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Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid mem-
brane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator
of important physiological and pathological intercellular activities possibly through the trans-
fer of their cargo of protein and RNA between cells. In particular, exosomes, the currently
best characterized EVs have been notable for their in vitro and in vivo immunomodula-
tory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by
many cell types and their immunomodulatory potential is independent of their cell source.
Besides immune cells such as dendritic cells, macrophages, and T cells, cancer and stem
cells also secrete immunologically active exosomes that could influence both physiological
and pathological processes. The immunological activities of exosomes affect both innate
and adaptive immunity and include antigen presentation,T cell activation,T cell polarization
to regulatoryT cells, immune suppression, and anti-inflammation. As such, exosomes carry
much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

Keywords: extracellular vesicles, exosomes, immunomodulation, innate immunity, adaptive immunity,
immunotherapy

INTRODUCTION
Extracellular vesicles (EVs) are increasingly implicated as a major
mode of intercellular communication. Most cell types are known
to secrete EVs which are essentially bi-lipid membrane vesicles
carrying a complex cargo of proteins and RNAs. These EVs can
be taken up by other cell types thereby transferring proteins and
RNAs from one cell to another.

There are many classes of EVs such as exosomes, microvesi-
cles, ectosomes, membrane particles, exosome-like vesicles and
apoptotic bodies, and they could be distinguished by their bio-
genesis pathway, size, flotation density on a sucrose gradient, lipid
composition, sedimentation force, and protein cargo [reviewed in
Ref. (1, 2)]. However, many of these differentiating parameters
such as size, flotation density on a sucrose gradient, lipid com-
position, sedimentation force, and protein cargo are not discrete
values that are exclusive to a specific class of EVs. Consequently,
classification of EVs has been challenging. Exosomes are presently
the best characterized EVs. They are defined as membrane vesi-
cles of 50–100 nm diameter containing proteins, RNAs, and lipids
(3–8). They are secreted by cells when endosomal membranes
invaginate inward to form multivesicular bodies (MVBs) and the
MVs fused with the plasma membrane. This endosomal biogen-
esis is a distinctive feature of exosomes, and is presently known
to be unique to exosomes and not any of the other classes of
EVs. As endocytosis is most active at specialized microdomains
in plasma membrane such as lipid rafts, exosomes such as mes-
enchymal stem cell (MSC) exosomes have membranes enriched in
elements of lipid rafts such as GM1 gangliosides and transferrin
receptors (9). However, ascertaining the biogenesis of EVs is tech-
nically challenging and not always practical, and consequently, the
term “exosomes” have been used generically to describe any EVs
that share some of the biophysical or biochemical parameters of

exosomes without validating their biogenesis. Hence, the term EVs
and exosomes in this review will be used synonymously.

Many cell types are known to secrete EVs, and they include
epithelial cells (10, 11), fibroblasts (12), erythrocytes (13, 14),
platelets (15), mast cells (16), tumor cells (17–19), stem cells (20–
22), and immune cells such as dendritic cells (DCs) (23, 24),
monocytes (25, 26), macrophages (27, 28), NK cells (29, 30),
B lymphocytes (31, 32), and T lymphocytes (33, 34). However,
the physiological functions of EVs remain tenuous. Part of this
could be attributed to the lack of a definitive criterion to purify,
characterize, and classify the classes of EVs unambiguously.

