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T-cell co-receptor cytotoxic T-cell antigen-4 (CTLA-4) is a critical inhibitory regulator of T-
cell immunity and antibody blockade of the co-receptor has been shown to be effective
in tumor immunotherapy. Paradoxically, the majority of CTLA-4 is located in intracellular
compartments from where it is transported to the cell surface and rapidly internalized.The
intracellular trafficking pathways that control transport of the co-receptor to the cell surface
ensures the appropriate balance of negative and positive signaling for a productive immune
response with minimal autoimmune disorders. It will also influence the degree of inhibi-
tion and the potency of antibody checkpoint blockade in cancer immunotherapy. Current
evidence indicates that the mechanisms of CTLA-4 transport to the cell surface and its
residency are multifactorial involving a combination of immune cell-specific adapters such
as TRIM and LAX, the small GTPase Rab8 as well as generic components such as ARF-1,
phospholipase D, and the heterotetrameric AP1/2 complex. This review covers the recent
developments in our understanding of the processes that control the expression of this
important co-inhibitory receptor for the modulation ofT-cell immunity. Interference with the
processes that regulate CTLA-4 surface expression could provide an alternate therapeutic
approach in the treatment of cancer and autoimmunity.
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INTRODUCTION
The co-receptor cytotoxic T lymphocyte antigen-4 (CTLA-4;
CD152) is a central inhibitory regulator of T-cell proliferation and
expansion (1–5). Its dampening effect on the activation process
limits and terminates T-cell responses, and as such is important
for regulating peripheral T-cell tolerance and autoimmunity. A
negative role for the co-receptor in the control of proliferation
and autoimmunity was initially observed in the striking pheno-
type of the Ctla4−/− mouse (6, 7). These mice show polyclonal
T-cell activation or autoproliferation that leads to massive tissue
infiltration and early lethality. An additional linkage of single-
nucleotide polymorphisms (SNPs) in the region of CTLA-4 were
subsequently found associated with a variety of autoimmune
disorders that include type 1 diabetes, coeliac disease, myasthe-
nia gravis, Hashimoto’s thyroiditis, systemic lupus erythematosus
(SLE), and Wegener’s granulomatosis (8–12). Immune dysregu-
lation in human subjects has also been reported recently with
heterozygous germline mutations in CTLA-4 (13). This plural-
ity of associated autoimmune disorders in human beings has
pointed to a central role for the co-inhibitory receptor as a gen-
eral regulator of the threshold signals needed for T-cell activation.
Under normal conditions, the inhibition of signaling events pro-
tects against responses to lower affinity self-antigen while allowing
responses to higher affinity foreign antigen. In this sense, minor
changes in the surface expression of the co-receptor are thought to
have significant effects on responses to autoantigen. Ipilimumab,
a humanized anti-CTLA-4 checkpoint blockade antibody, has also
been found impressively effective in the treatment of various
tumors such as melanoma and small cell lung carcinomas (14,

15). Combined therapy with antibodies against another nega-
tive co-receptor PD-1 (programmed cell death-1) has been found
to co-operate with anti-CTLA-4 to induce even more striking
response rates (16).

Given that minor changes in the surface expression of the co-
receptor are expected to have significant effects on responses to
autoantigen and in cancer immunotherapy, it is important to
understand the mechanisms that determine the expression of
CTLA-4 on T-cells. This includes the intracellular pathways that
determine the transport or trafficking of CTLA-4 to the cell surface
as well as events that regulate its residency on the surface and endo-
cytosis. Paradoxically, CTLA-4 is primarily located in intracellular
compartments from where it is rapidly recycled to the cell surface.
Only small amounts of the co-receptor can be detected on the cell
surface at any given time, even when optimally expressed follow-
ing T-cell activation. This review covers the recent developments
in our understanding of the events that control the transport and
expression of CTLA-4 to the cell surface for the modulation of
T-cell immunity.

