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Mast cells (MC) are widely distributed throughout the body and are common at mucosal
surfaces, a major host–environment interface. MC are functionally and phenotypically het-
erogeneous depending on the microenvironment in which they mature. Although MC
have been classically viewed as effector cells of IgE-mediated allergic diseases, they are
also recognized as important in host defense, innate and acquired immunity, homeostatic
responses, and immunoregulation. MC activation can induce release of pre-formed media-
tors such as histamine from their granules, as well as release of de novo synthesized lipid
mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions
but also in numerous physiological and pathophysiological responses. Indeed, MC release
their mediators in a discriminating and chronological manner, depending upon the stimuli
involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated).
However, the precise mechanisms underlying differential mediator release in response to
these stimuli are poorly known. This review summarizes our knowledge of MC media-
tors and will focus on what is known about the discriminatory release of these mediators
dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the
intracellular synthesis, storage, and secretory processes involved.

Keywords: granule, lipid body, exosome, lysosome, exocytosis, secretion

INTRODUCTION
Human mast cells (MC) are often characterized by their ability to
release a variety of important mediators with a diversity of biolog-
ical activities (1). The regulated release of peptides, amines, lipids,
and even some gases depends on several molecular pathways: a
prominent one of which releases large dense core vesicles (gran-
ules) through regulated exocytosis (degranulation); other path-
ways depend upon de novo production of mediators and complex
vesicle trafficking and recycling, including constitutive secretion,
exosomal and endosomal pathways; and other secretory pathways
that are not dependent upon vesicles or membrane-bound moi-
eties [e.g., gases such as nitric oxide by diffusion (2), lipid media-
tors from lipid bodies]. Although research is providing important
new insights, we understand remarkably little about how the medi-
ators are sorted into these secretory pathways and differentially
released (Tables 1 and 2). Unanswered questions include: how are
these pathways similar/dissimilar; how are mediators sorted into
various compartments (e.g., progranules, granules, lysosomes,
secretory vesicles, and exosomes); which stimuli activate these
secretory pathways, and which proteins are involved; how do MC
selectively release different cargo given different stimuli?

Abbreviations: AND, anaphylactic degranulation; BMMC, bone marrow-derived
mast cell; ER, endoplasmic reticulum; LAMP, lysosomal membrane protein; MC,
mast cell(s); M6PR, mannose-6-phosphate receptor; PMD, piecemeal degran-
ulation; SNAP, soluble N -ethylmaleimide-sensitive factor attachment protein;
SNARE, soluble N -ethylmaleimide-sensitive factor attachment protein receptor;
STX, syntaxin; Syt, synaptotagmin; VAMP, vesicle associated membrane protein.

Constitutive exocytosis occurs in the absence of discernable
stimuli for trafficking of secretory vesicles to the plasma mem-
brane and can occur throughout the lifetime of a cell (3). Regulated
exocytosis occurs after a clearly defined stimulus, either through
changes in the extracellular environment [temperature (4, 5), pH
(6), radiation (7), or osmolarity (8)] or ligation of a cell surface
receptor (9). The pathways that control constitutive and regulated
exocytosis have been extensively studied using powerful tools in
high-resolution microscopy, molecular biology and animal model
systems, and some of the molecules involved have been identified.

The terms degranulation, secretion, and exocytosis are often
used interchangeably but have subtle variations in meaning.
Degranulation refers to the loss of or release of granules and
is most often associated with MC and basophils, both of which
are characterized by their large intracellular granules. Secretion
involves the release of a substance from one place of containment
to another, i.e., from a cell to its extracellular environment or a
gland to the skin’s surface. Excretion is the elimination of a waste
material from a cell or organ. Exocytosis is a process of cellular
secretion or excretion in which substances contained in vesicles
are discharged from the cell by fusion of the vesicular membrane
with the outer cell membrane (10–12). MC exhibit all forms of
these release events but MC are perhaps best known for their rapid
secretion of granules (degranulation) that contain large stores of
pre-formed mediators (9).

This review identifies our current understanding of the bio-
genesis of various mediator compartments, and the mechanisms
of sorting and release of mediators from these compartments
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Moon et al. Mast cell mediator secretory pathways

Table 1 | Mediators stored in human mast cell granules and their

sorting mechanisms.

Mediator Sorting mechanism(s) Reference

Amines Vesicular monoamine transporter

(VMAT)-2-dependent

(64, 65)

Serglycin proteoglycan-dependent

electrostatic interaction

(66)

Histamine (20, 28)

Polyamines (71)

Proteoglycans Unknown

Heparin (36, 37)

Chondroitin sulfates (36)

Serglycin (60, 66)

Proteases aSerglycin proteoglycan-dependent

electrostatic interaction

Tryptases (21–31)

Tryptase-α

Tryptase-βI

Tryptase-βII

Tryptase-βIII

Tryptase-γ (25, 27)

Tryptase-δ (26)

Chymase-1 (30)

Cathepsin G (30)

Granzyme B (31)

Carboxypeptidase A3 (29)

Lysosomal enzymes bFusion with secretory lysosome

β-Glucuronidase (20)

β-Hexosaminidase (20)

Arylsulfatase (20)

Cytokines Unknown

TNF cEndosomal pathway (32)

bFGF (33)

IL-4 (34)

SCF (35)

aHuman mast cells proteases may be sorted into granules by serglycin

proteoglycan-dependent electrostatic interaction based on the mouse study (52).
bLysosomal enzymes in human mast cell granules may be sorted by fusion of

secretory lysosome and/or late endosome shown in RBL-2H3 cells (see Figure 2)

(42).
cHuman mast cells sort TNF into granules via endosomal pathway, but rodent

mast cells do it via mannose-6-phosphate receptor (M6PR)-dependent pathway

(see Figure 2).

(Figure 1). We present some new postulates about exocytosis
that may be particularly relevant to the MC, a highly special-
ized secretory cell (13). We also refer the readers some excellent

recent articles for more details on various aspects of this subject
(9, 14–19).

PRE-STORED MEDIATOR RELEASE FROM MC GRANULES
MEDIATORS STORED IN MC GRANULES
Mast cells are morphologically characterized by numerous, elec-
tron dense cytoplasmic granules which contain biogenic amines
[histamine, serotonin] (20); several serine and other proteases
{e.g., tryptase-α, -βI, -βII, -βIII, -γ [protease, serine S1 fam-
ily member (PRSS) 31], -δ, chymase-1, cathepsin G, granzyme
B, and carboxypeptidase A3} (21–31); lysosomal enzymes [β-
glucuronidase (20), β-hexosaminidase (20), arylsulfatase (20)];
some cytokines [TNF (32), bFGF (33), IL-4 (34), and SCF (35)];
and proteoglycans [heparin (36, 37), chondroitin sulfates (36)]
(Table 1). MC are able to overcome the large thermodynamic
hurdle of storing high concentrations of these mediators in their
granules by trapping them in an anionic gel matrix composed of
chondroitin sulfates and heparin (38).