Exosomes were first thought to be a cellular means for the dis-
posal of redundant proteins by groups studying reticulocyte mat-
uration (35–37), but they are now generally viewed as mediators
of intercellular communication through the transfer of biologi-
cally active materials. However, with the present lack of clarity
in defining the classes of EVs, the role of EVs or exosomes as
mediators of intercellular communication, and their effects on
biological or physiological processes remains a conundrum. For
example, do cells secrete or even have the capacity to produce
all classes of EVs? Do cells secrete more than one class of EVs at
any one time? Are secretion or production of EVs and their cargo
regulated? It is likely that our present day understanding of EV
functions is an amalgam of the diametrically different functions
of different EV classes, leading to a confusing and sometimes con-
tradictory perception of EV or exosome functions. One of the
earliest reported physiological targets of exosome-mediated inter-
cellular communication is the immune system. B lymphocytes
were the first immune cell type reported to secrete vesicles and
these vesicles express abundant major histocompatibility complex
(MHC) Class I and II molecules, B7.1 (CD80) and B7.2 (CD86) co-
stimulatory molecules, and ICAM-1 (CD54) adhesion molecules.
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Consistent with the presence of these proteins, which are impor-
tant in antigen presentation, the vesicles could activate CD4+ T
cells suggesting that they mediate antigen presentation by lym-
phocytes (38). Subsequently, other immune cells such as DCs and
mast cells were also found to secrete EVs/exosomes (39, 40). Inci-
dentally, non-immune cells have also been reported to modulate
the immune system by exosomes. For example, cancer cells are
known to modulate the immune system to facilitate growth and
metastasis. One of the earliest reports described the downregu-
lation of surface NKG2D expression on NK cells and CD8+ T
cells by exosomes from cancer cells or mesothelioma patients (41).
We have also demonstrated that exosomes from MSCs modulate
the immune system through TLRs and induce expansion of reg-
ulatory T cells (Tregs) (22). Together, these studies demonstrate
the immense immunotherapeutic potential of exosomes produced
by both immune and non-immune cells and also highlight the
divergent effects of EVs/exosomes on the immune system. While
this divergence could be due to a difference in cell source of the
EVs/exosomes, other parameters such as the classes of EVs and the
methods of isolation are equally important.

BIOGENESIS AND PREPARATION OF EVs
Among the EVs, exosomes are best defined in terms of their bio-
genesis and consequently,are the best characterized EVs. Exosomes
are small membrane vesicles about 50–100 nm in diameter that are
secreted by cells into the extracellular compartment when MVBs
in the cells fuse with the plasma membrane [reviewed in Ref. (42)].
MVBs in turn are formed by membrane invagination of late endo-
somes. Therefore, all cells that could generate MVBs have the
potential to produce exosomes. As the biogenesis of exosomes
from endosomes involves a reverse budding process, exosome
membranes have the same directional orientation as cells with
the cytosol inside the luminal space, and extracellular domains

of membrane proteins exposed at external surface. The release
of exosomes through fusion of MVBs with the plasma membrane
has been documented by electron microscopy while the endosomal
origin of exosomes are supported by the enrichment of endosome-
associated proteins such as the Rab proteins, ALIX, TSG101, or
endocytic proteins such as transferring receptors, clathrins (3, 9,
43, 44) (Figure 1).

Since EVs are released to the extracellular space, these vesicles
are routinely purified from cell culture supernatants or biological
fluids. EV purification from cell-conditioned culture media clas-
sically involves a series of differential centrifugations to remove
dead cells and large debris, and then a final high speed ultra-
centrifugation of about 100,000× g for at least 1 h to pellet EVs
(37, 45, 46). As exosomes have a characteristic flotation density
of 1.13–1.21 g/ml, an additional equilibrium density gradient cen-
trifugation is often used to enhance the purity of the exosome
preparation. However, ultracentrifugation has poor scalability and
is thus not amenable to large scale manufacturing processes.
Another common method is to isolate EVs or exosomes by their
size as in size exclusion chromatography (47, 48). To enhance
the resolution of size exclusion chromatography, our laboratory
routinely uses high-performance liquid chromatography (HPLC)
to purify exosomes from MSC-conditioned medium (49). Other
methods of isolation include immunoaffinity chromatography
where exosomes are captured using antibody that recognizes a
marker enriched on exosomes such as MHC class II molecules for
antigen-presenting cells (APC)-derived exosomes (50), A33 (5), or
EpCAM (51) for exosomes from tumor cell line, or CD63, which
could theoretically be used for exosomes from all sources (52, 53).
However, these isolation techniques frequently require biologically
harsh conditions, such as low pH or high salt concentration, to
release the bound EVs such that the biological activity of the EVs
would be compromised. Like the other isolation techniques, these

FIGURE 1 | Exosome biogenesis and secretion. Exosomes are
released by cells when intracellular organelles called multivesicular
bodies (MVBs) fuse with the plasma membrane. MVBs are formed by
invaginations of late endosomes, which contained molecules from
the Golgi (e.g., MHC class II molecules) or the cell surface (e.g.,

growth factor receptors). Consequently, exosomes contain cytosolic
materials and are enriched in endosome-associated protein markers
such as the the Rab proteins, ALIX, TSG101, and MHC class II
molecules or endocytic proteins, such as transferrin receptors and
clathrins. This figure was modified from Lai et al. (169).
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methods may not differentiate between different classes of EVs or
between EVs and large protein complexes. Despite the challenges
in isolating specific classes of EVs, the isolation of exosomes for use
in clinical testing has already been described (54, 55). The isolation
process usually includes a filtration step to isolate large complexes
followed by equilibrium density gradient centrifugation to isolate
complexes according to density.

