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Hepatitis C virus (HCV) remains a global problem, despite advances in treatment. The low
cost and high benefit of vaccines have made them the backbone of modern public health
strategies, and the fight against HCV will not be won without an effective vaccine. Achieve-
ment of this goal will benefit from a robust understanding of virus–host interactions and
protective immunity in HCV infection. In this review, we summarize recent findings on HCV-
specific antibody responses associated with chronic and spontaneously resolving human
infection. In addition, we discuss specific epitopes within HCV’s envelope glycoproteins
that are targeted by neutralizing antibodies. Understanding what prompts or prevents a suc-
cessful immune response leading to viral clearance or persistence is essential to designing
a successful vaccine.
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INTRODUCTION
Between 130 and 185 million people worldwide are infected with
hepatitis C virus (HCV) and are at risk of cirrhosis, hepatocellu-
lar carcinoma, and end-stage liver disease (1–3). HCV, a member
of the Flaviviridae family, is parenterally transmitted. HCV estab-
lishes a persistent infection in 60–80% of individuals infected.
The treatment for HCV has long been pegylated interferon alpha
co-administrated with ribavirin, but the response rates were unsat-
isfactory with only 50–60% of patients achieving a sustained
virologic response (4, 5). The welcomed discovery of new directly
acting antiviral drugs (DAAs) is expected to lead to a dramatic
increase in cure rates (6–8). However, it is unlikely that the global
HCV problem will be eliminated any time soon. There are numer-
ous challenges that must be overcome first, including the prohibi-
tive cost of treatment and the need for new treatment strategies for
patients with advanced liver disease or co-morbidities (9). Another
important obstacle is identifying those in need of treatment, since
symptoms may be absent or non-specific until after significant
liver damage has set in (10).

The development of a protective vaccine is essential in com-
bating the global HCV epidemic. Understanding the immune
response in those who spontaneously resolve HCV infections ver-
sus those who develop chronic infection is key to the development
of prophylactic or therapeutic vaccine (11). So far, developing a
HCV vaccine has proven challenging, not least because HCV is
genetically highly diverse; there are seven known major genotypes
that differ from each other by 30–35%, and over 60 subtypes (12).
Indeed, the virus exists as a quasispecies – a swarm of related
but distinct sequences – within an infected patient. This diver-
sity is a consequence of HCV’s high replication rate, and an
RNA polymerase that lacks any proofreading mechanism. High
viral diversity within and between infected individuals poses chal-
lenges to vaccine developers: how can we devise a vaccine that

will stimulate broadly cross-reactive immune responses to such a
changeable foe? The key may well be to target an array of viral epi-
topes that are functionally constrained, and to enlist both humoral
and cellular arms of the adaptive immune response. In particular,
it will be important for the vaccine to elicit neutralizing antibod-
ies (nAbs) to block viral access to target cells, and T-cell responses
targeting infected cells (13).

Adaptive immune responses are typically delayed during acute
HCV infection. HCV RNA can be detected 1–3 weeks following
infection, but neither HCV-specific T-cells nor HCV-specific anti-
bodies (Ab) are observed until 1–2 months after infection (14–18).
Both CD4+ and CD8+ T-cell responses play essential roles in
the outcome of infection. CD8+ T-cells limit HCV replication
through cytolytic and non-cytolytic immune mechanisms that are
highly dependent on CD4+ T-cell function [reviewed in Ref. (19–
23)]. Vigorous and broadly directed anti-HCV T-cell responses
are observed in patients who resolve infection (24–27). In patients
who progress to chronicity, initial vigorous T-cell responses wane
and weaken. Loss of CD4+ T-cell help, a switch to a Treg cell pro-
file, viral epitope escape, and chronic antigen stimulation may all
contribute to T-cell exhaustion (23).