Subtypes of human MC are distinguished by the presence
or absence of different serine proteases in their granules (i.e.,
tryptase+/chymase−: MCT, tryptase+/chymase+: MCTC, and
tryptase−/chymase+: MCC). MC activation has typically been
measured by monitoring the release of granule mediators (degran-
ulation), with a particular focus on histamine, β-hexosaminidase,
or tryptase (39, 40). Pre-stored mediator release through MC
degranulation can be an early and rapid event following stim-
ulation, resulting in the release of large portions of stored hista-
mine within 15–90 s. This release of pre-formed mediators enables
not only rapid anaphylactic reactions and allergic responses but
also initiates recruitment of leukocytes to sites of pathogen
invasion, activation of innate immune processes, and inflam-
matory responses (1). Other longer term responses associated
with granule-derived mediators include wound healing and tis-
sue remodeling processes through multiple communications with
other cells (e.g., fibroblast proliferation and extracellular matrix
production by histamine and MC proteases) (41).

MC GRANULE HETEROGENEITY AND BIOGENESIS
Heterogeneity
Mast cells granules, also called secretory lysosomes, contain both
lysosomal proteins such as acid hydrolases, e.g.,β-hexosaminidase,
as well as mediators such as histamine, and can secrete both
together. MC also contain traditional lysosomes that can release
enzymes such as β-hexosaminidase independently of histamine
(42). Raposo et al. (43) distinguished three types of granules in
mouse bone marrow-derived MC (BMMC) based on their con-
tents of MHC class II, the lysosomal marker β-hexosaminidase,
lysosomal membrane protein (LAMP)-1, LAMP-2 and mannose-
6-phosphate receptors (M6PR), and the biogenic amine, sero-
tonin: type I granules contain MHC class II, β-hexosaminidase,
LAMP-1, LAMP-2, and M6PR but not serotonin (perhaps a
classical lysosome); type II granules contain MHC class II, β-
hexosaminidase, LAMP-1, LAMP-2, M6PR, and serotonin (per-
haps a late secretory lysosome); type III granules contain β-
hexosaminidase and serotonin but not MHC class II (Table 3)
(42, 43). Baram et al. proposed a model wherein type II gran-
ules are generated by fusion of type I and type III granules,
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Moon et al. Mast cell mediator secretory pathways

Table 2 | Stimuli-selective mediator release from mast cells (some representative examples).

Stimulus Mechanism Mediators MCTypes References

DEGRANULATION AND DE NOVO SYNTHESIZED MEDIATOR RELEASE

Antigen FcεRI Histamine BMMCa, RBL-2H3 (155–161)

cysLTs, PGD2, cytokines,

chemokines, NO, ROS

hPBDMC, LAD2, HMC-1, rat

PMC

Neuropeptides (substance

P, CGRP, capsaicin, etc.)

NKRs β-Hexosaminidase, cytokines,

chemokines

LAD2, hPBDMC (162)

cysLTs, PGD2 BMMC (163, 164)

5-HT Rabbit MC (165)

Compound 48/80 MrgprX2 β-Hexosaminidase, cytokines,

chemokines, PGD2

BMMC (164, 166)

Cathelicidin GPCR Histamine Rat PMC (167)

Cytokines, chemokines, PGE2, LTC4 LAD2, hPBDMC (168)

Defensins GPCR Histamine Rat PMC (167, 169, 170)

Cytokines, chemokines, PGD2,

PGE2, LTC4

LAD2, hPBDMC (168)

Pleurocidin FPRL1 (GPCR) β-Hexosaminidase, PGD2, cysLTs,

cytokines, chemokines

hPBDMC, LAD2 (171)

A23187 Ca2+ ionophore Histamine huMC, hPBDMC (161, 172)

β-Hexosaminidase HMC-1 (173)

Cytokines FLMC (174)

Morphine, codeine Opioid receptors β-Hexosaminidase, cytokines,

chemokines

hPBDMC, LAD2 (175, 176)

Monomeric IgE FcεRI Cytokines, BMMC (177–179)

β-Hexosaminidase RBL-2H3

hCBDMC

Nerve growth factor Trk receptor Histamine, PGD2, PGE2 cytokines Rat PMC, BMMC (180, 181)

DE NOVO SYNTHESIZED MEDIATOR RELEASE WITHOUT DEGRANULATIONb

Zymosan, PGN, LTA TLR2 GM-CSF, IL-1β, cysLTs huMC (88)

Dectin-1 receptor ROS BMMC (182)

PolyI:C, viral particles TLRs Cytokines huMC progenitor (183)

LAD2, HMC-1, hPBDMC,

BMMC

(184)

KU-812 (185)

LPS TLR4, CD14 Cytokines, chemokines BMMCc (186)

SCF F-actin polymerization Cytokines hPBDMC (187)

MAP kinase kinase 3 Cytokines BMMC (188)

Lectins (ex: galectins) TIM-3 Cytokines HMC-1 (189)

DEGRANULATION WITHOUT DE NOVO SYNTHESIZED MEDIATOR RELEASE EXCEPT ROSd

Complement peptides

(C3a, C5a)

Complement

receptors

Histamine Human skin MC (190–192)

Insect venoms Guanylate cyclase Histamine Rat PMC (193)

(Continued)
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Moon et al. Mast cell mediator secretory pathways

Table 2 | Continued

Stimulus Mechanism Mediators MCTypes References

Pollutants (i.e. acrolein) Histamine, ROS RBL-2H3 (194)

Persulfate salts Histamine, ROS LAD2, KU-812 (195)

Advanced glycation

endproducts (AGEs)

Histamine, ROS Rat PMC (196)

UV radiation Tryptase Human skin MC (197)

Particulates (sodium

sulfite, titanium dioxide

nanoparticles, silver

nanoparticles)

Non-FcεRI-mediated Histamine, ROS RBL-2H3

Rat MC

(198, 199)

(200)

NEITHER DEGRANULATION NOR DE NOVO SYNTHESIZED MEDIATOR RELEASE EXCEPT ROS

IgG FcγRI, RIIA, RIII ROS BMMC, rat PMC, hPBDMC (201)