EVs AND IMMUNITY
Vertebrates have two arms of immune systems, namely the innate
and adaptive immune systems. The innate immune system is
an evolutionarily conserved immune system found in all multi-
cellular organisms while the adaptive immune system is found
only in vertebrates (56). The innate immune system is generally the
first line of defense against microbial pathogens or tissue damage
and mediates inflammation. It is activated through a limited set of
germline-encoded receptors that recognizes pathogen-associated
molecular patterns (PAMPs) from infectious agents, or damage-
associated molecular patterns (DAMPs) releasing from dying cells
(57, 58). These germline-encoded receptors are often referred to
as pattern recognition receptors (PRRs). In mammals, Toll-like
receptors (TLRs) are the best characterized examples. In addition,
other receptors such as nucleotide-binding and oligomerization
domain (NOD)-like receptors (NLRs), retinoic acid-inducible
gene I (RIG-I)-like receptors (RLRs), and some C-type lectin
receptors (CLRs) also recognize specific components of microbes
and are therefore considered as innate immune receptors (59, 60).
In contrast, antigen receptors in the adaptive immune system are
not germline-encoded but generated through somatic hypermuta-
tions (61). Hence the adaptive immune system has an immensely
wider repertoire of antigen receptors compared to the limited set
of receptors for PAMPs or DAMPs in the innate immune system.
As such, the adaptive immune system also has the potential to
fine tune its antigen recognition to a high degree of specificity
and avidity. Induction of adaptive immunity depends on anti-
gen recognition by antigen receptors on adaptive immune cells
followed by subsequent activation and clonal expansion of cells
carrying the appropriate antigen-specific receptors (62). The two
main cell types in adaptive immune system are T and B cells. Unlike
B cells, naïve T cells do not recognize antigens and their capacity to
recognize antigens have to be activated through a process known
as antigen presentation. During antigen presentation, APCs such
as DCs or macrophages internalize foreign antigens, process, and
load the processed antigens onto MHC I and MHC II molecules
for presentation to naïve CD8+ and CD4+ T cells, respectively.
Together with co-stimulatory molecules such as CD80 and CD86,
the antigen-MHC class I or II complex on APCs activates T cells
and imparts the memory of the antigen to the T cells (63–66).

Antigen presentation was generally assumed to be a cell–
cell interaction until it was discovered that Epstein–Barr virus-
transformed B lymphocytes secreted exosomes carrying anti-
genic peptide bound-MHC class II dimers. These exosomes could
induce antigen-specific MHC class II-restricted T cell response
(Figure 2A) (38). Subsequently, DCs were also found to secrete
exosomes with MHC class I and II, and T cell co-stimulatory mol-
ecules. When pulsed with tumor peptides, DCs secrete exosomes
that could activate cytotoxic T lymphocytes and suppress tumor

growth in a T cell-dependent manner (Figure 2B) (23). It was
further observed that allogeneic and autologous exosomes were
equally efficient in eliciting anti-tumor protection (67). Since then,
exosomes have been reported to play an extensive role in antigen
presentation. Exosomes purified from ascites of tumor patients
(68) or culture medium of tumor cell lines (17, 69) have been
shown to carry tumor antigens. When pulsed with these exosomes,
DCs endocytose the exosomes and present the exosome-associated
tumor antigens on their MHC molecules to activate tumor-specific
cytotoxic T lymphocytes (Figure 3) (17, 69–71). However, the role
of exosomes in antigen presentation is not restricted to the con-
veyance of antigens to APCs for T cell activation. Some exosomes,
particularly those derived from mature DCs are known to carry
MHC II–peptide complexes and they could activate T lympho-
cytes directly (Figure 2B). For example, DC-derived exosomes
could activate CD8+ cytotoxic T lymphocytes clones by them-
selves (72–74). However, it has been reported that such activation
is generally inefficient compared to activation in the presence of
DCs (75).

