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Nearly one quarter of the world’s population is infected with helminth parasites. A common
feature of helminth infections is the manifestation of a type 2 immune response, charac-
terized by T helper 2 (Th2) cells that mediate anti-helminth immunity. In addition, recent
literature describes a close association between type 2 immune responses and wound
repair, suggesting that aTh2 response may concurrently mediate repair of parasite-induced
damage. The molecular mechanisms that govern Th2 responses are poorly understood,
although it is clear that dendritic cells (DCs), which are the most efficient antigen-presenting
cells in the immune system, play a central role. Here, we review the molecular mechanisms
by which DCs polarizeTh2 cells, examining both helminth antigens and helminth-mediated
tissue damage asTh2-inducing triggers. Finally, we discuss the implication of these findings
in the context of metabolic disorders, as recent literature indicates that various aspects of
the Th2-associated inflammatory response contribute to metabolic homeostasis.
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INTRODUCTION
Helminths are parasitic worms that infect one quarter of the
world’s population. They classically evoke strong type 2 immune
responses characterized by the induction of T helper 2 (Th2) cells,
which secrete cytokines like IL-4, IL-5, and IL-13. These pro-
mote IgE production by B cells, and recruitment of eosinophils
and alternatively activated macrophages. Together, these events
control infection and/or mediate parasite expulsion through
smooth muscle contraction and mucus production [reviewed in
Ref. (1, 2)].

Helminths enter, migrate, and exit through their host, causing
considerable tissue damage along the way. Therefore, it may not
be surprising that recent literature has described a close associa-
tion between type 2 immune responses and wound repair (3–6).
In this context, a Th2-cell associated response would contribute
to both wound repair and control of parasite infection, and seems
beneficial over a type 1 response, which harbors a greater risk of
inducing collateral tissue damage (1). In addition, various aspects
of the type 2 immune response have been shown to contribute to
metabolic homeostasis (7). Indeed, helminths were recently found
to protect against diet-induced insulin resistance (8, 9), and a neg-
ative association exists between helminth infection and metabolic
syndrome (10).

The mechanisms that initiate Th2 responses are not fully under-
stood, even though it is clear that dendritic cells (DCs), the most
efficient antigen-presenting cells (APCs) in the immune system,
play a crucial role (11). Since helminths are the strongest natural
inducers of type 2 immune responses, many advances in dissect-
ing the mechanisms underlying Th2 polarization have been made
using either models of helminth infection or helminth-derived
products. In this Mini Review, we discuss recent advances in the

field, examining both helminth antigens and helminth-mediated
tissue damage as triggers for the initiation of a Th2 response. In
addition, we discuss the potential implications of these findings in
the context of metabolic disorders.

DENDRITIC CELL SUBSETS ASSOCIATED WITH Th2
POLARIZATION
The importance of DCs in Th2 skewing is highlighted by stud-
ies showing that depletion of CD11c+ DCs interferes with the
induction of a Th2 response to Schistosoma mansoni and Heligmo-
somoides polygyrus (12–14). Interestingly, it has become increas-
ingly clear that distinct DC subsets induce different Th responses
[reviewed in Ref. (11, 15)], and in the last few years, several
studies analyzed the role of DC subsets in the initiation of Th2
responses to helminth infection. For example, two independent
groups recently showed that the development of a Th2 response
to Nippostrongylus brasiliensis depends on dermal CD301b+ DCs
(16, 17). Specifically, depletion of CD301b+ DCs prior to infec-
tion reduces IL-4 production by CD4+ T cells, without affecting
the percentage of T follicular helper (Tfh) cells or germinal cen-
ter B cells (16). Mechanistically, Th2-inducing PDL2+CD301b+

DCs were shown to depend on DC-specific expression of the
transcription factor interferon regulatory factor 4 (IRF4) (17). In
line with these findings, CD11cintMHCIIhi dermal DCs express-
ing PDL2 and CD301b were also identified as a Th2-priming DC
subset in N. brasiliensis infection (18). Of note, CD301b+ DCs
alone are insufficient to generate a Th2 response in vitro (17) or
in vivo (16), suggesting that additional requirements exist. For
example, optimal localization of DCs within the lymph node may
play a crucial role. In H. polygyrus infection, CXCR5-expressing
CD11c+ DCs migrate to the lymph node and localize adjacent
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to B cell follicles (19). Depletion of CXCR5 or B cell-derived
lymphotoxin alters the localization of the DCs and, as a con-
sequence, impairs the development of Tfh and Th2 cells (19).
In addition, it has been suggested that DCs require signals from
basophils (20) and group 2 innate lymphoid cells (ILC2s) (21)
to prime Th2 responses to allergens. Together, these studies sug-
gest that specific DC subsets, as well as the microenvironment in
which these subsets encounter CD4+ T cells, are important for
Th2 development in vivo.

