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CD4+T cells are critical for defense against protozoan parasites. Intracellular protozoan par-
asite infections generally require the development of aTh1 cell response, characterized by
the production of IFNγ andTNF that are critical for the generation of microbicidal molecules
by phagocytes, as well as the expression of cytokines and cell surface molecules needed
to generate cytolytic CD8+ T cells that can recognize and kill infected host cells. Over
the past 25 years, much has been learnt about the molecular and cellular components
necessary for the generation of Th1 cell responses, and it has become clear that these
responses need to be tightly controlled to prevent disease. However, our understanding of
the immunoregulatory mechanisms activated during infection is still not complete. Further-
more, it is apparent that although these mechanisms are critical to prevent inflammation,
they can also promote parasite persistence and development of disease. Here, we review
how CD4+ T cells are controlled during protozoan infections and how these regulatory
mechanisms can influence parasite growth and disease outcome.
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INTRODUCTION
Mammalian immune systems have evolved to recognize and con-
trol pathogens. This is achieved by the coordinated actions of
innate and adaptive immune mechanisms [reviewed in Ref. (1, 2)].
CD4+ T cells play key roles in coordinating immune responses by
producing molecules critical for the production of high affinity
antibodies by B cells and promoting the production of mucous
and tissue repair mechanisms. They also help to fully activate
CD8+ T cells so they can kill infected and transformed cells, and
assist innate immune cells to recognize and control pathogens
and tumors. CD4+ T cells play critical roles in both the genera-
tion of anti-parasitic immunity and immune surveillance during
concomitant immunity, which is associated with many parasitic
infections (3).

REGULATION OF T CELL RESPONSES
The help provided by CD4+ T cells for various immune activities
includes the production of potent pro-inflammatory cytokines
such as TNF, IFNγ, and IL-17, and as such, CD4+ T cell responses
need to be tightly regulated so they themselves do not cause
tissue damage. The pathogenesis of autoimmune diseases often
involves aberrant CD4+ T cell responses in tissue sites such
as the central nervous system, pancreas, and brain. Therefore,
mammals have evolved multiple ways to control the pathogenic
potential of CD4+ T cells [reviewed in Ref. (4)]. These include
indoleamine 2,3-dioxygenase (IDO)-catalyzed tryptophan metab-
olism by phagocytic cells (5), leading to immune cell stress and
activation of the general controlled non-repressed 2 (GCN2)
kinase pathway (6) and/or cytotoxic and regulatory effects on T
cells caused by the catabolites from the associated kynurenine

metabolism pathway (7). In addition, the production of regu-
latory cytokines, such as IL-10 and TGFβ, by innate immune
cells in response to pathogen-derived molecules can suppress
both developing and established T cell responses (8–10), as can
IL-10 produced by certain B cell subsets (11). Dendritic cells
(DCs) can be an important source of regulatory cytokines in
experimental models of leishmaniasis and malaria. In addition,
over the course of these infections, DCs reduce levels of CD11c,
increase expression of CD45RB, and promote the generation of T
cell IL-10 production (12–14). Thus, the development of regula-
tory DC subsets that have a major influence on T cell responses
is a feature of established protozoan infections. More recently,
specialized monocytes and macrophage subsets have been iden-
tified that can modulate localized T cell responses during proto-
zoan infections [reviewed in Ref. (15)]. Classically activated (M1)
macrophages produce pro-inflammatory molecules, such as TNF
and l-arginine-dependent nitric oxide, while alternatively acti-
vated (M2) macrophages use arginase 1 to convert l-arginine to
polyamines, which along with production of IL-10 and TGFβ,
enable this cell subset to suppress inflammation [reviewed in
Ref. (16)]. Inflammatory monocytes have been reported to pro-
mote Th1 cell activity in mice infected with Leishmania major
(17), L. donovani (18), and Trypanasoma brucei (19, 20), but
with pathological consequences in the latter model that were
reversed by administration of IL-10 (20). In contrast, the products
from M2 macrophages suppressed lesional CD4+ T cell prolif-
eration and IFNγ production in mice infected with L. major
(21), while T. gondii can actively promote the arginase 1 path-
way in macrophages to enhance pathogen survival (22). Thus,
macrophages play important roles in conditioning local tissue
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environments and determining the direction and effectiveness of
T cell responses during protozoan infections. However, regula-
tory mechanisms increasingly recognized as being paramount for
preventing T cell-mediated disease, and therefore, the main sub-
ject of this review, involve specialized sub-populations of CD4+

T cells themselves capable of inhibiting immune responses and
suppressing inflammation.