The antigen-presenting capacity of exosomes from DCs
depends on the maturation state of the DCs with less exosomes
being produced as the cells mature (76–79). Unlike exosomes
from immature DCs, exosomes from mature DCs carry MHC
class II and co-stimulatory molecules such as B7.2, ICAM-1,
but not MFG-E8 on their membrane (70, 80–84). As such, they
can interact directly with T cells to activate the immune system
and eradicate tumor or bacteria or virus (23, 85, 86). However,
these MHC class II-expressing exosomes have also been impli-
cated in immune suppression and prolonged survival of allografts.
When administered to rats prior to heart allograft transplanta-
tion, MHC class II-expressing exosomes from donor DCs pro-
long graft survival with a significant concomitant decrease in
recipient CD4+ T cells and increased anti-donor MHC class II
alloantibody production suggesting that these exosomes can mod-
ulate immune response by either inducing tolerance or immune
reactivity (Figure 2B) (87).

On the other hand, exosomes from immature DCs while pro-
duced in greater abundance, are 50- to 100-fold less potent in
T cell stimulation (82). This attenuated potency has been attrib-
uted to the absence of MHC class II and co-stimulatory molecules
such as B7.2, ICAM-1 on their membrane (70, 80–84). Instead
of T cell stimulation, these exosomes help distribute antigens
to other APCs for antigen presentation and subsequent immune
modulation (Figure 2B) (79). Additionally, exosomes from imma-
ture DCs carry MFG-E8, which binds phosphatidylserine and
opsonizes apoptotic cells for phagocytosis (88),possibly enhancing
the antigen presentation function of immature DC exosomes.

Exosomes secreted by immature DCs could be either immune
suppressive or activating. Exosomes derived from immature, gene-
modified, or interleukin (IL)-10-treated DCs have been shown to
induce immune suppression in murine models of transplantation
and auto-immune disease (89–97). At the same time, when imma-
ture DCs were pulsed with pathogen-associated antigens such as
Toxoplasma gondii antigen, diphtheria toxin, or Eimeria tenella
antigens, they produce exosomes that confer immune protection
against these pathogens (23, 67, 85, 86, 98–100). Incidentally, this
immune protection is known to include polyclonal activation of

www.frontiersin.org October 2014 | Volume 5 | Article 518 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhang et al. Immunotherapeutic EVs

FIGURE 2 | Exosomes from immune cells are shown. This figure
summarizes the different known activities of exosomes from immune cells.
(A) B cell secretes exosomes carrying MHC class II–peptide complexes as a
mode of antigen presentation to primed CD4+ T cell. (B) DC-derived
exosomes carry MHC class I or II-peptide complexes that can be either

directly recognized by pre-activated CD4+ or CD8+ T cells or captured and
presented by DCs to activate naïve T cells. (C) Macrophages infected with
pathogens secrete exosomes with pathogen antigens. These exosomes
induce maturation of DCs and promote secretion of pro-inflammatory
cytokines.

B cells as well (101). Thus exosomes from immature DCs elicit the
immune suppression or immune activation (Figure 2B) [reviewed
in Ref. (90, 102, 103)].

This capacity of DC-derived exosome to suppress or activate
the immune system indicates that exosome is an important com-
ponent of the complex immune network in mediating a steady
state between immune tolerance and rejection. It also serves an
underpinning rationale for the use of DC-derived exosomes in

vaccination trials to treat melanoma and non-small cell lung
cancer patients (102).

Besides DCs, which secrete exosomes targeting mainly the
adaptive immunity (104), other cell types when challenged also
secrete immunologically active exosomes targeting primarily but
not exclusively the innate immunity. Macrophages when infected
by pathogens such as mycobacterium or toxoplasma, release EVs
containing PAMPs that induce secretion of pro-inflammatory
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FIGURE 3 | Exosomes from tumor cells are shown. Tumor
cell-derived exosomes can be either immune suppressive or
activating. These exosomes exert some of their immune suppressive
activities on T cells through FasL, galectin-9, TGFβ, or NKG2D ligand

carried by the exosomes. Others inhibit differentiation of DCs or
MDSCs through unknown mechanisms. However, tumor cell-derived
exosomes also carry tumor antigens that could elicit an anti-tumor
response.

cytokines and recruitment of immune cells (Figure 2C) (105–
107). These EVs have also been implicated in the progression of
auto-immune diseases. For example, it was observed that fibrob-
lasts from synovial fluid of patients with rheumatoid arthritis
secreted EVs carrying active membrane-bound TNF-α can inhibit
T cell activation-induced cell death (AICD) (108) and EVs present
in the bronchoalveolar fluid of patients with sarcoidosis also
displayed pro-inflammatory activities (109).