It was widely thought that the humoral immune response to
HCV played only a peripheral role in HCV infection (24, 28,
29). However, recent studies suggest that B-cells and nAbs may
play active roles in the spontaneous resolution of HCV (30–33).
Typically, an nAb response would be a component of sterilizing
antiviral immunity and has long been a quintessential part of vac-
cine design (13, 34). An HCV vaccine will need to stimulate strong
humoral as well as cellular immune responses. The role of humoral
immune system in the both the control of HCV infection and in the
pathogenesis of liver disease is still unclear. In this review, we hope
to outline our current understanding of the humoral immune sys-
tem’s roles in acute infection, the progression to chronicity, and the
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spontaneous resolution of HCV infection, and to highlight some
of the pressing questions that need to be addressed.

nAb EPITOPES
Antibodies produced during acute HCV infection target epitopes
within both structural and non-structural (NS) viral proteins.
However, all known nAbs target epitopes within the HCV envelope
glycoproteins E1 and E2, or the E1E2 heterodimer. The structural
proteins core, E1, and E2 are released from the viral polyprotein
by cellular signal peptidases. The viral particle contains the nucle-
ocapsid, formed by the close interaction of the HCV RNA genome
and core protein, surrounded by a lipid bilayer envelope into which
the glycoproteins E1 and E2 are anchored. E1 and E2 form a het-
erodimer that mediates viral entry. Determining the structure of
the E1E2 heterodimer has proven problematic. E2 is required for
the correct folding of E1, so that E1’s structure is still uncertain (35,
36). It is thought that the glycans on both the heavily glycosylated
E1 and E2 are involved in folding of the E1E2 heterodimer (37).
Interestingly, nAbs (AR4 and AR5) have been found that recog-
nize conformational epitopes on the E1E2 heterodimer with broad
neutralizing crossreactivity between diverse HCV genotypes (32).

Most nAbs target E2. E2 plays a key role in HCV entry, directly
interacting with two of the cellular proteins needed for viral entry,
CD81 and scavenger receptor class B type I (SR-BI) (38, 39). CD81
and SB-RI alone are not sufficient for viral entry; tight junction
proteins claudin-1 and occludin are also required (40, 41). Other
factors, such as the cholesterol absorption receptor Niemann-Pick
C1-like 1, epidermal growth factor receptor, ephrin receptor type
A2, and most recently, transferrin receptor 1 enhance viral entry
(42–44).

Two recent reports have shed light on the structure of E2 (45,
46). Most surprisingly, E2 did not adopt the expected, highly
extended conformation of class II fusion envelope protein like
other members of Flaviviridae, such as Tick-borne encephalitis
virus or West Nile virus; instead, HCV E2 was found to be compact
and globular (Figure 1), with a central beta sandwich surrounded
front and back by short alpha helices, loops, beta sheets, and
regions lacking organized structure (45, 46).

The ectodomain of E2 contains three regions of variability that
are targeted by nAbs: hyper-variable region (HVR) 1, HVR2, and
intergenotypic variable region. HVR1 contains dominant neutral-
izing epitopes, and its variation leads to immunological escape
(47–50). HVR1 is a 26–28 amino acid segment located near the
amino terminus of E2. HVR1 interacts with SR-BI and is, there-
fore, likely involved in virus entry, making it an interesting target
for nAbs (51, 52). The most-effective nAbs that target HVR1 recog-
nize epitopes found in the C-terminus, where HVR1 interacts with
SR-BI (52–54). However, HVR1 mutates rapidly and antibodies
that recognize HVR1 demonstrate very poor cross-neutralization
across different isolates of the same HCV genotype (50, 55, 56).
As of yet, no HVR1 nAbs have been found that display broadly
cross-reactive neutralizing activity.

