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Salmonella are facultative intracellular pathogens. Salmonella infection occurs mainly by
expression of two Salmonella pathogenicity Islands (SPI-1 and SPI-2). SPI-1 encodes tran-
scriptional factors that participate in the expression of virulence factors encoded in the
island. However, there are transcriptional factors encoded outside the island that also par-
ticipate in the expression of SPI-1-encoded genes. Upon infection, bacteria are capable of
avoiding the host immune response with several strategies that involve several virulence
factors under the control of transcriptional regulators. Interestingly, LeuO a transcriptional
global regulator which is encoded outside of any SPI, is proposed to be part of a complex
regulatory network that involves expression of several genes that help bacteria to survive
stress conditions and, also, induces the expression of porins that have been shown to be
immunogens and can thus be considered as antigenic candidates for acellular vaccines.
Hence, the understanding of the LeuO regulon implies a role of bacterial genetic regulation
in determining the host immune response.
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INTRODUCTION
Salmonella enterica are Gram-negative bacterial pathogens capable
of infecting human beings and other vertebrates, and causing sub-
stantial morbidity and mortality (1, 2). In human beings, most of
Salmonella serovars can cause infections in the small intestine and
hence gastroenteritis; yet a small percentage of Salmonella serovars
can cause a systemic infection, such as typhoid fever by the Typhi
serovar (3). Control of Salmonella infection is difficult, in part
due to the capacity of the bacterium to tolerate environmental
stress, to its widespread distribution, multiple drug resistance, and
adaptability (4). They infect human beings and other animals by
the fecal–oral route, via contaminated food and water.

After oral acquisition, Salmonella resists low pH in the stomach
and colonizes the intestinal tract and some cells can disseminate
to cause systemic infection of organs such as liver and spleen (1).
Salmonella virulence factors as well as host immune responses are
determinant in the infectious process developed in the pathol-
ogy (5). S. enterica Typhimurium and Typhi serovars interact
with host cells through the activities mainly of two type three
secretion systems (TTSS), encoded in two pathogenicity islands,
1 and 2 (SPI-1 and SPI-2) (6, 7). While SPI-1 participates in
bacterial cell entry into non-phagocytic epithelial cells, SPI-2 is
required for intracellular maintenance of the bacteria in a special-
ized membranous compartment (8). Salmonella internalization
is mediated by effectors encoded in SPI-1: SopE, SopE2, and
SopB, which activate the Rho family of GTPases Rac1, Cdc42 and
RhoG (9, 10). These bacterial effectors promote a transcriptional
reprograming in host cells, which in turn leads to the expres-
sion of pro-inflammatory cytokines, which could be essential for
the initiation of diarrhea, a hallmark of acute Salmonella infec-
tion. Recently, it has been observed that the expression of the

pro-inflammatory cytokine interleukin 22 (IL-22) can be exploited
by pathogens, such as Salmonella, to suppress the growth of their
closest competitors thereby enhancing pathogen colonization of
mucosal surfaces (11–13).

Upon infection of intestinal epithelial cells, early transcrip-
tional host responses occur characteristically after the stimulation
of the innate immune receptors (14). However, the Salmonella-
induced responses are unique in that this pathogen is capable of
stimulating them independently of innate immune receptors (12),
which are largely inactive in the intestinal epithelial cells due to
robust negative regulatory mechanisms (15–17). After internaliza-
tion in epithelial cells, bacteria traverse the intestinal epithelium
and can invade M-cells overlying Peyer’s patches, as well as being
captured by dendritic cells directly from the intestinal lumen (18).