REGULATORY T CELLS
Regulatory T cells can be broadly divided into two types. First,
natural regulatory T (Treg) cells are CD4+ T cells produced in the
thymus and express the transcription factor FoxP3 that is crit-
ical for their suppressive functions (23, 24). Second, inducible
regulatory T cells emerge from the thymus as conventional T
cells, but develop regulatory functions in the periphery following
exposure to appropriate inflammatory stimulation. These include
IL-10-producing Th1 (Tr1) cells (25), TGFβ-producing CD4+ T
(Th3) cells (26), and conventional CD4+ T cells that have con-
verted to FoxP3-positive cells in peripheral tissues (27). Under
homeostatic conditions, Treg cells limit potentially self-reactive
T cell responses, thus preventing autoimmunity (23). However,
they can also impair effective pathogen clearance, while trying to
prevent immune-mediated tissue damage during infection. The
molecular mechanisms by which Treg cells perform these func-
tions are incompletely understood, but involve production of
cytokines such as IL-10, TGFβ, and IL-35, the expression of the
negative regulatory molecule cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4) and the generation of adenosine and cyclic
AMP [reviewed in Ref. (28)]. In addition, their expression of
high affinity IL-2 receptor allows them to deprive conventional
T cells of this critical growth factor and thereby induce them to
undergo apoptosis (29). Thus, Treg cells may act directly upon
conventional T cells or via accessory cells such as antigen present-
ing cells (APCs) to limit T cell activity. An emerging paradigm
is that Treg cells adapt to particular inflammatory conditions in
order to regulate specific CD4+ T cell responses by the gener-
ation and use of shared transcription factors to mimic certain
aspects of T cell behavior, such as tissue homing, survival, and
cytokine production. For example, STAT3, T-bet, IRF-4, and Bcl-
6 are required for Th17, Th1, Th2, and follicular helper T (Tfh)
cell differentiation, respectively, as well as by the Treg cells that
control the actions of these specific CD4+ T cell subsets (30–
34). For example, in mice orally infected with T. gondii, IL-27
promotes the expression of CXCR3 on Treg cells that enables
these cells to regulate Th1 cell-mediated immunity, as well as pre-
vent infection-induced pathology at mucosal sites (35). However,
Treg cells can block the generation of effective parasite-specific T
cell responses in specific tissues. For example, Treg cell depletion
with anti-CD25 mAb in mice infected with L. major dramatically
enhanced anti-parasitic immunity (36), while adoptive transfer
of antigen-specific Treg cells in the same model promoted par-
asite growth (37). In addition, depletion of Treg cells with an
anti-CD25 mAb protects mice from lethal Plasmodium yoelii infec-
tion by enabling the generation of a potent anti-parasitic T cell
response (38). Similarly, the removal of Treg cells from peripheral
blood mononuclear cells isolated from humans infected with P.
falciparum enhanced T cell proliferation and CD4+ T cell IFNγ

production in response to stimulation with parasite antigens (39).
However, the importance of Treg cells in several protozoan infec-
tions has been questioned because of the potential “off-target”
effects of the anti-CD25 mAbs used in many studies (40). For
example, several groups reported significant changes in immune
responses and disease outcome in mice infected with P. berghei
ANKA (41–43), but subsequent experiments in this model, where
Treg cells could be specifically depleted with diphtheria toxin
via cell-specific expression of a simian diphtheria toxin recep-
tor (44), showed little impact of Treg cells on disease outcome
and associated T cell responses (45, 46). Thus, the roles of Treg
cells in protozoan infections will require further studies before
their impact on anti-parasitic immune responses can be fully
appreciated.