STRUCTURE AND FUNCTION OF CTLA-4
CTLA-4 was one of the first and most extensively investigated
co-inhibitory receptor of the immune system (17). The CTLA-4
gene consists of four exons: exon 1 contains the leader peptide
sequence, exon 2 the ligand binding site, exon 3 encodes the
transmembrane region, and exon 4 the cytoplasmic tail (18).
Differential splicing of the CTLA-4 transcript results in a full-
length transmembrane form (exons 1–4), soluble CTLA-4 (lacking
exon 3), and a transcript encoding only for exons 1 and 4 (19,
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20). Murine T-cells also express a ligand-independent CTLA-4
(liCTLA-4) containing exons 1, 3, and 4 (12). Although liCTLA-
4 lacks the MYPPPY ligand binding domain, it strongly inhibits
T-cell responses and, compared to full-length CTLA-4, its expres-
sion is elevated in regulatory and memory T-cells from diabetes
resistant NOD mice (21).

CTLA-4 is structurally related to CD28 with some 30%
sequence homology (22). It was first described as the product
of the Ctla4 gene located at chromosome 1 (mouse) or 2 (human
being) and is preferentially expressed in activated cytolytic T-cells
(17). Subsequently, it was found to be expressed in all activated T-
cells and used as an early activation marker. mRNA for CTLA-4 can
be detected as early as 1 h post-activation with maximum expres-
sion between 24 and 36 h, the time when CTLA-4 is detectable
on the cell surface (23, 24). In contrast to full-length CTLA-
4, ligand-independent CTLA-4 is expressed in resting cells, but
downregulated during early activation (21). Like CD28, CTLA-4
binds to ligands CD80 and CD86 but with greater avidity (25, 26).
The same signature MYPPPY motif for binding is found in both
co-receptors (27). The higher avidity of CTLA-4 for CD80 is due
to the binding of one CTLA-4 homodimer to two CD80 molecules
(28, 29) resulting in the formation of a stable CTLA-4/CD80 lattice
structure in the immunological synapse (IS). This interaction may
disturb the assembly of key signaling proteins needed for CD28
co-stimulation.

As mentioned, the importance of CTLA-4 in maintaining
peripheral tolerance and homeostasis was first demonstrated with
the autoimmune phenotype of CTLA-4-deficient mice. These mice
show polyclonal T-cell activation leading to massive tissue infiltra-
tion and early lethality (6, 7). Further, SNPs of the human CTLA-4
gene have been implicated in the susceptibility to autoimmune
disorders such as type I diabetes, rheumatoid arthritis, and mul-
tiple sclerosis (12). However, it is still unknown how and whether
SNPs affect CTLA-4 function (i.e., intracellular trafficking, sur-
face expression, dimerization). The soluble form of CTLA-4 has
been linked to autoimmune diseases. High concentrations of solu-
ble CTLA-4 can be detected in patients with various autoimmune
diseases (30–32).

Unlike in the case of conventional T-cells (Tconv), suppressive
regulatory T-cells (Tregs) express CTLA-4 constitutively on the
cell surface. In fact, the pool of intracellular CTLA-4 seen in acti-
vated Tconv is less apparent in Tregs, a finding that may account
for its constitutively high level of surface expression (33). Given
this fact, it is not surprising that CTLA-4 is intimately linked to
the regulation of Treg suppressor function (34, 35). Mechanisms
that have been reported to account for Treg function include the
secretion of the suppressive cytokines IL-10, IL-35, and TGF-β
(36), secretion of cytolytic granules containing granzyme and per-
forin as well as competition with conventional responder T-cells
for CD80 and CD86 on antigen-presenting cells (APCs) (37, 38).
Given its higher avidity for binding to CD80/86, CTLA-4 would
block the availability of CD80 and CD86 for an interaction with
Tconv. While CTLA-4 on Tconv induces their motility and limits
their contact time with APCs, resulting in hypoactivation of these
cells, CTLA-4 on Tregs does not influence their dwell times and,
therefore, would allow the co-receptor to interfere with CD80/86
presentation to CD28 (39).