CD81 was the first host receptor identified as being a cru-
cial entry factor for HCV and, therefore, the CD81-binding
region of E2 is a likely target for nAbs (38). Indeed, numerous
broadly nAbs have been found to target the CD81-binding loop
(residues 519–535, numbered according to the HCV H77 con-
sensus sequence accession number AF009606) of E2 (30, 32, 45,
57–60). Kong and colleagues found evidence to suggest CD81
interacts with both the CD81-binding loop (519–535) and residues

FIGURE 1 | HCV envelope glycoprotein 2 surface representation. E2 is a
globular protein with three regions of hypervariablity – HVR1, HVR2, and
intergenotypic variable region – shown in green. Domains whose structures
are currently unknown are depicted as shapes apart from the structure. HVR1
is predicted to mask a hydrophobic region that is sensitive to nAbs. E2’s

broadly neutralizing face, where many broadly neutralizing Abs bind,
comprises CD81-binding loop (in red), residues 421–453 (in orange), residues
502–520 (in pink), and residues 412–421 (in purple). The possible positions of
some glycans are shown as stick and ball figures. E2 structure obtained from
PDB (4MWF) (45).
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421–453 of E2, making this domain in E2 a most intriguing tar-
get for vaccine design (Figure 1) (45). nAbs have also been found
that target the less variable region directly downstream of HVR1
(residues 412–421) (61–63). However, less than 5% of sponta-
neous resolvers have nAbs targeting this region, suggesting that
this region is not as immunogenic in vivo (64). A highly con-
served neutralizing epitope encompassing residues 496–515 is
located between the two CD81-binding regions of E2 (Figure 1).
Although not directly involved in CD81 binding, binding of nAbs
to the 496–515 epitope may cause a conformational change in
the CD81-binding region (65). Contrary to what was previously
thought, the overlapping residues 502–520 do not contain a fusion
peptide (66, 67).

Most of the identified nAbs target regions within E2 that inter-
act with the viral entry factors CD81 and SR-BI. Occludin is also
thought to interact directly with E2 (68); perhaps mapping of
this interaction will allow the development of novel nAbs. In con-
trast, claudin-1 has not been shown to interact directly with E2.
Would targeting the viral epitope that recognizes claudin-1 pre-
vent entry? Perhaps we know that blocking claudin-1 prevents
E2/CD81/claudin-1 interaction, thereby preventing HCV entry
(69). Targeting host factors such as SR-BI, CD81, occludin, or
claudin-1 may provide novel therapy options that could be used
in conjunction with current treatments (70).

Few nAbs have been identified that specifically target E1 (11,
71). Whether this is due to the poor immunogenicity of E1 is
still unclear. Anti-E1 Abs are only detected at low levels in HCV
patients (72, 73). A recent study reported that patients develop
almost sevenfold more antibodies to E2 than to E1 (study in four
patients); however, the E1-specific Abs contributed largely to the
overall neutralization of HCVpp, despite the relatively low number
of E1-specific Abs compared to E2 (74). Anti-E1 Abs have proven
difficult to induce in vaccines expressing the E1E2 heterodimer,
and are more efficiently induced by expressing E1 alone (75).
Whether this is due to the immunodominance of E2 or the mask-
ing of E1 neutralizing epitopes by E2 is unknown. Two broadly
neutralizing epitopes in E1 encompass residues 192–202 (76) and
264–327 (65, 74, 77). Little is known about the structure, function,
and interactions of E1. We know that E1 is involved in E2 folding
(78). It is uncertain how E1-specific nAbs mediate their activity.
It has been suggested that E1 may contain the element needed for
envelope membrane fusion; as such E1 and the (as yet unidenti-
fied) fusion epitope it may contain remain an intriguing target for
nAbs (79).

The HCV virion forms a complex with low-density and very
low-density lipoproteins, forming a lipoviral particle (80). Studies
of lipoviral particles showed that host lipoprotein apoE was incor-
porated into particles with significantly more apoE incorporated
than E2 (81, 82). Lipoproteins limit the amount E1E2 to be seen
on the surface of the lipoviral particle (82).