Mercuric chloride (HgCl2) ROS Rat PMC (202)

Gold compounds ROS Rat PMC (202)

D-penicillamine ROS Rat PMC (202)

Mechanical stretch ?? RBL-2H3 (203)

Gamma radiation ?? BMMC, hPBDMC (204)

aBMMC, mouse bone marrow-derived mast cell; CGRP, calcitonin gene related peptide; cysLTs, cysteinyl leukotrienes; FLMC, fetal liver-derived mast cell; FPRL1,

N-formyl-peptide receptor 1; GPCR, G-protein coupled receptor; hCBDMC, human cord blood-derived mast cell; hPBDMC, human peripheral blood-derived mast cell;

huMC, human mast cell; MC, mast cell; MrgprX2, Mas-related G-protein coupled receptor member X2; NO, nitric oxide; RBL-2H3, rat basophilic leukemia-2H3; ROS,

reactive oxygen species; rat PMC, rat peritoneal mast cell; TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; TLR, toll-like receptor; Trk receptor,

neurotrophic tyrosine kinase receptor.
bNo detectable degranulation or very minimal degranulation detected at the time points and doses tested thus far.
cReported in murine MC but not in human MC.
dNone or minimal secretion of de novo synthesized mediators except ROS that have been tested thus far.

which contain lysosomal proteins and secretory amines, respec-
tively (42). However, there has been little experimental follow-up
of this postulate and there is evidence that MC have more diverse
types of granules than depicted by this model (Figure 2). Indeed,
the relationship between this classification of granules and obser-
vations that serotonin and cathepsin D vs. histamine and TNF
exist in distinct granule populations (see below) in mouse MC
is unclear (44). It is likely that MC granules are more hetero-
geneous than the three types shown above (Figure 2; Table 3)
and that this heterogeneity may depend on the tissue of resi-
dence and the species, health status, and even age of the individual
(1, 45).

Biogenesis
The biogenesis of MC granules involves regulated fusion of what
are called unit granules (small fusogenic granules) (46). These
early unit granules buds from the trans-Golgi region and fuse to
generate progranules in a region delimited by the outermost Golgi
cisternae, rough endoplasmic reticulum (ER), and mature gran-
ules in the cytoplasm. The volumes of progranules are multiples
of unit granules (i.e., volume of progranule created by three unit
granules is three times unit granule volume). Progranules leave
this zone as immature granules and become mature through a
fusion process with other immature or mature granules. A process
called “condensation” reduces the granule volume and organizes

the contents, generating various sizes of mature granules (15). In
addition to the homotypic fusion, which is postulated to form
type III granules, immature granules or type III granules are also
able to fuse to endosomes or lysosomes (Type I granules) in what
might be the pathway that forms type II granules (secretory lyso-
somes) as Baram et al. proposed (see above and Figure 2) (42,
43). However, MC granules are likely more heterogeneous than
the three types postulated, and our understanding of the later
phase of granule biogenesis is thus depicted inside a black area in
Figure 2.

Molecules involved in MC granule biogenesis
Several proteins involved in MC granule biogenesis and matura-
tion have been identified (Table 4).

Rab GTPases. Rab3d and Rab5 play roles in the fusion of imma-
ture granules. MC from Rab3d knockout mice have granules that
are larger than in MC from wild-type mice (47), while knock-
down of endogenous Rab5 or expression of constitutively negative
mutants of Rab5 significantly reduces the size of granules and
increases their number (48). Moreover, Rab5 plays a role not
only in homotypic granule fusion (type III granule biogenesis)
but also in granule/endosome heterotypic fusion (type II granule
biogenesis), and vesicle associated membrane protein (VAMP)-8
is involved in Rab5-mediated fusion of granules.
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Moon et al. Mast cell mediator secretory pathways

FIGURE 1 | Mediator release from MC. MC release various mediators from
different compartments following different stimuli. MC rapidly release
pre-stored granule contents by piecemeal or anaphylactic degranulation.
Immature progranules and mature granules can fuse with endosomes, and
store lysosomal proteins. Some mediators can be released from granules

and endosomes through exosomal secretion. Lipid mediators such as PGD2

and LTC4 are synthesized in lipid bodies, nuclear and ER membranes, and
released through active transporters. De novo synthesized cytokines and
chemokines packaged in secretory vesicles are released through constitutive
exocytosis.

Table 3 | Mast cell secretory granule subsets.

Contents Associated proteins Reference

Type I Cathepsin D LAMP-2 (44)

β-Hexosaminidase (42)

MHC-II (43)

M6PR (72)

LAMP-1 and 2 (43)

Type II Histamine (44)

Serotonin VAMP-8 (42, 44)

β-Hexosaminidase (42, 44)

MHC-II (43)

M6PR (72)

LAMP-1 and 2 (43)

Type III TNF (may be in type II as well) (44)

Serotonin VAMP-8 (42, 44)

β-Hexosaminidase (42, 44)

M6PR (72)

Lysosomal trafficking regulator. Chediak–Higashi syndrome, a
mutation of the lysosomal trafficking regulator (LYST ) causes
the formation of giant granules in many cells including MC,
and can be studied using the orthologous lyst-deficient beige
(Lystbg/Lystbg) mouse. In MC and pancreatic acinar cells of beige
mice, there is giant granule formation,presumably the result of dis-
ordered fusion of granules, suggesting Chediak–Higashi syndrome
(CHS)/Lyst plays a role in controlling granule fusion (15, 49).

Synaptotagmins. The synaptotagmins (Syts) are membrane-
trafficking proteins with at least 15 members in mammals. The
RBL-2H3 MC line expresses Syt II, III, V, and IX (42) and RBL-
2H3 treated with antisense to Syt III showed enlarged granule size,
impairment in granule maturation, and formation and delivery
of internalized transferrin to the perinuclear endocytic recycling
compartment involved in a slow recycling pathway (50).