PRIMING DENDRITIC CELLS FOR Th2 POLARIZATION
SENSING HELMINTH-DERIVED ANTIGENS
Dendritic cells are equipped with pattern recognition receptors
(PRRs) that recognize a wide array of pathogen-associated mol-
ecular patterns (PAMPs). The classical paradigm describes that
triggering of PRRs, including the Toll-like receptors (TLRs), RIG-
I-like receptors, NOD-like receptors, scavenger receptors, and
C-type lectin receptors (CLRs), induces DC maturation and
subsequent antigen-specific activation of Th cells (22).

While signaling through most TLRs induces Th1/Th17
responses (23), Th2-inducing helminth-derived molecules have
also been described to interact with DCs through TLR2, 3, and 4
(24–27). Although the schistosome-related glycan LNFPIII, which
contains Lewis X (LeX) trisaccharides, requires TLR4 for Th2 skew-
ing (28), various studies suggest that TLRs are dispensable for Th2
polarization by helminth antigens. For example, bone marrow-
derived DCs (BMDCs) from TLR2- and TLR4-knockout mice can
still skew Th2 when pulsed with S. mansoni soluble egg antigens
(SEA) (29), and the TLR adaptor protein MyD88 is not required
for Th2 skewing by SEA-stimulated splenic DCs (30). Interestingly,
human monocyte-derived dendritic cells (moDCs) stimulated
with phosphatidylserine lipids from schistosomes induce IL-10-
producing T cells through TLR2 (25). Therefore, helminth prod-
ucts may employ TLRs for the induction of regulatory responses,
but it seems that other PRRs are required for the initiation of a
Th2 response.

Indeed, CLRs that sense helminth glycans play an important
role in Th2 skewing. For example, SEA is internalized by moDCs
through DC-specific ICAM-3-grabbing non-integrin (DC-SIGN),
macrophage galactose-type lectin (MGL), and mannose recep-
tor (MR) (31), and binds to Dectin-2 on BMDCs (32). Binding
of SEA to DC-SIGN was shown to depend on LeX (33), and a
recent study showed that blocking DC-SIGN-associated signaling
inhibits Th2 skewing (34). Likewise, excretory/secretory products
from the tapeworm Taenia crassiceps (TcES) bind MR and MGL
on BMDCs (35), and the Th2-skewing capacity of TcES is glycan-
dependent (36). Since SEA and ES mixtures contain many different
glycoproteins, it is difficult to pinpoint the receptor and/or the
mechanism responsible for Th2 polarization. Therefore, an impor-
tant contribution to the field was made when omega-1, a small
glycoprotein expressing LeX residues (37), was identified as the
major immunomodulatory component in SEA (38, 39). Gener-
ation of a glycosylation mutant revealed that omega-1 requires
its glycans to condition moDCs for Th2 skewing, and to prime
Th2 responses both in vitro and in vivo. Specifically, MR but not
DC-SIGN, mediates recognition and internalization of omega-1
(40). In sum, these studies indicate that helminth-derived antigen

preparations can bind a variety of PRRs, which may induce distinct
intracellular events that promote Th2 polarization.

SENSING EPITHELIAL ALARMINS
Modulation of DCs for Th2 priming can also take place in the
absence of PRR signals, in response to epithelium-derived cytokine
alarmins that are released with tissue damage (41). For example,
stimulation of human myeloid DCs with thymic stromal lym-
phopoietin (TSLP) primes naïve T cells to produce IL-4, IL-5,
IL-13, and tumor necrosis factor alpha (TNF-α) (42). However, the
role of TSLP in helminth infection remains controversial. While
TSLP receptor (TSLPR) knockout mice fail to mount a protective
Th2 response to Trichuris muris (43, 44), they do develop a Th2
response during infection with S. mansoni (45), H. polygyrus or
N. brasiliensis (44). Interestingly, basophils rather than DCs were
recently described to act as TSLP-dependent APCs for Th2 skewing
in Trichinella spiralis infection (46).