Tumor cells also secrete immunologically active EVs. Some of
these EVs are pro-inflammatory while others are immune suppres-
sive (Figure 3). Heat-shocked tumor cells secrete EVs that pro-
mote NK cell activity (110), secretion of TNF-α by macrophages
(111), and stimulate T cell activation (112, 113). Anticancer drug-
treated carcinoma cells release exosomes with heat shock proteins
(HSPs) that elicit effective NK cell anti-tumor responses (114)
while exosomes from ascites of gastric cancer patients induce a
tumor-specific CTL response (115). On the other hand, EVs from
tumor cell lines or tumor-bearing patients were found to carry
various immunosuppressive molecules that when tested in vitro,
induced T cell apoptosis via Fas ligand (FasL) (48, 116–118)
and galectin-9 (119, 120), inhibited IL-2-induced T cell prolif-
eration (121), and/or promote differentiation into Tregs (122,
123). They also decreased NK cell activity (41, 124, 125), inhibited
myeloid precursor differentiation into DCs (126), and promoted
the differentiation of myeloid-derived supressor cells (MDSCs)
(127–130). Hence, tumor cells secrete EVs that could both inhibit

tumor growth by eliciting anti-tumor immune responses (131)
and promote tumor growth by inhibiting anti-tumor immunity
or enhancing angiogenesis and/or metastases (132).

Aside from pathological situations, exosomes are also used
to modulate immune activity to support normal physiological
processes. Like tumor EVs, normal tissues also produce EVs that
are functionally dichotomous (Figure 4). During early pregnancy,
trophoblast secretes exosomes to recruit and educate mono-
cytes to initiate a pro-inflammatory microenvironment essen-
tial for embryo implantation, angiogenesis, and stromal remod-
eling associated with early pregnancy (133). These exosomes
induce macrophages to synthesize and release pro-inflammatory
cytokines, including IL-1β via exosome-associated fibronectin
(134). In contrast to the trophoblast, other tissues such as the
prostate and placenta also secrete EVs to attenuate immune activ-
ity and facilitate normal physiological activity such as fertilization
and pregnancy. It has been proposed that EVs in semen and secre-
tion from placental explants mediate protection of the sperms and
fetus from immune attack by the host tissues via NKG2D ligands,
which reduce cytotoxicity of NK and CD8+ T cells (135, 136).
EVs have also been implicated in pregnancy-associated immune
suppression via the expression FasL, which is known to induce T
cell anergy (137, 138). Other tissues that secrete EVs to attenuate
inflammatory response include EVs secreted by intestinal epithe-
lium to promote oral tolerance in rat (139) and EVs in milk and
colostrum that exert immunosuppressive effects on T cells (140).
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FIGURE 4 | Exosomes from normal tissues are shown. Normal tissue-derived exosomes exert multiple immune-modulatory activities to support normal
physiological processes such as embryo implantation, fertilization, pregnancy, and oral tolerance.

THERAPEUTIC STEM CELLS AND EXOSOMES
Mesenchymal stem cell, a widely distributed stromal support cell
in body, is the most widely used stem cell type in clinical trials
today with more than 306 trials1 to treat many diseases including
many immune diseases such as multiple sclerosis (141) and auto-
immune rheumatologic disorders (142). MSCs have been reported
to exert both suppressive and regulatory effects on autologous and
allogeneic adaptive and innate immune cells (143) such as inhibit-
ing mitogen-activated T cell proliferation (144–148), inducing an
anti-inflammatory tolerant phenotype in immune cells (149) and
inhibit B cell proliferation (150). These effects provide a rationale
for the approval of MSC in the treatment of pediatric graft-versus-
host disease (GVHD) in Canada and New Zealand, and in its
testing against immune diseases such as Crohn’s disease (151)
and type 1 diabetes (152). However, the molecular mechanism
underpinning these immune activities remains unresolved. It is
observed that the efficacy of MSCs against severe GVHD (153)
does not impair graft versus-leukemia (GVL) reaction (154) or
suppress T cell proliferation (155). Increasingly, it was proposed
that MSC secretes factors such as interferon-γ (IFNγ), TGF-β,
PGE2, HLA-G, IL-10, and indoleamine 2,3-dioxygenase (IDO)
to expand Tregs, which in turn, attenuate GVHD [reviewed in
Ref. (156)]. However over the years, each of these secreted factors
could not by themselves adequately account for the immunomod-
ulatory activity of MSCs [reviewed in Ref. (157)]. For example,
the immunomodulatory activity of MSCs was not compromised

