the site of inflamma-
tion (71, 82). It mediates cell recruitment necessary for inflamma-
tion and repair of tissue damage. CXCL9 also inhibits neovascular-
ization (83) and has anti-tumor and anti-metastatic effects (74).

CXCL10 (IP-10)
CXCL10, or interferon gamma-induced protein 10, is secreted not
only by monocytes and macrophages, but also by fibroblasts and
endothelial cells (83). It serves to attract T cells, NK cells, dendritic
cells (84), and also has potent anti-cancer activity.

CXCL11 (IP-9)
Similar to CXCL9 and CXCL10, CXCL11 is interferon-inducible
and also mediates T cell recruitment, although more potently than
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CXCL9 and CXCL10 (85). It also inhibits angiogenesis and tumor
formation (74).

ALTERNATIVELY ACTIVATED MACROPHAGES AND THEIR
CYTOKINES
The microenvironment in which a macrophage is found provides it
with diverse signals that divergently bias the macrophage’s pheno-
type toward“classically activated”(M1) or“alternatively activated”
(M2a, M2b, or M2c) (Figure 1) (55). Polarization signals may be
apoptotic cells, hormones, immune complexes, or cytokines pro-
vided by lymphocytes or other cells. Exposure of naïve monocytes
or recruited macrophages to the Th1 cytokine IFN-γ, TNF, or LPS,
promotes M1 development. Those macrophages in turn secrete
proinflammatory cytokines TNF, IL-1β, IL-6, IL-12, IL-23, and
promote the development of Th1 lymphocytes. In addition, M1
macrophages secrete high levels of reactive oxygen species (ROS)
and reactive nitrogen species (RNS), produce and secrete iNOS,
and promote the metabolism of arginine into nitric oxide and
citrulline. As a result, M1 macrophages foster a highly microbici-
dal environment, and have a role in mediating the destruction of
pathogens and tumor cells. M1-derived chemokines help recruit
NK and Th1 cells. In stark contrast, exposure or treatment of

monocytes with IL-4 and IL-13 polarizes these cells toward an
M2a phenotype (8, 86). Those macrophages express a series of
chemokines that promote the accrual of Th2 cells, eosinophils,
and basophils. M2b macrophages are induced by a combination
of LPS, immune complexes, apoptotic cells, and IL-1Ra. They
secrete high levels of IL-10, but also proinflammatory cytokines
TNF and IL-6 and express iNOS. Through chemokine production,
M2b macrophages also promote recruitment of eosinophils and
Tregs that foster a Th2 response. M2c macrophages are induced
by a combination of IL-10, TGF-β, and glucocorticoids. In turn,
those macrophages secrete IL-10 and TGF-β, both of which are
immunosuppressive cytokines that promote the development of
Th2 lymphocytes and Tregs. They also express high levels of
arginase and promote tissue regeneration and angiogenesis (8, 87).
The capacity of M2c macrophages to induce Tregs makes them
more effective than M2a macrophages at protecting organs from
injury caused by inflammatory infiltrates (88). Macrophage bias
is reversible. For example, if an M1 macrophage is given apoptotic
cells, it may transform into an M2 macrophage.

The characteristics of M1 and M2 macrophages have impli-
cated them in the development of infectious disease and can-
cer. For example, helminth-derived molecules can strongly bias

FIGURE 1 | Monocytes can become phenotypically distinct
macrophages. Upon encountering different stimuli, monocytes turn into
highly microbicidal (M1), or into immunosuppressive macrophages (M2).
Stimuli can range from microbial substances to biochemical signals
provided by the microenvironment of a given tissue. Many of the
cytokines that bias macrophage phenotype are provided by surrounding
lymphocytes or other non-immune cells. Macrophage subtypes release a

vastly different array of cytokines and chemokines that can either
promote inflammation and sometimes tissue destruction, or wound
healing and tissue repair. M1 macrophages are known to be tumor
suppressive whereas M2 macrophages generally promote
tumorigenesis. It is important to note that macrophage bias is a
spectrum and is reversible. IC, immune complexes; ApC, apoptotic cells;
Gluc, glucocorticoids.
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macrophages toward an M2 phenotype. The cytokines and associ-
ated Th2 response that ensues promote immunosuppression and
parasite survival (89). In cancer, tumor-associated macrophages
(TAMs) have been known to either promote or hinder neoplasia (8,
90). In colorectal cancer, TAMs are inflammatory and promote the
development of a Th1 response (91). In contrast, many other neo-
plasms are associated with M2-like TAMs that secrete immuno-
suppressive cytokines that promote tumor growth and metastasis
(8, 90). TAMs may aid tumor growth by facilitating the chemotaxis
of Th2 and Treg cells, and by promoting angiogenesis and lym-
phoangiogenesis via production of VEGF, VEGF-C and -D, PDGF,
and TGF-β (92). Additionally, TAMs secrete MMP9, a matrix met-
alloprotease that promotes tumor growth and spread. Importantly,
TAMs induce immunosuppression via release of IL-10 and TGF-
β, both of which inhibit the development of cytotoxic T cells and
NK cells, and may fuel the appearance of more M2-like TAMs at
the tumor site (8, 67, 90). The contribution of alternatively acti-
vated macrophages and their cytokines to disease has made them a
target for immunotherapies that seek to alter the phenotypic bias
of macrophage populations. For instance, helminth-derived mol-
ecules could be used to alter the proinflammatory cytokine profile
of colitis-associated macrophages (89).