A second relevant alarmin is IL-33, as stimulation of BMDCs
with this cytokine promotes Th2 development (47, 48). In line
with these findings, IL-33 treatment improves Th2 cytokine pro-
duction and expulsion of T. muris (49), and mice deficient for the
IL-33 receptor T1/ST2 fail to develop a Th2 response following
injection with S. mansoni eggs (50). Importantly, T1/ST2 is not
only present on DCs but also on lymphocyte subsets including
ILC2s, which were shown to mediate N. brasiliensis expulsion in
an IL-33-dependent manner (51).

Lastly, IL-25 induces the production of type 2 cytokines by
ILCs, and IL-25-knockout mice show delayed initiation of type 2
cytokine responses and N. brasiliensis expulsion (52). Although
IL-25 has not been described to act directly on DCs, it was shown
to enhance cytokine production by Th2 memory cells activated
by TSLP-conditioned myeloid DCs (53). Thus, multiple alarmins
are released by epithelial cells and may act in concert on various
immune cell types, to mediate the induction of a Th2 response
against helminths or their eggs.

INTRACELLULAR MECHANISMS ASSOCIATED WITH Th2 POLARIZATION
Signaling-dependent mechanisms
Pattern recognition receptor-mediated signaling classically
induces DC maturation via mitogen-activated protein kinases
(MAPK) (54). However, in contrast to microbial ligands, helminth
products often fail to induce classical signs of maturation and are
well-known to downregulate TLR-mediated maturation (31, 38,
55–60). Indeed, unlike many TLR ligands, Th2-inducing com-
pounds fail to phosphorylate p38 MAPK but instead promote
phosphorylation of p42/p44 MAPK (ERK1/2) [reviewed in Ref.
(61)]. ERK1/2 stabilizes c-Fos, and inhibiting either c-Fos or
ERK1/2 enhances IL-12 production by moDCs (62), suggest-
ing that activation of this pathway suppresses Th1-polarizing
cytokines. Likewise, TSLP promotes ERK1/2 phosphorylation
(63) and fails to induce IL-12 production by myeloid DCs
(42, 64).

It was noted that the NF-κB signaling pathway also seems to
be involved in Th2 polarization, as SEA- or LNFPIII-stimulated
BMDCs from NF-κB1 knockout mice fail to prime a Th2 response
(65, 66). Furthermore, it was recently demonstrated that LeX

residues,via DC-SIGN,activate LSP1 in moDCs, leading to nuclear
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accumulation of the atypical NF-κB family member Bcl3 and
downregulation of IL-12 mRNA. These events also seem required
for SEA-induced T cell polarization, since silencing either LSP1 or
Bcl3 interferes with Th2 skewing (34). Similarly, the Th2-inducing
capacity of TSLP was shown to involve activation of NF-κB and
STAT5 (63, 67).

Finally, SEA can signal through spleen tyrosine kinase (Syk)
downstream of Dectin-2, activating the Nlrp3 inflammasome
and increasing TLR-triggered release of IL-1β by BMDCs. How-
ever, infection of various inflammasome-deficient mice with S.
mansoni demonstrated that activation of this pathway does not
seem to favor any particular Th response (32). Thus, helminth
antigens can activate signaling, and certain members of the NF-
κB and ERK pathways in particular seem to play a role in
Th2 polarization.

Signaling-independent mechanisms
In addition to signaling-dependent mechanisms, various helminth
products harbor enzymatic activities that mediate Th2 skewing.
For example, omega-1 depends on its RNase activity, which allows
the molecule to cleave both ribosomal and messenger RNA, to
downmodulate TLR-induced moDC maturation and IL-12 pro-
duction, and to skew toward Th2 (40). Interestingly, various

Th2-inducing allergens are also RNases (68, 69), as well as the
endogenous eosinophil-derived neurotoxin that can amplify DC-
mediated Th2 polarization (70). Together, these reports suggest
that any RNase internalized by DCs may harbor Th2-priming
capacities, through cleavage of ribosomal and/or messenger RNA.
Similarly, a number of studies identified a role for cysteine protease
inhibitors secreted by filarial nematodes (cystatins) in regulating
host immune responses by interfering with antigen processing
[reviewed in Ref. (71)]. Therefore, helminths may employ both
signaling-dependent and independent mechanisms to condition
DCs for Th2 skewing (Figure 1).