1http://www.clinicaltrials.gov/; accessed March 2013

by a lack of IDO production caused by either defective IFN(γ)
receptor 1 or IDO inhibitors (158) thus eliminating interferon-γ
(IFNγ) (159–161) and IDO (162) as the secreted candidates for
MSC immune activity.

The molecular mechanism underpinning MSC-mediated
immunoregulation is likely to be complex and mediated by
the synergism of several rather than single molecules. Hence,
exosomes or EVs, which carry a multitude of molecules, are
ideal secreted agents to mediate the immune-modulatory activ-
ity of MSCs. MSCs were first reported to secrete microvesi-
cles in 2009 (163) and exosomes in 2010 (49). Some features
of the immunomodulatory property of MSCs have been repli-
cated by purified MSC exosomes. In a mouse model of myocar-
dial ischemia/reperfusion injury, MSC exosomes attenuate injury
induced inflammatory response as evidenced by reduced white
blood cell count and tissue infiltration of neutrophils (164). We
have also shown that MSC exosomes delay the rejection of allo-
geneic skin grafts in mice with a concomitant increase in Tregs
(22) and inhibit complement-mediated lysis of sheep red blood
cells in a CD59-dependent manner (165).

EVs OR EXOSOMES AS IMMUNOTHERAPEUTIC AGENTS
The extensive implication of EVs in modulating diverse aspects of
the immune system to either enhance or suppress immune activ-
ity makes EVs attractive candidate immunotherapeutics. While
this functional dichotomy increases the versatility of EVs as ther-
apeutic agents, it also increases the risk of unpredictable adverse
outcomes. To mitigate this risk, it is therefore critical that EVs
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with the appropriate functional properties are isolated for therapy.
As discussed earlier, the capacity of EVs to enhance or suppress
immune activity depends on the cell source, state of the cell source,
e.g., maturity, and the type of EV. Hence a minimum requisite for
the development of EVs as immunotherapeutic agents is a physical
and biological characterization of each of the different EV types
produced by a cell in a specific physiological state such that the
EV type with appropriate functional properties can be isolated.
Unfortunately, this is a highly intractable issue that is endemic in
the EV research community. As discussed in the Section “Intro-
duction,” there is presently a lack of clarity in defining the classes
of EVs, the role of EVs or exosomes as mediators of intercellu-
lar communication. There is presently a concerted effort within
the EV research community2 to first define and standardize the
nomenclature for EVs and the EV isolation.

In spite of these challenges, the prospect of EV-based
immunotherapy remains highly promising. Unlike cell-based
immunotherapy, EV being a non-viable cellular product has many
advantages. In cellular immunotherapy, the need to preserve cell
viability increases a layer of complexity to its manufacture, stor-
age, transport, and transplantation. In contrast, EVs are biologics
and are thus more amenable to a strictly regulated and monitored
manufacturing process. This will essentially translate into better
qualified and safer off-the-shelf products that could be delivered
to patients in a timely manner. The administration of EVs instead
of cells would also alleviate many of the risks associated with viable
cellular therapy. The use of viable replicating cells as therapeutic
agents carries unique safety risks and challenges as the biolog-
ical potency of the agent may persist or amplify even after the
disease has been resolved, leading to adverse immune dysfunc-
tions such as increased cancer risk and increased susceptibility
to infection or auto-immune disease. In addition, the process of
administering cells while generally safe (166) could cause com-
plications such as occlusions in the distal microvasculature, as
cells are generally much larger than the usual therapeutic small
molecules or biologics (167). Furthermore, the differentiation
potential of cells could generate inappropriate and potentially
deleterious cell types. For example, the osteogenic and chon-
drogenic potential of MSC has raised safety concerns as a high
frequency (51.2%) of ossifications and/or calcifications in tissues
has been reported in some animal studies (168). In conclusion,
the benefits of an EV-based immunotherapy vis-a-vis the risks
of a cell-based immunotherapy provide a compelling rationale to
develop an EV-based immunotherapy.
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