The secretion of IL-10 by conventional CD4+ T cells can
potently suppress inflammation and tissue damage (47, 48). Ini-
tially, IL-10 production was identified in Th2 cells (49), but has
since been described in Th1 (50–52) and Th17 (53) cell popula-
tions. Thus, CD4+ T cell-derived IL-10 production is emerging
as an important mechanism of auto-regulation, whereby IL-10
can both directly suppress T cell activities, as well as upstream
activation pathways initiated by APCs [reviewed in Ref. (48)].
These IL-10-producing Th1 cells were identified in mice infected
with T. gondii (54) and L. major (55). In the T. gondii infec-
tion model, these cells did not impact upon control of parasite
growth, but were critical for limiting pathology (54, 56), while
in mice infected with L. major, IL-10-producing Th1 cells pro-
moted the establishment and maintenance of chronic infection
(55). Similar observations have also been made in mouse mod-
els of Plasmodium infection (57, 58), T. cruzi (59, 60), and T.
brucei (61) infections. Importantly, these IL-10-producing Th1
cells have been identified in humans with visceral leishmaniasis
caused by L. donovani (62) and African children with P. falci-
parum malaria (63, 64). Although IL-10 has been clearly shown
to suppress CD4+ T cell activation in humans infected with L.
donovani (65) and P. falciparum (63, 66), it is not yet clear how
much of this activity can be attributed to the IL-10-producing Th1
cells. Significantly, the prevalence of IL-10-producing Th1 cells in
Gambian children with asymptomatic malaria was greater than in
children with severe disease, indicating that these cells may pro-
tect against damaging inflammation during acute malaria (67).
However, antigen-specific IL-10-producing Th1 cells were found
in cord blood of babies whose mothers had malaria during preg-
nancy (66), suggesting that these cells might be able to influence
anti-parasitic immunity from very early in life. Hence, the kinetics
of the emergence of IL-10-producing Th1 cells during malaria may
be critical in determining the impact they have on the outcome of
infection.

THE ROLES OF IL-10 IN PROTOZOAN INFECTIONS
IL-10 is one of the most potent regulatory cytokines produced by
leukocytes in response to inflammatory signals (68). The impor-
tance of IL-10 for regulating immunity is highlighted by the
observation that IL-10 deficiency or blockade causes the early
development of colitis in mice (69). However, as described above,
many protozoan parasites, such as those that cause toxoplasmo-
sis, malaria, trypanosomiasis, and leishmaniasis (54, 55, 59–61,
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70, 71), have evolved to exploit the functions of IL-10 to inhibit
anti-microbial mechanisms and allow the establishment of chronic
infection. In fact, the generation of IL-10-producing T cells fol-
lowing vaccination with protozoan antigen can be a robust pre-
dictor of vaccine failure (28). One proposed mechanisms for
IL-10-mediated immune suppression is the promotion of T cell
exhaustion. The PD-1 pathway plays an important role in T cell
exhaustion during all of the chronic infections mentioned above,
and there is strong evidence that IL-10 plays a key role in reg-
ulating the expression of the PD-1 ligands (PD-L1 and PD-L2)
on APCs [reviewed in Ref. (72)]. Several other molecules known
to be involved in promoting T cell exhaustion, such as Tim-3
and Lag3, have also been linked with IL-10 expression (73, 74),
but their precise relationships are not known. IL-10 produced
by macrophages can also inhibit the differentiation of surround-
ing cells into classically activated macrophages that are required
for the production of inflammatory cytokines and metabolites
required to kill many intracellular pathogens (75). It can also sup-
press inflammatory cytokine production by T cells and inhibits
antigen presentation by APC [reviewed in Ref. (76)]. Thus, IL-10
can suppress host immune responses during infection by multiple
mechanisms.