Of note, recent studies indicate that modulation of metabolic
pathways within immune cells can regulate their function and,
thereby, the outcome of the immune response (72). For exam-
ple, BMDCs switch their core metabolism from mitochondrial
oxidative phosphorylation to glycolysis upon TLR-ligation, and
inhibition of this switch interferes with maturation, IL-12 expres-
sion, and the ability to induce CD4+ T cell proliferation (73,
74). Among the underlying mechanisms, the mammalian target of
rapamycin (mTOR) was shown to control glycolytic metabolism
(75, 76). Although we recently showed that mTOR is not involved
in Th2 skewing by omega-1- or SEA-conditioned moDCs (77),
the question whether helminths or their products affect glycolytic

FIGURE 1 | Possible mechanisms by which helminth molecules
modulate DCs forTh2 polarization. Helminth antigens are recognized
by DCs through ligation of pattern recognition receptors (PRRs), such as
Toll-like receptors (TLRs) and C-type lectin receptors (CLRs). Depending
on the antigen, binding promotes phosphorylation of ERK1/2, nuclear
accumulation of NF-κB or Bcl3, and/or activation of the Nlrp3
inflammasome, which mediates IL-1β secretion. Phosphorylation of
ERK1/2 stabilizes c-Fos, leading to downregulation of IL-12 expression. In
addition, DCs can upregulate expression of Th2-associated CD40 and
Jagged, which are under the control of NF-κB and ERK1/2, respectively
(115, 116). Upon encounter of T cells expressing CD40L, signaling through
CD40 promotes OX40L expression in an autocrine manner. Alternatively,

PRRs may mediate uptake of antigens that interfere with antigen
presentation on MHCs, such as cystatins, or RNases that inhibit protein
synthesis, thereby suppressing the expression of costimulatory
molecules like CD80 and CD86. These events affect T cell receptor (TCR)
signaling. As a consequence of protein synthesis inhibition, RNases may
also downregulate Th1-polarizing cytokines or molecules like IL-12 and
Delta-4. In parallel, helminths or their eggs damage epithelium, and
alarmins are released, such as thymic stromal lymphopoietin (TSLP) and
IL-33, which bind the TSLP receptor (TSLPR) and T1/ST2, respectively.
TSLP can also activate ERK1/2, STAT5, and NF-kB to promote CD40 and
OX40L expression. Altogether, these events favor DC-mediated Th2
polarization.
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reprograming in DCs, and how this relates to Th2 polarization,
constitutes an exciting new area of research.

PRIMED DCs AND INITIATION OF T CELL POLARIZATION
A major difference between Th1 and Th2 development is that
a Th1 response requires persistent production of Th1-polarizing
cytokines, like IL-12, which are exclusively produced by APCs. By
contrast, once primed DCs induce IL-4 production by a few acti-
vated Th cells, the Th2 response is self-sustained through autocrine
production of IL-4 (78, 79). Therefore, in order to understand
mechanisms of Th2 polarization, it is critical to identify the DC-
associated polarizing signals that control early IL-4 production by
activated T cells.

SOLUBLE FACTORS AND SURFACE MOLECULES
As discussed above, DCs stimulated with helminth molecules
or TSLP fail to express IL-12. Moreover, injection of IL-12 can
block the development of a Th2 response to S. mansoni eggs
(80). These findings led to the so-called “default concept,” which
states that Th2 differentiation spontaneously occurs in the absence
of a Th1-priming signal like IL-12. However, mice lacking IL-
12 do not develop a Th2 response to microbial pathogens (81),
and blocking the mTOR pathway in LPS-stimulated moDCs
skews a potent Th2 response without suppressing IL-12 secre-
tion (77), suggesting that there are active signals involved in Th2
differentiation.