Interestingly, many HCV diagnostic assays detect Abs directed
against both structural and NS HCV proteins. Why are NS proteins
targeted? There is little evidence to suggest they are incorporated
into the viral particle, yet NS3-specific Abs are detected before
envelope-specific Abs during acute HCV infection (17). It is not
yet clear when and in what form the NS proteins are exposed to
B-cells. Perhaps NS protein-specific Abs are produced in response

to debris from damaged cells. Abs binding to non-neutralizing
targets may aid in clearance through opsonization.

SYSTEMS FOR STUDYING Abs
The study of Ab responses in HCV infection was long hampered by
the lack of a cell culture system or permissive small animal model.
Early in vivo studies, conducted in chimpanzees, confirmed the
presence of nAbs in plasma from a human being with chronic
HCV infection (83). Initial in vitro research on the effect of nAbs
in HCV exploited E2/CD81 interaction to perform a neutraliza-
tion of binding assay with recombinant E2 (38). This system was
limited, as it could only evaluate putative neutralizing epitopes
overlapping with the E2/CD81-binding region, and likely under-
estimated the quantity and complexity of nAbs present. Virus-like
particles (VLP), produced in a baculovirus system, expressed the
E1E2 glycoproteins in a more native conformation (84). The
development of retroviral pseudoparticles (HCVpp) expressing
unmodified E1E2 glycoproteins that has permitted a more in-
depth study of HCV-specific nAbs (50, 85). The HCVpp system
is adaptable to allow the expression of E1E2 glycoproteins from
diverse HCV genotypes as well as the expression of patient-derived
E1E2 (86). This allows patient sera to be screened for neutraliz-
ing activity against autologous viral envelope glycoproteins. E1E2
sequences may be cloned from patients’ serial samples, permit-
ting the study of quasispecies and nAb co-evolution over time.
Unfortunately, a disadvantage of this system is that the structure
and neutralization requirements of HCVpp are still significantly
different from those of authentic hepatocyte-derived HCV. The
cell cultured derived HCV system (HCVcc) (87–90) may help
overcome some of the limitations of the HCVpp system.

HUMORAL IMMUNE RESPONSE IN INFECTION
While the majority of HCV-infected patients progress to chronic
hepatitis with persistent viremia, a significant number (up to 40%)
of patients spontaneously clear the infection depending on fac-
tors such as, race, sex, and genetics (91–95). It is widely accepted
that the cellular immune response can mediate clearance of HCV
infection [reviewed in Ref. (23)], but the role of the humoral
immune response in acute infection and spontaneous clearance
is not fully understood. nAbs are produced in response to HCV
infection, but their contribution to control of infection is unclear
(83). The acute humoral immune response to HCV has proved
challenging to study, as most often patients are asymptomatic
and unaware of their infection status; many studies have been
retrospective. Typically, IgM is the first immunoglobulin isotype
produced by the humoral system in response to infection; however,
HCV-specific IgM has not proved a good marker of acute HCV
infection as HCV-specific IgM is readily detected in chronically
infected patients (96, 97), and HCV-specific IgM and IgG are both
almost simultaneously detected in acute infection (98, 99).

There is much evidence to support the theory that Abs have a
limited impact on HCV disease outcome as HCV seroconversion
is delayed (15, 17, 100, 101), nAbs that target E1E2 are readily
detected in the serum of chronically infected patients (29, 102–
104), HCV-specific Ab titers wane in patients who have controlled
the infection (17, 29, 105, 106), and there are numerous reports
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of the clearance of HCV infection in the absence of any detected
HCV-specific Ab response (15, 28, 107–110).