Systemic infection requires intracellular survival and replica-
tion, while Salmonella-macrophage interactions are essential for
bacterial virulence, disease, pathology and chronic infection (19–
21). Immunity to intra-macrophage pathogens (i.e., Salmonella)
requires the infected host to generate a robust and sustained
CD4 Th1 response (22). Salmonella infection of inbred mouse
strains induces a robust CD4+ T-cell response that is essential
toward protective immunity to secondary infection (23–27). Sal-
monella also induces CD8+ T-cells and antibody responses that
can contribute to the resolution of infection (25, 27, 28). The
first study to successfully characterize Salmonella-specific CD4+

T-cell clones identified the target antigen of these T-cells as an
I-Ak epitope within the central hypervariable portion of bacterial
flagellin encoded by the FliC gene (29). Subsequently, additional
MHC class II epitopes were identified in the same protein and
thus flagellin remains the most thoroughly defined target antigen
in the Salmonella infection model (30, 31). Additional studies have
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shown that immunization with flagellin provides a modest degree
of protective immunity to Salmonella infection, usually defined
by slightly lower bacterial counts or a delay in time to death after
infection. Thus, flagellin is a well-defined target antigen of CD4+

T-cells during Salmonella infection and this response contributes
modestly to protective immunity in vivo (32, 33). Among other
antigens, the outer membrane proteins (OMPs) are particularly
important. In a murine model, the highly abundant OmpC and
OmpF porins (34) can induce long-term antibody responses with
high bactericidal capacity, and they even confer protection against
challenge with Salmonella Typhi (35, 36).

THE LeuO GLOBAL REGULATOR IS AN LTTR
LeuO is part of the LysR-type transcriptional regulators (LTTRs),
the largest family of transcriptional regulators in prokaryotes.
In consequence, they regulate a wide variety of genes that are
involved in a diversity of cellular functions such as biosynthesis of
amino acids, catabolism of aromatic compounds, antibiotic resis-
tance, oxidative stress response, nitrogen fixation, quorum sensing
and virulence (Figure 1) (37–40). Many structural studies have
shown an organization of an N-terminal DNA-binding domain
(DBD) with a winged Helix-Turn-Helix (wHTH) motif; and a long
linker helix (LH) involved in dimerization that connects the DBD

with the C-terminal effector binding domain (EBD) or regulatory
domain (RD) (37, 41–43). These regulators are proteins between
300 and 350 residues, mostly acting as transcriptional activators
that bind to A–T rich DNA sequences in similar positions.

In the classical model of action, LTTRs activate the transcrip-
tion of a divergent gene and repress their own transcription, inde-
pendently of the presence of a co-inducer or effector (small signal
molecule); although there are exceptions where no co-inducer is
required and in most of these cases they act as repressors (37).
Therefore, the members of the family have been described as dual
regulators (44). Nevertheless, there are examples where the LTTR
positively autoregulates its expression; and some LTTRs can have
more gene targets that they activate or repress, involved in differ-
ent cellular process, different from those divergently located with
respect to the gene for the regulator (39). Even more, as addressed
below, LeuO is an interesting case due to the fact that it can act as
derepressor, and has been shown to have complex DNA-binding
sites (45, 46).

LeuO HISTORY
The first report of the LeuO regulator was by the localization of the
leuO gene between the leuABCD and ilvIH operons; upon which
it was included in the LysR family due to its amino acid sequence

FIGURE 1 | Schematic representation of the LeuO regulon in Escherichia
coli, S. enterica serovarsTyphimurium andTyphi, andYersinia
enterocolitica. LeuO is a dual regulator that can induce the expression of
several genes (arrows) and also is capable of repressing gene expression
(lines). When acting as a repressor it has been suggested to function as a
backup for H-NS; nevertheless in several cases LeuO acts as a derepressor of
gene expression by displacement or prevention of H-NS repression. Recently,

LeuO has been denominated as a global antagonist of H-NS in E. coli and in
S. enterica serovar Typhimurium. The expression of leuO is repressed by
H-NS, although there are some stress conditions when LeuO can be detected
in E. coli. Also, in Salmonella it has been described as an interesting case of
differential control of transcriptional regulation, which depends on LeuO
concentration. Parentheses depict the proteins coded by the indicated genes.
Small arrows denote the several functions for the LeuO-regulated genes.
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similitude with other members of the family (47, 48). Based on
the localization of its gene, LeuO was presumed to be a leuABCD
regulator, although Leu auxotrophy was not observed in a leuO
mutant strain (49).