Such a signal may be provided by a soluble factor secreted by
DCs, like RELMα, which was shown to promote IL-10 and IL-
13 secretion by lymph node cells following adoptive transfer of
SEA-stimulated BMDCs (82). However, supernatants from SEA-
primed moDCs do not skew toward Th2 (83), and neither SEA-
nor omega-1-stimulated BMDCs induce Th2 when separated from
CD4+ T cells in transwells (39), indicating that an active polariz-
ing signal in these studies is likely provided by surface molecules.
Indeed, the Notch ligands Delta-4 and Jagged-2 have been linked
to Th1 and Th2 polarization, respectively (84), and helminth anti-
gens were shown to upregulate Jagged-2 on BMDCs (85, 86) and
to suppress Delta-4 expression in moDCs (87). However, Jagged-
2-deficient BMDCs can still skew Th2 when challenged with SEA
(85, 86), suggesting that other molecules may be involved. For
example, CD40 has been proposed to provide a polarizing sig-
nal, as its expression on SEA-stimulated BMDCs is required for
the induction of a Th2 response (88), and mice lacking CD40
ligand suffer from impaired Th2 development during S. mansoni
infection (89). Mechanistically, signaling through CD40 promotes
OX40L expression, which is essential for optimal Th2 skewing
by SEA-conditioned BMDCs (90) and moDCs (83), as well as
TSLP-conditioned myeloid DCs (64). However, treatment with
anti-OX40L does not significantly affect the Th2 response to N.
brasiliensis infection (18), and it has been suggested that OX40L
acts as a costimulatory molecule rather than a polarizing signal,
since SEA-treated OX40L-knockout DCs induce Th2 cells, but fail
to stimulate appropriate T cell expansion (90). Altogether, these
studies suggest that there may not be one specific DC-associated
molecule required for Th2 polarization, but rather a combina-
tion of signals that mediate both optimal T cell priming and
expansion.

ROLE FOR THE T CELL RECEPTOR
Early reports have described that the antigen dose can determine
the outcome of Th differentiation, with a high dose generally
favoring Th1 development (91–93). These findings were con-
firmed in a recent report, which also indicated that Th1-inducing
adjuvants promote a higher Ca2+ flux [representing T cell recep-
tor (TCR)-signaling strength], and induce larger synapse size, than
Th2-promoting molecules (94). In addition, it has been suggested
that T cells activated by Th2-inducing ligands are less prolifera-
tive, as priming of splenic DCs with SEA reduces the frequency
of CD4+ T cells progressing through the cell cycle, and drug-
induced arrest of cell cycle progression promotes Th2 polarization
(30). Together, these observations suggest that helminth mole-
cules may reduce TCR triggering, impairing T cell proliferation
in favor of Th2 differentiation. Indeed, treatment of splenic DCs
with SEA results in shorter T cell–DC interaction times and lower
TCR signaling when compared to a Th1-inducing adjuvant (94).
In addition, omega-1 reduces the capacity of BMDCs to form T
cell–DC conjugates and diminishes the frequency of CD4+ T cells
progressing through the cell cycle, possibly through modification
of actin morphology (39). Mechanistically, interaction between
T cells and DCs was shown to depend at least in part on the
costimulatory molecule CD80 (94). As discussed above, helminth
products fail to induce upregulation of costimulatory molecules,
which may also explain why DCs treated with helminth molecules
are less capable of forming stable interactions with T cells.

IMPLICATIONS FOR METABOLIC DISORDERS
The induction of a type 2 immune response has multiple func-
tions. In the context of helminth infection, it mediates both para-
site clearance and enhances wound healing. In addition, it has long
been known that type 2 inflammatory responses contribute to the
pathogenesis of allergy and asthma (95). Recently, however, it has
become clear that multiple facets of the type 2 immune response
are also involved in metabolic regulation (7). For just one example,
IL-4 can regulate the balance between fatty acid and glucose oxi-
dation in hepatocytes (96). Studying the molecular mechanisms
that helminths employ to govern Th2 polarization may therefore
open novel avenues for the treatment of metabolic disorders.

METABOLIC DISORDERS AND TYPE 2 INFLAMMATION
A growing body of literature indicates that obesity is associ-
ated with chronic low-grade inflammation in metabolic organs.
Enhanced infiltration of classically activated M1 macrophages,
CD8+ T cells, and Th1 cells has been reported in both liver and
adipose tissues (AT) (97). This represents a key etiological mecha-
nism promoting tissue-specific insulin resistance and impairment
in whole-body glucose homeostasis, which leads to an increased
risk for type 2 diabetes and cardiovascular diseases. Interestingly,
various reports have shown that Th2-inducing conditions, such as
N. brasiliensis infection (8, 9), allergic inflammation (96), or SEA
administration (98), improve insulin sensitivity and glucose tol-
erance in diet-induced obese mice. In addition, both S. mansoni
infection (99) and SEA administration (100) reduce the devel-
opment of atherosclerotic lesions in mice. Furthermore, adoptive
transfer of CD4+ T cells (mostly via Th2 cells) and IL-4 treat-
ment can protect against diet-induced insulin resistance (96, 101).
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Lastly, type 2-associated ILC2s (102, 103) and eosinophils (8)
were shown to play a crucial role in maintenance of whole-body
metabolic homeostasis by sustaining AT alternatively activated M2
macrophages. These findings are in line with epidemiological stud-
ies indicating that infection with helminths inversely correlates
with metabolic syndrome (104, 105).