Granin family. The granin family of proteins, first described in
neuroendocrine cells, are also important in MC granule biogen-
esis and maturation. Secretogranin III, for example, is present
in MC granules, depleted during MC degranulation and over-
expression of this protein causes an expansion of the secretory

www.frontiersin.org November 2014 | Volume 5 | Article 569 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moon et al. Mast cell mediator secretory pathways

FIGURE 2 | Model of genesis of MC secretory lysosomes (granules)
and their heterogeneity/plasticity [adapted from Raposo et al. (43)].
Type I granules and type III granules are formed from lysosomal/
endosomal pathway and by unit granule fusion from the trans-Golgi region,
respectively. Secretory lysosomes that bud from trans-Golgi network
contain MHC class II molecules, mannose-6-phosphate receptor (M6PR),
and the lysosomal markers LAMP-1, -2, and β-hexosaminidase. It is

postulated that post-endosomal, type II secretory lysosomes arise through
the fusion of Type I and III granules. The relationship of this model to
observations of heterogeneity of secretory lysosomes with regard to
histamine or 5-HT content and VAMP-8 expression is unclear and there
likely exists more granule heterogeneity/plasticity than three types (44).
The mechanism of genesis of granule types is poorly understood (black
area).

vesicle compartment (51). Although the biologic role of this family
of proteins is not well understood, they are involved in choles-
terol sequestration, interact with chaperones of granule proteins,
serve as precursors of granule cargo and function as calcium
buffering proteins, making them potentially intriguing players
in the life history of MC granules. Is it possible that some of
their many functions are necessary to control progranule fusion
and thereby aid their maturation of secretory lysosomes/granules?
Could these proteins somehow regulate the core components of
the fusion machinery and thereby determine which progranules
fuse together? Further experimentation is required in this area.

Histamine and proteoglycans. Some granule mediators them-
selves such as histamine and the core proteoglycans such as ser-
glycin are also important components of the granule maturation
process. For example, BMMC from serglycin knockout mice have
functional secretory granules but they are defective in dense core
formation (52). Furthermore, these serglycin−/− BMMC are resis-
tant to apoptosis associated with reduced release of proteases and

defective caspase-3 activation (53). In addition, the lack of hista-
mine or the enzymes that control its synthesis significantly alters
the morphology and contents of granules. Peritoneal MC from
histidine carboxylase knockout mice show abnormal granule mor-
phology and contain fewer proteases and heparin (54). This is
mainly due to the down-regulation of genes encoding granule pro-
teases and enzymes involved in heparin biosynthesis. Interestingly,
agonists of the H4 histamine receptor and exogenous application
of histamine restored granule maturation. Therefore, histamine
likely influences early steps in granule maturation but has little role
in maintaining the integrity of fully formed mature granules since
depletion of histamine from mature MC had no obvious effect on
granule structure. It would be interesting to examine the effect of
histamine depletion on immature MC (i.e., from CD34+ progen-
itors) as they progress through the MC differentiation process.

Adaptor-protein family. Components of our models of MC
granule biogenesis can be extrapolated from other cells with com-
plex secretory granule processes, such as pituitary lactotropes,
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Moon et al. Mast cell mediator secretory pathways

Table 4 | Molecules that are (or may be) involved in mast cell granule biogenesis and homeostasis.

Protein Function Cell type Reference

DEMONSTRATED IN MAST CELLS

Histidine decarboxylase Promotes granule maturation BMMC (54)

Synaptotagmins Membrane-trafficking RBL-2H3 (42)

Secretogranin III Regulates membrane dynamics of secretory

vesicles via interaction with chromogranin A

RBL-2H3 (51)

Chromogranin A Binds secretogranin and promotes granule

biogenesis

RBL-2H3 (51)

Clathrin May be involved in compensatory

endocytosis following exocytosis and granule

recycling

Mouse peritoneal MC (205)

Polyamines Regulate granule cargo storage and granule

morphology

BMMC (71)

Vesicular monoamine

transporter 2 (VMAT2)

Transport of monoamines into secretory

granules

Mast cells, megakaryocytes, thrombocytes,

basophils, and cutaneous Langerhans cells

from patients with mastocytosis

(206)

Serglycin Retention of proteases in granules BMMC (52)

Nuclear receptor 4a3 Modifies granule contents BMMC (207)

DEMONSTRATED IN OTHER CELLTYPES BUT MORE WORK NEEDED IN MAST CELLS (POSSIBLE NEW PATHWAYS)

V-ATPase Hyperacidification of lysosomes Many cell types (208)

AP-1A Transports cargo between the trans-Golgi

network and endosomes

Corticotrope tumor cells (209)

Rabs (32 and 38) Trafficking enzymes into vesicles Melanocytes (210)

pancreatic β-cells, and transfected tumor cells. In these cells,
progranules in the trans cisterna of the Golgi are covered with
clathrin coats, which contain the adaptor-protein (AP) family of
proteins that can bind cytosolic tails of transmembrane protein
cargo, facilitating their entry into budding vesicles (55). Imma-
ture secretory granules are not responsive to secretagogues and
it appears that one of the essential roles of the AP proteins is
to facilitate their maturation (56). Could APs perform a similar
function in MC? Clearly, additional studies are needed to further
understand the genesis, heterogeneity, and plasticity of MC gran-
ules and uncover potential therapeutic opportunities within such
knowledge; a frontier.

MECHANISMS OF SORTING AND STORAGE OF PRE-FORMED
MEDIATORS IN MC GRANULES
The most unique and igneous feature of MC granules is their abil-
ity to store large concentrations of mediators in a small space for
long periods. In theory, collecting a high concentration of such
highly charged mediators in a membrane-enclosed space would
require a large amount of osmotic work and create a thermo-
dynamic disadvantage. However, MC trap the mediators in an
anionic gel matrix composed mainly of heparin and chondroitin
sulfate, which confers a huge thermodynamic advantage (38, 57).
Upon cell activation, the polymer gel phase undergoes a transition
and swells to release the mediators (58). This efficient solution
is not-surprisingly conserved among living organisms and even

phytoplankton use a similar packaging and degranulation process
(59). Current understanding of sorting and storage mechanisms
of pre-formed mediators are reviewed below and in Table 1 but it
is still poorly understood.

Proteoglycans
Proteoglycans, a core component of MC granules are heavily gly-
cosylated proteins, consisting of a core protein and glycosamino-
glycan side chains that are covalently attached to the core through
glycosidic bonds. In MC, serglycin is a dominant core protein,
and heparin and chondroitin sulfate are dominant glycosamino-
glycans that can be used to distinguish some MC subpopulations
(1). Sulfation of glycosaminoglycans imparts a negative charge on
the proteoglycan, which is an important mechanism that helps
to retain proteases and biogenic amines in MC granules (60). An
ion exchange mechanism with the charged glycosaminoglycans is
thought to be significant in mediator release from granules (61,
62). Moreover, as outlined above, proteoglycans are important
in granule composition and maturation. However, details of the
sorting mechanism of proteoglycans and other mediators into MC
granules are poorly understood. Studies with rat pancreatic acinar
cells provide clues and suggest that glycosaminoglycan side chains
are necessary for proteoglycan sorting into granules, as deletion
of serine–glycine repeat region of the serglycin core protein and
treatment with p-nitrophenyl-β-D-xylopyranoside, an alternate
substrate for glycosaminoglycan side chain attachment, prevented
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sorting into granules and lead to accumulation of proteoglycans
in Golgi (63).