Nevertheless, since the first report of LeuO as a transcrip-
tional regulator, it was shown to be involved in the regulation
of genes important for bacterial survival in stringent conditions
(Figure 1). Thereby, when LeuO was overexpressed in E. coli it
was found to repress cadC : this was the result of searching for
genes that can complement an H-NS mutant strain, thus provid-
ing an insight about a relationship between LeuO and H-NS (50).
CadC activates the cadAB operon, an important system expressed
under acidic conditions (51). H-NS is a global regulator that acts
as a nucleoid protein (52, 53). Later, LeuO was determined to
reduce rpoS translation (which encodes S sigma factor) by repres-
sion of the small regulatory DsrA-RNA, who positively regulates
rpoS translation, mainly at low temperature (54). Both cadC and
dsrA are repressed by H-NS (55, 56). Interestingly, in both cases,
LeuO indirectly represses the cadAB operon expression and RpoS
translation.

According with a LeuO-dual role regulator, it was found to
be a positive regulator of bgl and yjjQ-bglJ operons in E. coli.
Later, it was demonstrated that LeuO counteracts H-NS repres-
sion (49, 57, 58). The bgl operon is involved in the utilization of
some β-glucosides as salicin and arbutirin; and the yjjQ-bglJ genes
encode for a transcriptional factor belonging to the LuxR family.
These operons are repressed by H-NS in a wild type genotype (59)
(Figure 1).

In several studies in Salmonella Typhimurium, a model called
cis-acting promoter relay mechanism has been described that
involves LeuO and DNA local supercoiling in a complex regulatory
interplay, in a strain with a mutated promoter of leuABCD (pleuO-
500), and a suppressor mutation in topA (60–62). In this complex
regulatory mechanism, the Leucine-responsive regulator protein
(Lrp) elicits changes in local DNA supercoiling by ilvIH promoter
activation, exposing the leuO regulatory region upon which leuO
can be transcribed (63–65). Also, there are H-NS binding sites
in the regulatory region of leuO: hence the system appears to be
repressed by changes in local supercoiling and LeuO prevents a cis-
spreading of H-NS enhancing positive autoregulation and permits
leuABCD transcription (66–69).

THE LeuO REGULATOR IN OTHER GRAM-NEGATIVE
BACTERIA
Studies in S. enterica serovar Typhi (Figure 1) have shown that
overexpression of LeuO induces the expression of two quiescent
genes that encode for the OmpS1 and OmpS2 porins (70, 71).
An interesting observation was that the LeuO concentration dif-
ferentially affects ompS1 and ompS2 expression. The ompS2 gene
is expressed at lower concentrations of LeuO, whereas ompS1 is
expressed at higher concentrations where ompS2 expression is
repressed. Moreover, for the first time, in a detailed study of ompS1
expression, LeuO was shown to exert an antagonist role toward H-
NS (71). The relevance of this observation is that such function
had not been reported for other LTTRs members until now. Inter-
estingly, members of other transcriptional regulators families such
as VirF (AraC/XilS), RovA (SlyA/Hor), and Ler (H-NS/StpA) have

been described as antagonists of H-NS mainly on genes involved
in virulence (72–74).

In a subsequent study to pursue more targets in Salmonella
Typhi, LeuO was found to also positively regulate assT and
STY3070; and negatively ompX, tpx and STY1978 (Figure 1).
These genes are involved in a variety of cellular functions (75).
AssT is a putative arylsulfate sulfotransferase that has been pro-
posed to be involved in detoxification by transforming toxic
phenolic derivatives into non-toxic compounds (76). The global
regulators H-NS and LeuO regulate the assT-dsbL-dsbI cluster
expression negatively and positively, respectively, and this reg-
ulation depends on specific growth conditions (77). STY3070
in Salmonella was later determined to be the casC gene of the
CRISPR/Cas system; and its repression was found to depend also
on Lrp, and its expression induced in minimal media independent
of LeuO (78).