REGULATION OF IL-10 PRODUCTION BY CD4+ T CELLS
An important approach to understanding how IL-10 production
might be modulated for therapeutic advantage or to improve
vaccination is to gain a better insight into the transcriptional
regulation and the signaling pathways involved in IL-10 produc-
tion and establishing whether they differ between cell types and
in various tissue locations. IL-27 has emerged as an important
growth and differentiation factor for IL-10-producing Th1 cells
(53, 77, 78). It is thought to primarily be a product of macrophages
and DCs (79), and drives the production of IL-21 by CD4+ T
cells, which in turn, acts as an autocrine growth factor for IL-10-
producing Th1 cells (80, 81). IL-27 is a heterodimeric cytokine
composed of IL-27p28 and EBI3 that signals via a receptor com-
plex comprising a unique IL-27 receptor alpha chain (IL-27Rα)
and gp130 (82, 83), a common receptor used by several cytokines
including IL-6 (84, 85). IL-27 promotes these activities via the
transcription factors STAT1 and STAT3 (53), and by inducing
the expression of the transcription factors c-Maf (80) and aryl
hydrocarbon receptor (AhR) (86), which then physically associate
and transactivate the IL-10 and IL-21 gene promoters (80, 86,
87). Interactions between glucocorticoid-induced TNFR-related
(GITR) protein and GITR ligand can also stimulate IL-27 pro-
duction (88), which can induce expression of inducible T cell
costimulator (ICOS) on IL-10-producing Th1 cells to enhance
IL-27-mediated expansion of these cells (80). Interestingly, IL-
27p28 can also function as a natural antagonist of gp130-mediated
cytokine signaling, and thereby inhibit IL-6-mediated inflamma-
tory pathways (89). The importance of IL-27 for the generation
of IL-10-producing Th1 cells has now been reported in mouse
models of malaria (58, 90), leishamaniasis (91), and toxoplasma
(53), although, surprisingly, the generation of these cells was inde-
pendent of IL-21 in mice infected with P. chabaudi (58). It should
also be noted that IL-27 has IL-10-independent regulatory func-
tions in mice infected with P. berghei NK65 (90), thus emphasizing

the complexity of IL-27-mediated immune regulation during pro-
tozoan infections. IL-27 produced by CD14 positive monocytes
was also reported to be associated increased numbers of IL-10-
producing Th1 cells in blood from visceral leishmaniasis patients
(92). Thus, there is substantial evidence for IL-27 being a criti-
cal factor in the generation of IL-10-producing Th1 cells during
protozoan infections.

In other studies, the transcriptional repressor B lymphocyte-
induced maturation protein 1 (Blimp1; encoded by the Prdm1
gene) was found to be expressed by a subset of Treg cells and
played an essential role in their production of IL-10 (93). Recently,
Blimp1 was implicated in IL-10 production by Th1 cells (94), and
shown to be important for the generation of these cells in mice
infected with T. gondii (95). IL-27 and T cell receptor signaling
were found to promote the expression of the transcription fac-
tor Erg2, which was required for Lag3 expression and production
of IL-10 by conventional CD4+ T cells (96). Subsequently, IL-
27-dependent Egr2 expression was reported to be critical for the
induction of Blimp1 and generation of IL-10-producing Th1 cells
(94). Interestingly, only STAT3-deficiency impacted upon IL-27-
dependent Egr2 expression, while both STAT1 and STAT3 were
required for IL-10 production by Th1 cells. Thus, a model for IL-
10 production by Th1 cells is emerging (Figure 1). Furthermore,
cellular pathways such as the Notch-Jagged axis in plasmacy-
toid DCs promote CD4+ T cell IL-10 production (97), but their
roles in protozoan infections have yet to be investigated. Thus,
there are still many gaps to be filled, and importantly, we need
to clearly define the signaling and transcriptional pathways that
are activated during protozoan infections. In particular, there is
a clear gap in our knowledge regarding differences in the reg-
ulation and maintenance of IL-10 production by Th1 cells in
secondary lymphoid organs and peripheral tissue sites. This infor-
mation is important if we want to target these regulators to
selectively modulate IL-10 activity during parasitic disease. In
the broader context of immune regulation, we need to estab-
lish whether the IL-10-producing Th1 cells are a distinct T cell
subset capable of dynamic and sustained regulatory function or
whether they represent exhausted T cells, as suggested by their
expression of molecules such as PD-1 and Lag3. In the former, we
can develop ways to manipulate them for therapeutic advantage
(for example in inflammatory diseases) or transiently block their
function, as might be required for effective vaccination. However,
if they represent a terminally differentiated state, then different
approaches may have to be devised to either promote or inhibit
their development.