MC proteases
Mast cell proteases are synthesized in the ER, modified in the
Golgi complex, and sorted into progranules that bud from the
trans-Golgi. Retention of MC proteases in granules depends on
the serglycin proteoglycan in murine MC, as absence of mouse MC
protease (mMCP)-5 (chymase) and carboxypeptidase, and reduc-
tion of mMCP-6 (tryptase) occurs in the granules of MC from
serglycin deficient mice despite normal expression of protease
mRNA and granule formation (52). Although limited information
is available with other kinds of proteases, serglycin proteoglycan
is involved in certain protease retention in MC granules. How-
ever, the mechanisms underlying the trafficking of MC proteases
into the granule need to be elucidated and confirmed in human
MC, although the storage of heparin and chondroitin sulfate
proteoglycan in human MC granules has been shown (36).

Biogenic amines
Histamine and serotonin are biogenic amines stored in MC gran-
ules. There is evidence that transport of biogenic amines from
cytosol into the MC granules occurs in a vesicular monoamine
transporter 2 (VMAT2)-dependent manner (64, 65). Moreover,
retention of biogenic amines and release from the granule is ser-
glycin proteoglycan dependent (66). Whether retention of both
MC proteases and biogenic amines are directly dependent on ser-
glycin proteoglycan or involve only the glycosaminoglycan side
chains, e.g., heparin, with their electrostatic charges (67–70), needs
to be elucidated and extended to studies with human MC. Some
polyamines (such as putrescine, spermidine, and spermine) are
required for granule homeostasis and possibly aid in the native
conformation and packaging of other granule molecules such as
histamines and proteases (71).

Lysosomal enzymes
Many lysosomal enzymes (Table 1) are found in MC granules
but the detail mechanisms of their sorting, trafficking, storage,
and secretion are poorly understood. It is postulated that they are
transported into type II MC granules when granules and endo-
somes fuse (Figure 2). Clearly, lysosomal enzymes can be found
in both type II granules, as well as classical lysosomes (type I
granules), and secreted from both compartments. Using MC from
serglycin knockout mice, it was shown that storage and release of
β-hexosaminidase is independent of serglycin (52).

Cytokines
Among the large number of cytokines and chemokines released
after MC activation, TNF (32, 72), bFGF (33), IL-4 (34), and
SCF (35) are known to be pre-stored in MC granules, and can
be released by regulated exocytosis, as well as synthesized follow-
ing MC activation and released through constitutive exocytosis
(Figure 1) (73, 74). Many other cytokines and chemokines appear
not to be stored [e.g., GM-CSF (75)], but are newly synthesized
following MC activation and are secreted by constitutive exo-
cytosis over the course of several hours/days (discussed below)
(9, 76). For storage in the granule, there appears to be a differ-
ent trafficking mechanism for TNF in rodent and human MC.

In rodent MC, sorting of TNF from ER to granules occurs via
a brefeldin A- and monensin-sensitive route, utilizing a M6PR-
dependent pathway and N-linked glycosylation of asparagine at
N86 (Figure 2) (72). By contrast in human MC, TNF does not uti-
lize this pathway as the N-linked glycosylation motif NSS of rodent
TNF is replaced by the RTP motif (32). By transfecting and chas-
ing fluorescence-tagged TNF into human MC lines (HMC-1 and
LAD2), Olszewski et al. showed that in human MC, TNF traffics to
the plasma membrane transiently, but then is stored in MC gran-
ules by endocytosis (Figure 2) (32). These observations emphasize
that evidence acquired from studies of rodent MC must be vali-
dated for human MC, as has been shown for several other examples
of species differences among MC (1). Apart from TNF, the mech-
anisms of trafficking of bFGF, IL-4, and SCF, another cytokines
stored in human MC granules have not been studied, and we still
do not fully understand how these cytokines are sorted in granules
and which secretion pathway(s) initiates their release. Based on the
binding affinity of bFGF for heparin (77), the retention mecha-
nism of bFGF in the granule is likely to be heparin dependent,
although this needs to be confirmed. Immunohistochemistry has
shown that IL-4 but not IL-5 are stored in MC secretory granules
in the lung parenchyma and nasal mucosa of patients with active
allergic rhinitis (34). Although the amount of IL-4 in the granules
increases after FcεRI-mediated activation, it is unclear whether the
majority of IL-4 released extracellularly is due to degranulation or
constitutive exocytosis.

MECHANISMS OF SECRETION OF PRE-FORMED MEDIATORS FROM MC
GRANULES
Two types of degranulation have been described for MC: piecemeal
degranulation (PMD) and anaphylactic degranulation (AND)
(Figures 1 and 2). Both PMD and AND occur in vivo, ex vivo, and
in vitro in MC in human (78–82), mouse (83), and rat (84). PMD
is selective release of portions of the granule contents, without
granule-to-granule and/or granule-to-plasma membrane fusions.
PMD in MC has been identified in numerous settings, ranging
from chronic psychosocial stress (85) to estradiol (86), CCL2 (87)
and TLR stimulation (88), and interactions with CD4+/CD25+

regulatory T cells (89). The granule morphology is relatively well
retained following PMD, although ultrastructural changes are evi-
dent (79). It has been proposed that the mechanism of PMD
involves the budding of vesicles containing selected mediators
from granules and their transport to the plasma membrane, fusion,
and mediator release (Figures 1 and 2) (90). Little is known about
the molecular machinery involved in these processes.

In contrast to PMD, AND is the explosive release of gran-
ule contents or entire granules to the outside of cells after
granule-to-granule and/or granule-to-plasma membrane fusions
(Figures 1 and 2). Ultrastructural studies show that AND starts
with granule swelling and matrix alteration after appropriate stim-
ulation (e.g., FcεRI-crosslinking). Granule-to-granule membrane
fusions, degranulation channel formation, and pore formation
occur, followed by granule matrix extrusion (81). Granule-to-
granule and/or granule-to-plasma membrane fusions in AND
are mediated by soluble N -ethylmaleimide-sensitive factor attach-
ment protein receptors (SNAREs) (91). In human intestinal MC,
protein expression of soluble N -ethylmaleimide-sensitive factor
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Table 5 | Molecules involved in mast cell degranulation.