CTLA-4 AND TUMOR IMMUNOTHERAPY
An exciting development over the past few years has been the
use of anti-CTLA-4 in so-called checkpoint blockade in the treat-
ment of cancers. These human studies originated from earlier
mouse tumor models, which demonstrate that blockade of CTLA-
4-mediated inhibition leads to enhancement of T-cell responses
in tumor immunotherapy (40). Early human studies with lim-
ited numbers of patients (41–44) were expanded to larger phase
III studies showing response rates as high as 30% on melanoma,
small cell lung, and renal carcinoma (14–16). These studies
led to the generation of antibodies to human CTLA-4, ipili-
mumab, and tremelimumab (45). Ipilimumab has been approved
as monotherapy for the treatment of advanced melanoma. They
have shown synergistic anti-tumor activity when utilized with vac-
cines, chemotherapy, and radiation (14). CTLA-4 antibodies have
also induced a reversible occurrence of immune-related adverse
events (IRAE) such as colitis, dermatitis, or endocrinopathies (46).
The exact mechanism by which anti-CTLA-4 mediates enhanced
anti-tumor reactivity is not clear, but may involve a combination
of effects involving the lowering of the threshold needed to activate
T-cells, a reduction in the number of Tregs, the reduced release of
the suppressive factor indoleamine 2,3-dioxygenase (IDO) as well
as broadening the peripheral T-cell receptor repertoire (47, 48). In
certain instances, co-operation with interleukin-2 treatment has
also been observed (49). More recently, antibodies against PD-1,
another inhibitory co-receptor, have also demonstrated remark-
able clinical anti-tumor activity against melanoma and other solid
tumors (50). Further, the combination of anti-CTLA-4 and PD-1
antibodies achieved an even more effective anti-tumor response
(16, 51). CTLA-4 engagement with CD80/CD86 attenuates the
early activation of naïve and memory T-cell, whereas PD-1 is
mainly thought to modulate T-cell effector functions in periph-
eral tissues via binding to PD-L1 and PD-L2 (52). Since CTLA-4
and PD-1 regulate immune responses in a non-redundant fashion,
combined blockade of both pathways may achieve more effective
anti-tumor activity.

MECHANISMS OF CTLA-4-MEDIATED INHIBITION
Despite the importance of CTLA-4 to autoimmunity and anti-
tumor immunotherapy, the actual mechanisms responsible for
its function are unknown. Much debate has focused on whether
CTLA-4 inhibits T-cell responses by cell-extrinsic or -intrinsic
mechanisms. Cell intrinsic mechanisms would reflect direct effects
of the co-receptor on the expressing cell (i.e., signal transduction),
while cell-extrinsic effects relate to the regulation of function via a
distal cell or cytokine. Both mechanisms have been implicated
in the in vivo function of CTLA-4 (53). A cell-extrinsic path-
way for CTLA-4 was first described by Bachman and coworkers
who found that Rag2-deficient mice reconstituted with a mix-
ture of wild-type and CTLA-4-deficient bone marrow cells failed
to develop autoimmune disease, while the transfer of Ctla4−/−
bone marrow cells alone transferred disease (54). Cell-intrinsic
and non-cell-autonomous (i.e., cell extrinsic) actions of CTLA-4
have been reported to operate to maintain T-cell tolerance to self-
antigen (53). In agreement with this observation, Thompson and
coworkers found that the loss of the cytoplasmic tail of CTLA-4
(i.e., cell intrinsic) affected the onset of disease as well as differences
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in T-cell infiltration. These findings suggested possible differences
for cell intrinsic versus extrinsic mechanisms in the autoprolifer-
ative versus migratory aspects of CTLA-4 inhibition (55). Others
have emphasized the importance of cell-extrinsic mechanisms on
both Tconv and Tregs, although this may vary with antigen dose
and the model examined (56). It is possible that CTLA-4 utilizes
different pathways for inhibition in different contexts or niches of
the immune system.