OTHER MECHANISMS OF Th1 CELL REGULATION DURING
PROTOZOAN INFECTIONS
Although IL-10 is a potent regulator of Th1 cell responses, there is
likely to be multiple mechanisms to control such potentially dam-
aging inflammatory responses. Type I IFNs have recently emerged
as import immune regulators during parasitic infections. They are
produced by most cell types and play critical roles in anti-viral
immunity (98, 99), but several studies have identified this fam-
ily of cytokines as important determinants of disease outcome in
protozoan infection. However, these effects depend on the viru-
lence of the parasite and the stage of infection. For example, in
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FIGURE 1 | IL-27-mediated generation of IL-10-producingTh1 cells is
shown. In the presence of persistent parasite antigen exposure, IL-27 from
macrophages and dendritic cells (DCs) stimulates STAT1 and
STAT3-dependent transcription of c-Maf and aryl hydrocarbon receptor
(AhR) in Th1 cells, which then physically associate and bind the IL-10 and
IL-21 gene promoters to drive gene transcription. IL-27 and T cell receptor
signaling also combine to promote the expression of the transcription factor

Erg2, which is critical for the induction of Blimp1 and generation of
IL-10-producing Th1 cells in a STAT3-dependent manner. IL-21 acts as an
autocrine growth factor for IL-10-producing Th1 cells, while the IL-10
produced by these cells can suppress the inflammatory functions of Th1
cells and phagocytes, as well as the antigen presenting capacity of DCs,
macrophages (MØ), and monocytes (MO). The small red circles represent
protozoan parasites and associated antigens.

mice lacking type I IFN receptor, early control of T. brucei was
impaired, but it appeared that IFNγ production later in infection
was suppressed by type I IFN signaling pathways (100). In con-
trast, early control of a high dose T. cruzi infection was enhanced
in type I IFN receptor-deficient mice and this was associated with
increased IFNγ production, but not when a lower parasite dose
was used (101). In liver stage P. berghei ANKA infection, parasite
RNA triggers a type I IFN transcriptional program in hepatocytes
that enhances innate immune responses in hepatic myeloid cells
to control liver parasite load (102). In contrast, in mice infected
with P. berghei ANKA blood-stage parasites, type I IFNs promoted
susceptibility to severe disease (103, 104) by suppressing Th1 cell
development (103) indirectly through inhibition of CD8− DC
function (105). Interestingly, this latter effect of type I IFN on DC
function was also associated with reduced IL-10 mRNA accumu-
lation in CD8− DCs that lacked type I IFN receptor, potentially

linking infection-induced IL-10 production with Th1 regulation
once again (Figure 2).

TGFβ has also emerged as an important regulatory cytokine
controlling Th1 responses during protozoan infections [reviewed
in Ref. (106)]. In mice, susceptibility to lethal P. berghei ANKA
infection correlated with reduced TGFβ levels (107), while high
levels of TGFβ in malaria patients was associated with increased
parasite growth. In mice infected with T. gondii, TGFβ produced by
gut intraepithelial CD8+ T cells was critical for controlling inflam-
mation and gut pathology (108), thus supporting a key role for this
cytokine in regulating inflammation during protozoan infections.
In both malaria and toxoplasma, it is likely that TGFβ acts by
suppressing T cell activation and promoting Treg cell functions
(109). However, this is yet to be formally demonstrated and there
still remains much to learn about the functions of TGFβ during
infection.
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FIGURE 2 |Type I IFN-mediated suppression ofTh1 cell activation.
(A) Parasite molecules stimulate type I IFN production by different dendritic
cell (DC) subsets and macrophages (MØ). This family of cytokines feedback
on these innate immune cells and suppress their capacity to activate CD4+ T
cells. In experimental malaria caused by Plasmodium berghei ANKA, this