The CRISPR/Cas system in Escherichia coli has been involved
in DNA repair, replication and recombination and is proposed
to confer resistance to phage invasion in bacteria and archaea,
thus the suggestion that it is an ancient defense mechanism
(79). Interestingly, LeuO was shown to be an antagonist of H-
NS in the CRISPR-system in E. coli (80). OmpX is an OMP
that is homolog to PagC and Rck and Ail proteins of Salmo-
nella and Yersinia, respectively. When overexpressed, it has been
observed to increase sigma E activity; and the lack of ompX
increased the tolerance to sodium dodecyl sulfate and antibi-
otics, thus appearing to affect the transport of hydrophobic
compounds across the membrane (81–84). Tpx is a thiol per-
oxidase that codes for a periplasmic antioxidant enzyme that
is induced during the exponential growth phase and during
biofilm formation (85). It is important to notice that LeuO
down-regulates proteins that are involved in the resistance to
different pH conditions (83). Another down-regulated gene was
STY1978, which codes for a hypothetical protein without an asso-
ciation to any cellular process until now. In this report, LeuO
was denominated as a global regulator and opened the possibil-
ity that LeuO could have more targets depending on the growth
conditions (75).

In Y. enterocolitica, LeuO was found to positively regulate rovA
and, in turn, H-NS also negatively regulates its expression (86)
(Figure 1). RovA is a MarA/SlyA type regulator that regulates inv
gene expression in response to temperature and growth phase (87).

In E. coli, by SELEX screening, LeuO was found to regulate
genes involved in sulfa drug sensitivity and to increase its own
expression during transition into stationary phase and after a week
of culture, where H-NS concentration decreased (Figure 1). Even
more, a global antagonistic interplay between H-NS and LeuO was
proposed, acting on some genes involved in stress response, such
as cryptic chaperone/usher-type fimbriae. In addition, mutants
in leuO and in some fimbrial genes were defective or altered in
biofilm formation (88, 89).

In S. enterica serovar Typhimurium, LeuO was reported to
increase sdiA expression in low levels (90) (Figure 1). SdiA is
proposed to respond to signals produced by other organisms (91,
92) and recently was found to be active in gut in response to AHLs
(N -acyl homoserine lactones) a quorum sensing signal produced
by other species (93–96).
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In a genomic study in S. enterica serovar Typhimurium, using
ChIP-chip, the LeuO regulon members were extended to include
SPI-1 (Figure 1) and SPI-2 genes. In addition, the differential
binding of LeuO and regulation of genes was observed depending
on the concentration of LeuO. Another important observation was
the intragenic binding; hence opening the possibility that LeuO
could act as a negative regulator preventing the progress of tran-
scription or as nucleoid structure protein. The finding of LeuO co-
binding at various sites with H-NS and RNA polymerase confirms
the notion of the antagonist role of LeuO, although they could
likely be acting together to regulate a large number of genes. More-
over, the possible interaction with RNA polymerase and H-NS
would suggest another mechanism of LeuO regulation (45, 46).

In this respect, the structural properties of LeuO as an LTTR
member have been initially explored: finding that it is active as
a tetramer, that the mechanisms for induction and repression of
gene expression appear to be different, and that there are relevant
interactions between the N- and C-termini (97).

LeuO EXPRESSION CONDITIONS
In the Salmonella Typhi and E. coli wild type genomic back-
grounds, LeuO expression is silenced by H-NS (unpublished
data). Nevertheless, in E. coli and Salmonella Typhimurium, leuO
expression has been detected when grown under stress condi-
tions, especially in the stationary phase under nutrient limitation.
Nevertheless, leuO is not under the control of rpoS; although its
expression requires the presence of ppGpp in stationary phase (54,
63, 98, 99). Interestingly, LeuO was shown to be essential to restore
cellular growth, after a 2-h delay in a media lacking isoleucine,
valine, and leucine (100).