Protein Function Cell type Reference

Munc 13-4 Positively regulates degranulation RBL-2H3 (93, 104)

Munc-18-2 Controversial in degranulation, interacts with syntaxin-3 RBL-2H3 (94, 95)

Complexin II Enhances Ca2+ mobilization and degranulation RBL-2H3 (96)

VAMP-8 Controversial in degranulation BMMC, RBL-2H3 (44, 48)

Synaptotagmin II Controversial in degranulation BMMC, RBL-2H3 (42, 62, 99)

Rab3a Controversial in degranulation RBL-2H3 (101, 102)

Rab3d Negatively regulates degranulation RBL-2H3 (101)

Rab27a Negatively regulates degranulation, regulates cortical F-actin integrity BMMC, RBL-2H3 (93, 105)

Rab27b Positively regulates degranulation BMMC (105, 106)

Rac1 Positively regulates degranulation RBL-2H3 (107, 108)

Rac2 Positively regulates degranulation, regulates Ca2+ mobilization BMMC (109)

Cdc42 Positively regulates degranulation, interacts with PLCγ1, increases IP3

production

RBL-2H3 (107, 108)

DOCK5 Positively regulates degranulation, regulates microtubule dynamics,

phosphorylation and inactivation of GSK3β

BMMC (110)

MARCKS Negatively regulates degranulation, delay of degranulation BMMC, eHMCa (111)

aeHMC, embryonic hepatic-derived mast cells.

attachment protein (SNAP)-23, syntaxin (STX)-1B, STX-2, STX-
3, STX-4, VAMP-2, VAMP-3, VAMP-7, VAMP-8, and STX-6 have
been reported (92). However, only VAMP-7 and VAMP-8 were
found to translocate to the plasma membrane and interact with
SNAP-23 or STX-4 upon activation. Moreover, inhibition of
SNAP-23, STX-4,VAMP-7, or VAMP-8, but not VAMP-2 or VAMP-
3, reduced histamine release mediated by FcεRI-crosslinking (92).
Therefore, VAMP-7, VAMP-8, SNAP-23, and STX-4 are important
SNARE molecules in human intestinal MC granule fusion and
exocytosis.

Molecules involved in MC degranulation
Several proteins involved in MC degranulation were listed in
Table 5.

Mammalian uncoordinated-18 proteins. The functions of
SNARE proteins are regulated by several accessory proteins, but
our knowledge is incomplete and at least in part, the information
is controversial (Table 5). Munc 13-4 was shown to be a target
of Rab27a and Munc 13-4-transduced RBL-2H3 release more
histamine compare to the mock-transduced cells after IgE/Ag
stimulation (93). In rodent MC, mammalian uncoordinated-18
(Munc-18)-2, located in the granule membrane, interacts with
STX-3 and plays a role in granule-to-granule as well as granule-
to-plasma membrane fusion (94, 95) whereas, Munc-18-3, located
in the plasma membrane,also interacts with STX-4 (94). Following
activation of RBL-2H3, another protein, complexin II translocates
from the cytosol to the plasma membrane and interacts with a
SNARE complex. Although translocation of complexin II to the
plasma membrane did not induce membrane fusion, the reduc-
tion of degranulation after knockdown of this protein suggests

that complexin II is a positive regulator of MC degranulation
(96). The fusion of the SNAREs with the plasma membrane
has been examined using transmission and freeze-fracture elec-
tron microscopy and biophysical modeling. About 30–60 s after
activation, unetchable circular impressions about 80–100 nm in
diameter were found on the E face (intracellular face) of the
plasma membrane (97). These impressions are not permanent
but are postulated to form the fusion sites for the granules directly
preceding degranulation. Under certain conditions, these fusion
sites can form rosettes and the coupling of this structure with the
plasma membrane may then form a cup-shaped structure called
a porosome (98). Due to the nanometer size of these SNARE
docking sites, the MC degranulation complex has been called a
nano-machine (97).

Vesicle associated membrane proteins. A study using BMMC
from VAMP-8 deficient mice showed reduced serotonin, cathepsin
D, and β-hexosaminidase release, but normal histamine and TNF
release following IgE-mediated or PMA/ionomycin stimulation
(44). By contrast, transfection of VAMP-8 in RBL-2H-3 did not
affect the calcium ionophore/12-O-tetradecanoyl-13-acetate- or
IgE-mediated release of fluorescent-labeled neuropeptide Y, which
is stored in the same granules as serotonin and β-hexosaminidase
(48). These conflicting data may be the result of different exper-
imental systems (former using deficient mouse of VAMP-8 and
latter using over-expression), or the fact that the latter study
examined mediator release indirectly with fluorescent-labeled
neuropeptide Y. Although further study is required, VAMP-8 is
likely involved in granule biogenesis and degranulation of subsets
of MC granules, which contain serotonin, cathepsin D, and β-
hexosaminidase. Moreover, this suggests that there is heterogeneity
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of MC granules (Figure 2), and that distinct mechanisms are
involved in mediator release between subsets of granules.

Synaptotagmins. Synaptotagmin (Syt) II depresses Ca2+-
triggered secretion of β-hexosaminidase and MHC class II release
(42), but increases cathepsin D release in RBL-2H3 and mouse
BMMC (99). Moreover, in Syt II knockout mice there is a marked
deficiency in degranulation and an impaired passive cutaneous
anaphylaxis response (62). In RBL-2H3,Syt IX can regulate protein
export from the endocytic recycling compartment to the plasma
membrane and play a role in sorting proteins of secretory granules
(100). Much remains to be learned about these proteins and MC
function.

Rab GTPases. In addition to their role in granulogenesis men-
tioned above, the Rab family of GTPases is also involved in MC
degranulation. Over-expression of Rab3a in RBL-2H3 showed
no (101), or inhibitory effects (102) on FcεRI-mediated β-
hexosaminidase release, while over-expression of Rab3d demon-
strated that it translocates from the granule to the plasma mem-
brane (103), and inhibits degranulation (101). Recently, it was
established that Rab27a is located in histamine-containing gran-
ules in RBL-2H3 and that over-expression of constitutively active
Rab27a reduced FcεRI-mediated histamine secretion (93). Munc
13-4 was found to be a target of Rab27a, and the Rab27a-Munc
13-4 complex was required for docking of granules to the plasma
membrane and release of granule contents in RBL-2H3 cells (104).
Moreover, Rab27a regulates cortical actin stability with its effectors
melanophilin (Mlph) and myosin, as well as Rab27a/b/Munc13-
4-dependent granule exocytosis (105). Rab27b knockout mice
exhibited reduced passive cutaneous anaphylaxis and defects in
FcεRI-mediated β-hexosaminidase release from BMMC (106).
Although Rab5 is involved in MC granule biogenesis (see above),
a transfection study showed that Rab5 is not involved in granule
mediator release (48).