HOW DO PATHOGENS DISRUPT CYTOKINE SECRETION
FROM MACROPHAGES?
The evolutionary race that has taken place over millions of years
among pathogens and their hosts has given rise to a multitude
of adaptations that have allowed these pathogens to resist the
defenses mounted by their hosts. Several of these adaptations
endow pathogens to evade the immune system in order to sur-
vive destruction and thrive. Both intracellular and extracellular
parasites have evolved mechanisms to not only avoid or survive
the immune response, but also to use it for their own bene-
fit (93, 94). Upregulating or downregulating the production and
release of macrophage cytokines can have profound effects on
the immune response. A variety of pathogenicity factors target
these important molecules of the immune system. The follow-
ing examples describe how certain pathogens, depending on their
needs, deregulate cytokine secretion to aid in their survival and
dissemination.

MYCOBACTERIUM ULCERANS USES MYCOLACTONE TO INHIBIT
CYTOKINE PRODUCTION
Mycobacteria are intracellular pathogens that cause a variety of
human diseases that are difficult to treat. Due to their particu-
lar cell wall, these bacteria are very resistant to antibiotics and
innate host defenses. M. ulcerans, the causative agent of the Buruli
ulcer, induces deep necrotizing ulcers that are often ironically
painless (95). Lesions can cause incapacitation, disfigurement,
and severe deformities (95). The disease is the third-most com-
mon mycobacterial infection and affects areas of the world with
hot and humid climates. M. ulcerans produces a macrolide toxin
called mycolactone that is highly cytotoxic and immunosuppres-
sive (96, 97). It causes broad tissue damage in the absence of
an acute inflammatory response. Injection of mycolactone alone
can induce lesions similar to those caused by infection (96). In
contrast to other mycobacterial infections, M. ulcerans is found

mostly extracellularly. This may be explained by the fact that
mycolactone inhibits phagocytosis and hampers phagolysosomal
maturation in macrophages (98, 99). In addition, mycolactone
contributes to immunosuppression by hampering the produc-
tion of several cytokines and chemokines from macrophages
(Figure 2A) (99–101); mycolactone is effective at dampening the
production of LPS-induced mediators. Although the mechanism
for these findings was unknown, data from multiple studies sug-
gested that inhibition was at the post-transcriptional level. Indeed,
Hall et al. found that mycolactone does not cause gross changes in
translation, with proinflammatory mRNAs being actively trans-
lated (102). That finding prompted the investigators to check
whether TNF was being translocated to the ER for processing.
Interestingly, inhibiting the 29S proteasome showed that non-
glycosylated TNF accumulates in the cytoplasm of mycolactone-
treated macrophages, indicating that this causes the failure in TNF
secretion. To show that TNF was not being translocated into the
ER lumen, Hall et al. performed in vitro translation assays with
ER-containing membranes to study whether TNF was being pro-
tected from proteinase K degradation (102). In the presence of
mycolactone, TNF is not protected from proteinase K digestion,
indicating that this cytokine does not translocate into the ER under
these conditions. These effects were found not to be due to myco-
lactone disrupting ER membrane integrity or due to induction
of ER-associated degradation pathways. It would be interesting to
investigate whether mycolactone can physically block the channel
activity of the Sec61, or that of other ER translocons. These find-
ings were made more general by showing that – in many cell types –
mycolactone was inhibiting the translocation of several secreted
and membrane proteins into the ER. Importantly, mycolactone
blocked the release of several cytokines, chemokines, and other
inflammatory mediators from LPS-activated macrophages (102).
Quenching cytokine production in this way can thus severely
obstruct the development of the immune response and promote
the survival of M. ulcerans.