THERAPEUTIC MANIPULATION OF DCs FOR THE TREATMENT OF
METABOLIC DISORDERS
The ability of DCs to prime strong Th2 responses identifies
these cells as an attractive target for therapeutic manipulation of
the immune system in the context of metabolic disorders. DCs
are widely studied as targets for development of vaccines and
immunotherapies because of their capacity to regulate a wide
array of T cell responses (106–108). It has been described that DCs
accumulate in AT of obese patients and mice (109, 110), and ther-
apeutic manipulation of DCs might also provide a new strategy
for targeted treatment of metabolic disorders (Figure 2).

In terms of T cell priming, isolated AT CD11c+F4/80low

cells from obese mice were shown to preferentially induce Th17
responses (110), and AT CD11b+ APCs isolated from insulin-
resistant mice promote Th1 polarization (111). However, since
both AT macrophages and DCs can express CD11b, CD11c, and
F4/80 (109), it is unclear which APC subset is responsible for these
effects. In addition, targeting antigen to distinct DC subsets elicits
distinct immune responses (112), and therefore, it remains to be
determined whether AT DCs would be capable of polarizing Th2

responses in situ. These findings highlight the importance of study-
ing AT-associated DC subsets, especially in humans, to identify
appropriate subsets for therapeutic manipulation. Furthermore,
it has been shown that antigen can efficiently be targeted to and
processed by DCs in vivo using an antibody against CTL receptor
DEC-205 (113, 114), a strategy which may be employed to target
AT DCs. Toward this, a DC-restricted receptor on the appropri-
ate subset needs to be identified. Lastly, directing Th2-inducing
adjuvants to DCs requires single molecules that can easily be cou-
pled to DC-specific ligands or antibodies. Therefore, proteins such
as omega-1 hold promise (38, 39), since they provide a power-
ful tool to further dissect the molecular mechanisms underlying
the induction of a DC-mediated Th2 response. In particular, the
identification of the receptors and/or mediators involved in Th2
polarization will provide novel insights for the development of
pharmaceutical agents that mimic helminth molecules in their
modulation of DCs for Th2 skewing.

CONCLUDING REMARKS
As this review illustrates, helminth molecules can interact with
a variety of receptors, that either bind or internalize antigens
to condition DCs for Th2 skewing through signaling-dependent
and -independent mechanisms. In vivo, specific Th2-associated
DC subsets are simultaneously exposed to polarizing signals
from other immune cells or damaged epithelium. Depending
on the helminth species and its migration through the tissue,
it is likely that these signals act in concert to ensure robust

FIGURE 2 | Putative effects of targeting DCs forTh2 polarization on
adipose tissue inflammation and insulin sensitivity. Adipose tissues of
obese patients and high-fat diet-fed mice are characterized by the
accumulation of pro-inflammatory immune cells, like Th1 cells and M1
macrophages, which mediate tissue-specific insulin resistance through
secretion of pro-inflammatory cytokines like IFN-γ and TNF-α. By contrast, M2
macrophages that secrete IL-10 protect against insulin resistance via multiple

routes. For instance, IL-10 can act directly on adipocytes to potentiate insulin
signaling, inhibit Th1 cells and M1 macrophages, and induce regulatory T cells
(Tregs), thereby promoting adipose tissue insulin sensitivity and glucose
disposal. The maintenance of M2 macrophages in adipose tissue depends on
the presence of IL-4, which can be derived from Th2 cells or eosinophils.
Novel treatment strategies may therefore focus on therapeutic manipulation
of adipose tissue dendritic cells for Th2 polarization.
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Th2 polarization, although there seems to be some redundancy.
It is now recognized that type 2 immune responses can also
regulate energy metabolism, and studying how helminths generate
Th2 responses will not only shed light on the mechanisms
that promote control of parasite infection and wound healing
but may also identify pathways that contribute to metabolic
homeostasis.
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