Also, LeuO expression was detected in a phosphate-restricted
media (98); and recently it was shown that the expression of
the leuO gene can be activated by the RcsB and BglJ regula-
tors (58, 101)

LeuO HAS SEVERAL FUNCTIONS IN VIVO
Even though LeuO is expressed at very low level in standard labo-
ratory conditions, it seems that in vivo it has a role in bacterial
survival. In this manner, in a mouse and in a Caenorhabditis
elegans model of infection, a S. enterica serovar Typhimurium
leuO mutant showed to be attenuated in virulence. Also, in Vibrio
cholera, biofilm formation was reduced in a deleted leuO strain
(102–104).

Virulence attenuation in a murine model was reported for
the ompC ompF double mutant (105). In addition, it has been
observed that the OmpC and OmpF porins induced long-term
antibody response with bactericidal capacity and conferred pro-
tection against challenge with Salmonella Typhi (35, 36). Nev-
ertheless, these major porins are expressed at very high levels in
standard laboratory conditions. In addition, strains lacking ompS1
and ompS2 are attenuated for virulence, suggesting that besides
lacking the LeuO regulator the absence of OmpS1 and OmpS2
porins affected bacterial survival (103). Virulence attenuation of
mutated strains in leuO and ompS1 and ompS2 quiescent genes
offers evidence that they are expressed in vivo. Even though the spe-
cific role of these porins in Salmonella virulence is not clear, it has
been shown that the major porins are passive diffusion channels

of solutes, nutrients and toxins through the outer bacterial mem-
brane that might allow bacteria to grow in different environments
and to be resistant to drugs (106).

Recently it was found that OmpS1 and OmpS2 induced a
strong immune response in the mouse, and a single dose con-
ferred a significant protection against Salmonella Typhi. The
immunostimulatory properties of OmpS1 and OmpS2 porins
further reinforce the notion that they could be expressed follow-
ing host infection. These studies are relevant because they open
the possibility of using these porins as antigens for the develop-
ment of vaccines against typhoid fever and other non-typhoidal
salmonellosis (107).

Moreover, in a recent report it was shown that the activation of
leuO transcription in S. enterica serovar Typhimurium represses
expression of pathogenicity island 1 (SPI-1) and inhibits invasion
of epithelial cells (108). Two different modes of action were found:
the major one that involves the induction of hilE transcription by
LeuO (Figure 1) and another one that was HilE-independent. HilE
is a regulator encoded outside SPI-1 that represses hilD expression.
HilD is one of the transcriptional factors encoded in SPI-1 that
positively controls the expression of other genes in the island (109,
110). It has been suggested that LeuO repression of SPI-1 genes
may occur under growth conditions where H-NS, for unknown
reasons, has failed to perform such repression.

The possibility of LeuO acting as a backup for H-NS has two
implications: one is that it could allow Salmonella to confront the
hostile free-living conditions where SPI-1 gene expression has a
high cost in bacterial growth; and two, it might ensure the spe-
cific, sequential, and appropriate level of SPI-1 gene expression in
the intestine (111, 112). Due to the fact that H-NS in Salmonella is
considered as a genome sentinel that silences horizontally acquired
genes (113–115), LeuO could be acting as a backup regulator for
H-NS, highlighting the subtleties and contrasts of the LeuO mode
of action. Thus, the proposed role of LeuO as an activator or
as a repressor depending on its concentration could explain this
differential gene regulation.

LeuO is an example of a global regulator whose level of expres-
sion is an important issue, since this has an effect on its many
regulated genes that are involved in a variety of cellular functions,
such as virulence and bacterial survival. The levels of expression
could thus have spatial and temporal consequences as well. In
addition, knowledge of LeuO-regulated genes has been impor-
tant in the study of the immune response induced by Salmonella,
such as that elicited by the quiescent porins, which are protein
components of the outer membrane. This has opened the possi-
bility for the development of typhoid fever vaccines and perhaps
as adjuvants for others vaccines.

It is intriguing that conditions known at present for LeuO
expression are extreme and that in many studies it has to be over-
expressed to analyze its function. Furthermore, no co-inducer of
LeuO is known until now. These are some of the subjects that pose
challenges for the future.
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