LEISHMANIA PROMASTIGOTES EMPLOY GP63 TO AUGMENT TNF AND
IL-6 RELEASE
Protozoa of the Leishmania genus are parasites of phagocytic
cells, especially macrophages. Depending on the species, Leish-
mania can cause self-healing cutaneous lesions (e.g., L. tropica,
L. major, L. mexicana, and L. pifanoi), disfiguring mucocutaneous
disease (e.g., L. braziliensis and L. guyanensis), or severe visceral ill-
ness (e.g., L. donovani and L. Infantum chagasi). Mucocutaneous
and visceral disease can be lethal if untreated, but most deaths
are attributable to visceral leishmaniasis (103). Leishmania has
a digenetic lifecycle. Promastigotes are elongated and have a fla-
gellum that allows them to move in extracellular environments.
Dividing procyclic promastigotes develop in the gut of infected
sandflies,where they transform into infectious non-dividing meta-
cyclic promastigotes that can be ejected upon the sandfly’s next
blood meal (104). Once inside the host, metacyclic promastigotes
are phagocytosed by neutrophils or by macrophages. Leishma-
nia promastigotes are able to cripple the microbicidal power of
the phagosome, rendering it a propitious parasitophorous vacuole
(PV) for the parasite (105, 106). Within PVs, promastigotes differ-
entiate into amastigotes, which are the non-flagellated intracellular
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FIGURE 2 | Modulation of macrophage cytokine secretion by
Mycobacterium ulcerans bacteria and Leishmania promastigotes.
Disruption of cytokine release has evolved as an effective means by
which several pathogens contravene the immune response. (A) M.
ulcerans employs mycolactone to sabotage the immune response by
inhibiting the secretion of more than 17 cytokines, chemokines, and
inflammatory mediators.TNF, as well as other cytokines and chemokines,
undergo post-translational modifications in the ER and Golgi prior to
being shepherded outside of the macrophage. Mycolactone hampers
delivery of TNF into the ER. As a consequence, immature protein that

accumulates in the cytoplasm is eventually degraded by the proteasome.
(B) Unlike M. ulcerans, Leishmania promastigotes trigger the release of
TNF and IL-6 from infected macrophages via GP63-mediated degradation
of Syt XI (a negative regulator of cytokine release). In vivo, GP63 also
facilitates the infiltration of inflammatory monocytes and neutrophils to
the infection site. Both of these phagocytes are infection targets for
Leishmania and aid in establishing infection. These findings can be
explained by the fact that TNF and IL-6 mediate phagocyte infiltration by
upregulating the expression of adhesion molecules and chemokines.
Arrows indicate multiple steps and drawings are not to scale.

form of the parasite. Amastigotes replicate inside macrophages,
and when these apoptose, surrounding macrophages uptake the
amastigote cargo (107), eventually propagating the infection.
The Leishmania lifecycle is perpetuated when free amastigotes
and amastigote-containing phagocytes are taken up by sand-
flies that bite infected hosts. The GP63 zinc metalloprotease is
a multifaceted Leishmania pathogenicity factor and is also one
of the most abundant molecules on the surface of promastigotes
(105, 108, 109). In infected macrophages, GP63 impairs antigen
cross-presentation (110), stalls transcription and translation, and

deactivates several microbicidal pathways (111–114). Additionally,
GP63 hampers lipid metabolism in liver, and helps the parasite
evade complement-mediated lysis and avoid killing by NK cells
(108, 115, 116). Of particular note is the capacity of GP63 to cleave
members of the SNARE complex (105), which raises the possi-
bility that GP63 may cleave other membrane fusion regulators.
Earlier studies found that Leishmania promastigotes of certain
species were able to induce the release of TNF and IL-6 (117–
121) following their engulfment by macrophages. However, the
mechanisms for this induction were not known. Hence, Arango
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Duque et al. hypothesized that Syt XI, a negative regulator of
cytokine secretion (11), was targeted by Leishmania (Figure 2B)
(22). Infection of macrophages with GP63+/+ or GP63−/− par-
asites revealed that Syt XI is degraded by GP63, leading to the
release of TNF and IL-6. Moreover, cytokine release by infected
macrophages positively correlated with the GP63 content of differ-
ent Leishmania species. To highlight the relevance of these findings
in an in vivo setting, it was demonstrated that intraperitoneal
injection of GP63-expressing promastigotes induces TNF and IL-6
release 4 h after inoculation. As already described, these cytokines
induce adhesion factor expression and chemokine release (14, 15,
42, 122, 123). Interestingly, it was observed that GP63 also pro-
motes the infiltration of neutrophils and inflammatory monocytes
early during infection. Future research will reveal whether phago-
cyte recruitment is dependent on GP63-mediated cleavage of Syt
XI in vivo. It will also be interesting to research whether Syt XI is
targeted by other pathogens. The involvement of GP63 in cytokine
secretion and phagocyte recruitment can aid in the establishment
of infection. Infection of recruited inflammatory monocytes and
resident macrophages can induce IL-10 secretion, which fosters
the immunosuppressive environment observed in chronic infec-
tion (124, 125). Infection of inflammatory monocytes (126) may
also turn them into arginase-expressing alternatively activated
macrophages that trigger the differentiation of naïve CD4 T cells
into FoxP3+ cells (86), which are immunosuppressive in leishma-
niasis (127, 128). Overall, those findings underline the importance
of proinflammatory cytokines and phagocytes at the early stages
of Leishmania infection (22).
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