Cell intrinsic pathways include modulation of TCR signaling by
phosphatases SHP-2 and PP2A (57), inhibition of ZAP-70 micro-
cluster formation (58), and altered IS formation (59), as well as
interference with the expression or composition of lipid rafts on
the surface of T-cells (60–63). Like CD28 and ICOS, CTLA-4
possesses a small cytoplasmic tail containing, apart from its C-
terminal YFIP motif, a YxxM consensus motif common of all three
co-receptors (64) (Figure 1). Several intracellular proteins includ-
ing the lipid kinase phosphatidylinositol 3-kinase (PI3K) (65), the
phosphatase SHP-2 (4, 57, 66, 67) and clathrin adapter proteins
AP1 and AP2 (68–70) have been reported to bind to the YVKM
motif. The phosphatase PP2A has also been reported to interact
with the cytoplasmic tail of CTLA-4 via the lysine rich motif and
via the tyrosine residue at position 218 (71). CTLA-4-mediated
phoshorylation of Akt is abrogated by the PP2A inhibitor okadaic
acid (72). By contrast, PD-1 signaling inhibits Akt phosphory-
lation by preventing CD28-mediated activation of PI3K that is
dependent on the immunoreceptor tyrosine-based switch motif
(ITSM) located in its cytoplasmic tail (72).

Cell-extrinsic mechanisms include CTLA-4 engagement of
CD80/CD86 on dendritic cells (DCs) that can induce the release
of IDO (73, 74). This enzyme catalyzes the degradation of the
amino acid l-tryptophan to N -formylkynurenine leading to the
depletion of tryptophan, which in turn can halt the growth of
T-cells. Although IDO has been implicated in certain immune
responses (75, 76), it is unlikely to solely account for the phenotype
of the Ctla4−/− mouse since IDO-deficient mice fail to develop

autoimmunity (77). CTLA-4 has also been reported to increase
the production of the immunosuppressive cytokine TGF-β (78);
however, TGF-β-deficient mice differ from CTLA-4-deficient mice
in the severity of the autoimmune phenotype (79). The mul-
tiorgan inflammatory syndrome can be inhibited by depletion
of the activated CD4 positive T-cells leading to prolonged sur-
vival; however, the TGF-β-deficient mice eventually die of myeloid
hyperplasia (80).

Not unexpectedly, Tregs play a major role in cell-extrinsic regu-
lation. Both CTLA-4-deficient and FoxP3-deficient mice exhibit a
short life span due to massive lymphoproliferation (LP) and a sys-
temic autoimmune-like syndrome (6, 7, 81). The conditional loss
of CTLA-4 on FoxP3 expressing cells delayed the onset of disease to
7–10 weeks, rather than to 3–4 weeks observed in Ctla4−/− mice
(82, 83). This indicated that Tregs help control the development of
the Ctla4−/− phenotype and that both CTLA-4 and FoxP3 on the
same cell subset are essential to fully prevent LP disease. However,
while Tregs help to control the onset of disease, the fact that the
mice still die suggests that another factor is causally responsible
for the onset of the autoimmune-like syndrome.

The mechanism by which CTLA-4 facilitates Treg function
is unclear but may involve the occupancy of CD80 and CD86
on DCs (82, 83). Trans-endocytosis or the removal of CD80 or
CD86 from the surface of DCs may also occur (83, 84). Since
both Tregs and Tconv can mediate this removal, it is uncertain
whether this property can be the primary mechanism to account
for Treg suppression. On the other hand, in certain models, some
groups have claimed that the mere expression of CTLA-4 on either
subset is sufficient to mediate cell-extrinsic suppression (33, 56).
Tregs with higher CTLA-4 levels are able to be more effective in
blocking or trans-endocytosis than Tconv cells. In this context,
recent elegant work has shown that CTLA-4 can bind to the pro-
tein kinase C isoform η (PKC-η) in Tregs (and not Tconv cells) and
that defective activation of CTLA-4-PKC-η with another complex
in PKC-η-deficient cells correlates with the reduced depletion of

FIGURE 1 | Structure of co-receptors. Left panel: CTLA-4 and CD28
bind to the same natural ligands CD80/CD86 via the MYPPPY motif,
whereas ICOS binds to ICOSL via the FDPPPF motif. Right panel:
structure of the cytoplasmic domains of human CTLA-4, CD28, and
ICOS. The cytoplasmic domains of these co-receptors have a common
YxxM motif, which binds to the SH2 domain of the p85 subunit of
phosphatidylinositol 3-kinase (PI3K). CTLA-4 has a unique YVKM motif,

which binds to the SH2 domain of the tyrosine phosphatase SHP-2. In its
non-phosphorylated form, it associates with the clathrin adapters AP-1
and AP-2. The serine/threonine phosphatase PP2A binds to the lysine rich
motif and the tyrosine 218 (Y218FIP). The asparagine in the YMNM motif
of CD28 is needed for Grb-2 SH2 domain binding, whereas the distal
proline motif allows for binding of the SH3 domains of Grb-2, the protein
tyrosine kinase p56lck, and Filamin A.
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CD86 from APCs (85). CTLA-4-associated SHP-1/2 and PP2A are
not recruited to the IS of Tregs (85, 86).