Rho GTPases. Among Rho GTPases, Rac and Cdc42 play a
positive role in RBL-2H3 degranulation by regulating IP3 produc-
tion, upstream of Ca2+ influx and interacting with PLCγ1 (107,
108). More recently, the roles of Rac1 and Rac2, which have a
92% sequence identity, in MC degranulation were dissected using
knockout mice (109). In BMMC from Rac2 knockout mice,FcεRI-,
but not Ca2+ ionophore-mediated β-hexosaminidase release was
defective because of a decrease in Ca2+ flux without changing F-
actin remodeling and membrane ruffling, which are regulated by
Rac1 (109).

Others. The cytoskeleton and the microtubule network is an
essential component of the degranulation process in MC. Pro-
teins such as DOCK5 (110), MARCKS (111), and myosin VI
(112) regulate the progress of secretory granules through the
cytoskeletal network and allow them to dock with the plasma
membrane. When these proteins are disrupted, the degranula-
tion process does not occur normally. Some of these pathways
remain unexplored in MC, yet we know that some microtubule
events facilitate granule fusion and are essential to degranula-
tion. For example, myosin Va forms a complex with Rab27a and

Mlph thereby regulating cortical F-actin stability upstream of
Rab27a/b/Munc13-4-dependent granule exocytosis (105).

Although calcium flux is unequivocally an essential feature of
the degranulation process [recently reviewed by Fahrner et al.
(113) and Ashmole and Bradding (114)], other ion exchange com-
plexes have also been implicated, such as potassium and chloride
channels that facilitate and regulate Ca2+ signaling. Certainly,
disruption of membrane potentials using cationic liposomes can
impair Ca2+ flux and suppress the function of SNAP-23 and STX-
4 (115). It has been suggested that inhibitors of these ion exchange
pathways may be useful in the treatment of inflammatory diseases
that are mediated by MC activation and degranulation (116).

Calcium flux is essential for degranulation but its role may be
more extensive than first postulated and some theories have ques-
tioned the long-standing belief that granule membranes must fuse
with the plasma membrane to facilitate exocytosis. There are new
theories of exocytosis that have not yet been examined in MC,
including the theory of porocytosis, or secretion without mem-
brane fusion, in which Ca2+ ions form salt bridges among adjacent
lipid molecules through which mediators would move according
to mass action (13). This quantal secretion theory has been postu-
lated to be important in neuromuscular junctions and the central
nervous system and it offers an intriguing process for mecha-
nisms underlying constitutive exocytosis. However, this mathe-
matical model has not been validated experimentally in neurons
or other secretory cells. Autophagy, an evolutionarily conserved
bulk degradation system that facilitates the clearance of intracel-
lular molecules, has also been shown to be an important regulator
of MC exocytosis. A recent study by Ushio et al. has shown that
proteins that normally control autophagy may also facilitate the
fusion of small secretory vesicles and facilitate their fusion with the
plasma membrane (117). In fact, many new regulatory pathways
have been connected to degranulation and exocytosis. However,
we need more sophisticated model system to validate these new
theories. Given that most molecules known to be involved in MC
degranulation have been studied in rodent models, their roles in
human MC must be examined and potential distinctions between
MC phenotypes in different species should be investigated.

SECRETION OF EXOSOMES
Exosomes are membrane-bound vesicles of ~30–100 nm that
appear to bud from the internal surface of multivesicular bod-
ies in the endosomal compartment of many cell types including
MC (Figure 1) (118). They are important in cell–cell commu-
nications and a breadth of physiological and pathophysiological
responses, notably antigen presentation and host defenses. The
contents of exosomes include a richness of lipids such as ceramide,
cholesterol, phosphatidylserine, and sphingomyelin; a great diver-
sity of proteins (200–400) including MHC class II, phospholipases,
heat shock proteins, co-stimulatory molecules (CD40, CD40L,
and CD86), adhesion molecules, kinases, tetraspanins, cytoskele-
tal proteins, chaperones, aldolase A, TNF, FcεRI chains, processed
peptides from antigens; and a plethora of mRNA (>1800) and
microRNA (>100) species (119–122). Exosomes transfer diverse
cargo and functional capacity among cells; for example, mRNAs
and microRNAs in MC exosomes can be transferred between
human and mouse MC or other cells and control gene expression
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FIGURE 3 | Model of lipid body biogenesis and structure. Neutral lipids
synthesized in the ER accumulate between bilayer of ER membrane and bud
off as a lipid body. Lipid bodies have phospholipid monolayer on their outside.
However, lipid bodies contain a bilayer core structure inside, which provides a
hydrophilic area. The bilayer core can be created by incorporation of multiple
loops of ER membrane and explains how ER membrane proteins (e.g.,
caveolin-1 and ribosome) are incorporated into lipid bodies. However, the

exact mechanism of formation of the bilayer structure is poorly understood.
Enzymes required for eicosanoid production have been found in both outer
membrane and core of lipid bodies. Increased intracellular Ca2+ after MC
stimulation induces activation and translocation of cPLA2, 5-LO, and 15-LO to
the lipid body membrane for eicosanoid synthesis. Further studies are
required to unveil how MC control synthesis and secretion of arachidonic acid
metabolites in a stimulus-specific fashion.

in recipient cells (119, 120). Carroll-Portillo et al. emphasized
the potential functional significance of IgE-antigen and antigenic
peptide–MHC class II MC–T cell–Dendritic cell interactions, as
well as MC uptake of antigen-crosslinked receptor (16).

Mast cell exosomes can be secreted by both constitutive or regu-
lated exocytosis (Figure 1) (16, 43) and the composition of protein
constituents differs depending upon which pathway is employed
(16). Knowledge is advancing rapidly about the molecular bases of
exosome biogenesis, regulation of exosome loading, and the secre-
tory pathways involved. The reader is referred to recent reviews of
this intriguing and rapidly evolving subject (118, 123).