effect is primarily directed toward the CD8− DC subset and stimulates IL-10
production. (B) In this model, blockade of type I IFN signaling dramatically
enhances the generation of anti-parasitic CD4+ T cell responses that can
protect mice from CD8+ T cell-mediated severe disease. The small red circles
represent protozoan parasites and associated antigens.

Both lipoxin A4 and glucocorticoids have also been identified
as important regulators of Th1 cell responses in mice infected with
T. gondii (110–112). Lipoxin A4 is an eicosanoid mediator capable
of suppressing DC IL-12 production in response to parasite anti-
gen in vitro (110) or during T. gondii infection in mice (111). In
this latter study, infection of mice lacking lipoxin A4 resulted in
a fatal, parasite-induced inflammation (characterized by a potent
Th1 cell response), but reduced parasite loads. Importantly, results
from this and previous studies (113), suggest that IL-10 was critical
for regulating inflammation during the acute stage of infection,
while lipoxin A4 was important for immune regulation during
chronic infection (111). A novel, IL-10-independent pathway of
immune regulation was also recently identified in this infection
model, whereby glucocorticoids produced by the hypothalamic–
pituitary–adrenal axis during T. gondii infection act directly on
CD4+ T cells to prevent Th1 cell hyperresponsiveness and resulting
pathology (112). Given the critical roles for both IL-10-dependent
and IL-10-independent pathways in preventing inflammatory dis-
eases associated with protozoan infections, temporal and/or tran-
sient blockade of one or the other pathways may be a viable way to
enable sufficient pro-inflammatory immunity to control parasite
growth, but also leave enough regulatory machinery in place to
prevent disease.

CONCLUDING REMARKS
There are currently no vaccines to protect against or treat diseases
caused by protozoan parasites. It has proven extremely difficult to
generate robust and long-lasting CD4+ T cell responses against the
responsible pathogens (3). An important impediment for gener-
ating sufficient immunity against these pathogens could, in some

cases, be the accompanying regulatory immune response that
aims to limit inflammation. Treg cell depletion can dramatically
improve candidate malaria vaccine efficacy (114, 115), although as
mentioned above, these studies must be interpreted with caution
because of the use of anti-CD25 mAb for Treg cell modulation.
Nevertheless, the blockade of IL-10 produced by antigen-specific
Th1 cells improved anti-parasitic immunity generated by a can-
didate vaccine directed against L. major (116), while studies on
T. gondii indicated that induction of IL-10-producing Th1 cells
following vaccination caused a lethal infection upon secondary
exposure to the parasite (117). Although the depletion of Treg
cells and/or IL-10-producing Th1 cells is not a viable option for
improving vaccine efficacy given the critical roles of these cells
in preventing immune-mediated disease, a much better under-
standing about how regulatory immune responses can be locally
and temporarily modulated to enhance vaccine-induced immune
responses may be of significant benefit.

The regulation of Th1 cell responses during protozoan infec-
tions is clearly important to ensure both sufficient generation of
inflammatory mediators to control parasite growth, as well as to
prevent excessive production of these molecules in sensitive tis-
sue sites. IL-10 has emerged as an important regulator of these
responses, both produced in a highly regulated manner by Th1
cells themselves, as well as parasite-activated innate immune cells.
However, IL-10 is not alone in this activity, and alternative mech-
anisms of Th1 cell regulation have been identified. Our challenge
remains to fully define these mechanisms of Th1 cell regulation
and to use this knowledge to improve therapeutic options and vac-
cine efficacy. Research in protozoan infections of both mice and
humans is ideally placed to identify broad mechanisms of immune
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regulation that are relevant not only to parasitic infections but also
for autoimmune and physiological diseases, as well as cancer.
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