In contrast, there is striking evidence supporting a role for
Abs in control of HCV infection and more interestingly in pre-
venting reinfection. Early induction of cross-reactive nAbs during
acute infection strongly correlates with the spontaneous clearance
of HCV (31, 33, 50, 73, 111, 112). Conversely, in patients who
became persistently infected (>1 year), nAbs were delayed and ini-
tially had a narrow neutralizing range, which widened over time
(31, 33, 73). In one remarkable case, a patient with established
chronic HCV developed a broadly reactive nAb response followed
by spontaneous viral clearance (111). Even in chronicity, nAbs may
mediate some control of HCV infection as hypogammaglobuline-
mic patients experience a more rapid and severe progression of
disease (113), and patients treated with rituximab show an increase
in viral load, which returns to pretreatment levels after comple-
tion of treatment (114). Studies in cohorts of intravenous drug
users have shown that individuals who spontaneously resolved one
episode of HCV infection were more likely to clear a subsequent
HCV infection (31, 91, 94, 115), and the time taken to clear the
reinfection was significantly shorter (31, 115). Similar to observa-
tions in cohorts of intravenous drug users, >80% of chimpanzees
that have previously spontaneously cleared HCV, rapidly clear a
second infection (16, 109, 116), supporting the hope that protec-
tive immunity may be an achievable goal. More work is needed to
elucidate the contribution of Abs to the clearance of in HCV in
reinfection.

Passive immunization with nAbs can mediate protection: chim-
panzees passively immunized with rabbit antisera specific for E1
and E2 were somewhat protected against HCV (117). Recently,
HCV1, a human monoclonal Ab targeting E2, has been shown
to prevent HCV infection and to reduce the viral load in chroni-
cally infected chimpanzees (118). Passive immunity is possible in
human beings – it is best highlighted by the Gammagard inci-
dent (119). In the early 1990s, the makers of Gammagard (an
immunoglobulin product prepared from pooled human plasma),
in a move to improve the safety of their product, excluded sera
containing anti-HCV Abs from the donor pool; unfortunately, the
pooled preparations that removed the HCV seropositive serum
lots transmitted HCV to patients (120, 121). Removing HCV-
specific Abs from the product removed the protection provided
by nAbs previously present. Subsequent screening of the prod-
uct found HCV RNA (122). HCV-specific Abs provide immunity;
however, it is not a sterilizing immunity, as demonstrated by the
presence of high-titer nAbs in many patients with persistent HCV
infection.

VACCINE TRIALS
Vaccination has been the most-effective strategy used to control
infections that have been a major public health concern. The
hepatitis B virus (HBV) vaccine has proven a great success, greatly
reducing the number of HBV infections worldwide (123). All suc-
cessful viral vaccines that have been developed to date induce
nAbs (13). However, an HCV vaccine has remained elusive. Most
HCV vaccine trials have been conducted in chimpanzees, the
best model permitting challenge with infectious HCV. A meta-
analysis of HCV vaccine trials in chimpanzees has shown that the

vaccines with greatest success contained part or all of the HCV
envelope region inducing nAb responses, generating humoral or
both humoral and cellular immune responses (124). Recently, a
recombinant E1E2 vaccine (derived from HCV 1a) induced pro-
tective humoral immune responses in chimpanzees challenged
with homologous or heterologous HCV 1a strains (125), and was
approved for phase I clinical trial in human beings. In the clinical
trial, the recombinant E1E2 vaccine induced antibody and cel-
lular responses in healthy volunteers (126). Further investigation
showed the vaccine-induced nAbs against heterologous HCV 1a
strains in some healthy volunteers, and one volunteer (out of 16
tested) produced broadly cross-neutralizing Abs against all 7 HCV
genotypes (127). A prophylactic vaccine that blocks all infection
upon exposure would be ideal. However, preventing the progres-
sion of HCV infection to chronicity through a therapeutic vaccine
may be a more realistic goal (124, 128, 129).