CYTOKINE/CHEMOKINE SECRETION FROM COMPARTMENTS
OTHER THAN SECRETORY LYSOSOMES
In addition to regulated secretion of a limited repertoire of
cytokines from stores in granules (above) through pathways of
PMD or AND, MC secrete a diversity of cytokines and chemokines
by other pathways [diagrammed by Lorentz et al. (14) in their
Figure 3], including: constitutive exocytosis, better known in

macrophages [e.g., Ref. (3, 9), etc.], and exosomal secretion
(Figure 1). Frank et al. showed that involvement of SNAREs in
chemokine release of human intestinal MC using their specific
neutralizing antibodies. They showed that CXCL8, CCL2, CCL3,
and CCL4 release after IgE/α-IgE stimulation were abrogated by
inhibition of STX-3 or SNAP-23, but not by inhibition of STX-
2 or VAMP-3. Moreover, inhibition of different SNARE subsets
selectively reduce chemokine release (i.e., STX-4 or VAMP-8 inhi-
bition selectively reduce CXCL8, and STX-6 inhibition reduces
CXCL8 and CCL2) (124). However, other study using VAMP-8−/−

BMMC showed that VAMP-8 does not affect cytokine/chemokine
secretion (125). Therefore, there has been insufficient exploration
of the molecular elements involved in these pathways in MC;
careful analyses are needed in comparison to other cells such as
macrophages, as well as among various MC subsets and between
human and other MC.

LIPID MEDIATOR RELEASE
Activated MC release an abundance of arachidonic acid metabo-
lites, notably leukotriene (LT) C4, prostaglandin (PG) D2, and
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platelet activating factor (PAF) (126–128). These lipid media-
tors have bronchoconstricting and vasoactive properties, but also
participate in host defense, inflammation, and allergic diseases
through diverse activities such as effector cell trafficking, anti-
gen presentation, immune cell activation, and fibrosis (129–131).
Eicosanoids, lipid mediators derived from arachidonic acid, are
de novo synthesized and released immediately from activated cells
rather than stored, and exert autocrine and paracrine functions.
However, recent observations of intracellular localization of the
PGD2 receptor, DP2/CRTh2, suggest intracrine functions of this
mediator (132, 133). Eicosanoid synthesis can occur at several sites
in the cell, including the ER (134), nuclear membrane (134, 135),
phagosomes (136), and cytoplasmic lipid bodies (Figure 1) (81, 82,
137, 138), and the site of synthesis likely depends on the cell type,
as well as the nature of the stimulation [see review in Ref. (139)].
Whether the enzymes and other proteins needed for eicosanoid
synthesis are de novo synthesized following cell activation, or are
dispersed in the cell and then translocated to a site of synthesis
following activation, are under debate. In either case, how these
proteins are targeted to a specific intracellular compartment of
eicosanoid synthesis is unknown.

LIPID BODIES
Lipid bodies also referred to as lipid droplets are osmiophilic
organelles surrounded by a monolayer of phospholipids and con-
taining lipids with a unique fatty acid composition. Lipid bodies
are composed of a core rich in neutral lipids and a variety of
proteins depending upon the cell type and the conditions of stim-
ulation (Figure 3) (137, 138, 140). These organelles are one of the
major sites of eicosanoid generation. They are inducible during
inflammatory processes and increase in size and number in sev-
eral types of leukocytes, including MC (141–144). The numbers
of lipid bodies in the cytoplasm of MC differ among MC pheno-
types. For example, lipid bodies are rare in human skin MC in
comparison to numbers in lung and gut MC (81, 82). In addition
to eicosanoid synthesis, a few cytokines and chemokines are also
found in lipid bodies of eosinophils (TNF), neutrophils (TNF),
macrophages (TNF), and MC (TNF and bFGF) (33, 142). Much
remains to be elucidated about the kinds of cytokines stored in
lipid bodies, functions of these cytokines, and the mechanisms of
their release.

LIPID BODY BIOGENESIS
Although the details of the biogenesis of lipid bodies in MC
are poorly understood, they bud from the ER membrane where
neutral lipids are synthesized (Figure 3) (145). Lipid bodies can
also increase in size by fusion and this process occurs in a rapid
regulated way (146).

MECHANISMS OF SYNTHESIS AND SECRETION OF LIPID MEDIATORS
Eicosanoids are made by oxidation of 20-carbon fatty acids. After
activation, MC synthesize PGD2 and LTC4 from sequential enzy-
matic reactions of arachidonic acid metabolism of cyclooxygenase
and lipoxygenase pathways, respectively. PAF also can be syn-
thesized from lysophosphatidylcholine by PAF-acetyltransferase.
Both arachidonic acid and lysophosphatidylcholine can be gen-
erated from membrane phospholipid (1-O-alkyl-2-arachidonoyl-
sn-glycero-3-phosphocholine) by phospholipase A2. Recently,

studies on pro-resolving lipid mediators, such as resolvins, pro-
tectins, and maresins from eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) have been advanced in macrophages
and our understanding of their physiological, pathophysiological
functions in resolution of inflammation are improved, but little is
known their synthesis in MC (147).

Because eicosanoids synthesized intracellularly are negatively
charged at physiological pH (148), they diffuse poorly across mem-
branes. Thus, their secretion involves active transport through
either organic anion transporters of the ATP-binding cassette
type C family, also known as multidrug resistance-related pro-
teins (149–152), or organic anion transporters of the solute car-
rier superfamily (153, 154). However, little is known of these
mechanisms in MC and further study is needed to identify the
mechanisms and their regulation.

CONCLUSION
Over several decades, there have been significant advances in our
knowledge of MC biology that have transformed our understand-
ing of this multifaceted immune cell from an effector cell in allergic
inflammation to a major player in innate and acquired immunity.
Because of the pivotal role of MC in allergic and other inflam-
matory reactions, therapeutic strategies to disrupt the action of
MC mediators have been developed and used widely [e.g., anti-
histamines, anti-IgE (omalizumab), and Cys-LT1 receptor antag-
onist (montelukast)]. However, there remain large gaps in our
knowledge about intracellular trafficking of MC mediators, partic-
ularly in the selective mechanisms of storage and secretion that are
often dependent on the specific stimuli involved. Our knowledge
of the biogenesis of MC cargos, the heterogeneity of granules, and
the molecules involved in trafficking pathways of mediator secre-
tion are rapidly evolving and likely to be a productive in helping to
unravel the complexities of MC biology. A greater understanding
of mediator specific trafficking pathways will provide opportu-
nities to develop novel therapeutic targets for the treatment of
increasingly wide-spread allergic and other inflammatory diseases.
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