ESCAPE AND EVASION OF THE HUMORAL IMMUNE
RESPONSE
Neutralizing antibodies are induced during HCV infection, which
in some patients contribute to the spontaneous clearance of infec-
tion, yet the majority of infected patients progress to chronic-
ity. How does HCV evade the humoral immune response to
progress to chronicity? Several mechanisms may contribute to eva-
sion of sterilizing Ab-mediated clearance. These include sequence
changes, decoy epitopes, epitope masking, lipid shielding, induc-
tion of interfering antibodies, and the ability to move from one
cell to another in a neutralization-resistant fashion (Figure 2).

Hepatitis C virus’ error-prone replication mechanism permits
rapid escape from Ab-mediated and other pressures. Each day, an
estimated 1012 new HCV virions are produced in the infected liver
(130); it is estimated that thousands of virions bearing each pos-
sible single and double nucleotide substitution are made daily in
an infected person (131). The resulting quasispecies swarm pro-
vides the raw material for selection of nAb-resistant populations
(50, 132, 133). In fact, there are numerous reports that link viral
sequence evolution, particularly within the E2 glycoprotein, to
nAb escape in chronic infection (Figure 2A) (49, 50, 132, 133).
Host nAb responses lag behind the rapidly mutating E2 sequences
within the quasispecies (50, 132). That nAbs fail to neutralize the
dominant viral strain at a given time, yet successfully neutral-
ize previously dominant viral strains in the same patient, clearly
demonstrates the continued evolution and escape of the virus
under selective pressure from nAbs, with the humoral immune
system always, alas, one step behind (132).

It has been suggested that HVR1 of E2 acts as an immunolog-
ical decoy (Figure 2B) (71, 134). HVR1 is highly immunogenic,
but is not essential for viral entry/infection (135); however, HVR1
deletion mutants are far more sensitive to Ab-mediated neutraliza-
tion, suggesting that HVR1 also acts to conceal epitopes sensitive
to neutralization (134–136). nAb selection drives HVR1 sequence
evolution in chronically infected patients, while HVR1 remains
stable over time in immunoglobulin-deficient patients (137–139).
While HVR1 was predicted to be close to the CD81-binding site,
Kong and colleagues have suggested that HVR1 lies on the oppo-
site side of E2 molecule, where it masks a hydrophobic surface that
is very sensitive to nAbs (45).
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FIGURE 2 | Mechanisms of HCV evasion of the humoral immune
system. HCV has developed several strategies for evading the humoral
immune system. (A) A high rate of replication using a polymerase that lacks
any proofreading mechanism leads to generation of a rapidly changing
quasispecies. (B) The highly immunogenic HVR1 masks a hydrophobic
region that is sensitive to nAbs. (C) E2 is heavily glycosylated, containing
between 9 and 11 N-linked glycans (in green) that mask much of the
surface of E2 from nAbs. (D) The close association between HCV and
lipoprotein effectively conceals the lipoviral particle from nAbs. (E) HCV
may bypass the extracellular space and nAbs by spreading cell-to-cell.
(F) Interfering antibodies can disrupt the action of nAbs by binding to
non-neutralizing sites and masking neutralizing sites nearby.

E1 and E2 are heavily glycosylated, particularly the immun-
odominant E2 (Figure 2C). E2 contains up to 11 N-linked glyco-
sylation sites, most of them highly conserved across the different
genotypes [reviewed in Ref. (140)]. The N-linked glycans of the
ectodomains of E1E2 are reported to contribute almost 50% to
the apparent molecular weight of these proteins, and are thought
to limit nAbs’ access to key neutralization epitopes (35, 141).
These glycans are also essential for the structure and function of
E1E2, and play critical roles in viral entry (37, 142–144). Removal
of the glycan shield increases the sensitivity of HCVpp to nAb
activity (143).

The HCV particle is closely associated with lipoproteins (145),
and this association reduces HCV’s buoyant density. Low-density
and very low-density virions are more infectious than high-density
particles (146, 147). The neutralization of HCVcc by nAbs
increased with virion density, suggesting that lipoproteins masked
neutralizing epitopes (148). Significantly more host-derived apoE

was incorporated into HCV virions than E2, making it far more
difficult for the humoral immune system to target E2 (82). Inter-
estingly, apoC-I, the major structural protein of high-density
lipoproteins (HDL), is also incorporated in virions (82, 149, 150).
SR-BI binds HDL and is a known HCV entry factor, suggesting that
HCV has evolved to exploit the normal HDL – SR-BI interaction
to avoid the humoral immune system and expedite the virus life-
cycle (151). Lipoproteins aid HCV evasion of humoral immunity
through two mechanisms: first, the close association of HCV with
low-density and very low-density lipoproteins cloaks the virus,
thus protecting it from nAbs (Figure 2D) (82, 152) and secondly,
HDL expedites virus entry (153).

In vitro and in vivo data suggest that HCV can spread by cell-
to-cell transmission (22, 154, 155). Such cell-to-cell spread may
enable HCV to bypass extracellular fluids, thereby denying nAbs
access to viral particles; indeed, this mechanism appears to be
resistant to Ab-mediated neutralization (Figure 2E) (156). CD81,
claudin-1, occludin, and SR-BI have pivotal roles in the lateral
transmission of HCV, although virions that were not dependent
on SR-BI for transmission were significantly more sensitive to
nAbs (156, 157). The importance of SR-BI in cell-to-cell spread
of HCV would suggest that targeting SR-BI might be valuable
for preventing cell-to-cell transmission and avoidance of the
humoral immune response. It is, therefore, critical we elucidate
the mechanism of cell-to-cell transmission.

Competition between interfering Abs and nAbs can disrupt
virus neutralization by nAbs (Figure 2F). Interfering Abs are pro-
posed to work in two ways: first, by directly competing with nAbs
for the same epitope; second, by binding an epitope near a neu-
tralizing epitope, thereby masking it. The role of interfering Abs in
HCV is controversial (158–163). Abs binding E2 residues 436–447
interfere with nAbs binding to a CD81-binding domain containing
E2 residues 412–421 (58). In contrast, a second study failed to find
any interfering activity and reported the neutralizing activity was
augmented by Abs binding both the 436–447 region and 412–421
region concurrently (162). Further study is needed to tease apart
the mechanisms of interference, especially when considering using
monoclonal Abs in passive immunizations and vaccine design.

Ideally, an effective HCV vaccine will need to generate a broad
and highly reactive immune response at the first signs of HCV
infection, before the virus has the chance to unleash its many
immune escape mechanisms. A vaccine would need to target mul-
tiple antigenic determinants, thus raising the genetic barrier for
mutational escape.

LOOKING FORWARD
The new DAAs will dramatically improve HCV outcome. However,
the development of a prophylactic or therapeutic vaccine is needed
to control the global HCV problem. Successful vaccine develop-
ment is dependent on our understanding of the immune response
to HCV infection. In particular, it is imperative that we understand
why some patients clear the virus naturally and how they are pro-
tected from reinfection. The relativity low cost and high benefit of
vaccines have made them the cornerstone of modern public health
strategies. To date, all successful viral vaccines elicit nAbs (123).
The burning question of whether the humoral immune system can
mediate or contribute to the clearance of HCV is still unanswered.
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In the majority of HCV infections, slow development of an nAb
response allows HCV to establish widespread and persistent infec-
tion. For the lucky minority, the humoral immune system mounts
a rapid, broad attack on HCV, contributing to spontaneous clear-
ance of infection. Perhaps the question is far too simple. Our
immune system by its very nature is a multifaceted entity, where
no one part acts in isolation from the whole. Would the question
of the role of B-cells in HCV be best addressed by taking a sys-
tems approach to the problem? Is it the failure of CD4+ T helper
cells that ultimately leads to the failure of the humoral immune
response, and thus the failure to control the infection? Do the other
immune cells remain silent or do they engage with B-cells? As we
enter the big data era in science, we may be better positioned to
answer some of these questions.
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