Another model involves a combination of cell-intrinsic and
-extrinsic effects related to altered T-cell adhesion and motil-
ity (87, 88). We and others have shown that CTLA-4 ligation
activates the small GTPase Rap-1 (89, 90). Rap1 is a key mole-
cule involved in the activation of integrins such as lymphocyte
function-associated antigen-1 (LFA-1). In this model, CTLA-4
is a motility activator and augments T-cells adhesion (88, 90).
Significantly, anti-CTLA-4 alone was able to induce motility of
primary T-cells and cell lines (58, 88). As a motility activator,
CTLA-4 bypasses the TCR-mediated stop-signal that is needed
for stable interactions between T-cells and APCs. This provided
an alternate mechanism to account for the dampening effect of
CTLA-4 on T-cell activation and has been confirmed in several
different models (87, 88, 90–95). In this model, the cell intrin-
sic pathway involves activation of Rap1 and the ligation efficiency
of the TCR on Tconvs, while the cell-extrinsic pathway involves
the regulation of T-cell binding to APCs. The reversal of the
stop-signal by CTLA-4 was exclusively seen on Tconv and not
Tregs (39).

CTLA-4 TRAFFICKING FROM THE TRANS -GOLGI NETWORK
TO THE CELL SURFACE
Understanding the mechanisms by which CTLA-4 is transported
to the cell surface will be the key to the development of novel strate-
gies to increase or decrease its expression and functional effects.
An ability to interfere with the trafficking pathways in T-cells
would provide an alternate approach to the use of biologics such as
anti-CTLA-4 antibodies. Previous studies have demonstrated the
need of calcium for the release of CTLA-4 from the Trans-Golgi
network (TGN) to the cell surface (69, 96), while other studies
have implicated more generic processes involving the GTPase ADP
ribolysation factor-1 (ARF-1) and phospholipase D (PLD) (97).
However, these pathways are also involved in the transport of other
non-lymphoid receptors and thus are not specific for CTLA-4. In
this context, it has been demonstrated that TCRzeta (TCRζ) plays
a central role in transporting the TCR to the cell surface (98, 99).
TCRζ is a member of the type III transmembrane adapter pro-
teins (TRAPs), which possess a short extracellular domain, a single
transmembrane domain, and a relatively long cytoplasmic tail with
several tyrosine phosphorylation sites (100, 101) (Figure 2). Based
on the TCRzeta model, we hypothesized that this family of trans-
membrane proteins might play a general role in the transport
of surface receptors. Other members of the TRAP family include
TRIM (T-cell receptor-interacting molecule), LAX (linker for acti-
vation of X cells), SIT (SHP2 interacting TRAP), and LAT (linker
for activation of T-cells) (100, 101). As in the case of the TCRζ,
they are preferentially expressed in immune cells, but most of
them lack the signaling effects seen with the TCRzeta chain. For
example, they lack the immunoreceptor tyrosine-based activation
motifs (ITAMs) needed for binding to the protein tyrosine kinase
ZAP-70. Instead, they are enriched in binding sites for PI-3K and
Grb-2/Gads (102, 103).

TRIM is highly expressed in thymocytes and CD4 positive T-
cells and forms a disulfide-linked homodimer (104). It possesses
three tyrosine-based motifs in its cytoplasmic tail (twoYxxL motifs

FIGURE 2 | Schematic structure of the transmembrane adaptersTCRζ,
LAT,TRIM, LAX, and SIT with their binding motifs for Grb-2, Gads,
PI3K, and PLCγ.

and one YxxM motif), where the YxxM motif binds to the p85 sub-
unit of PI3 kinase (102) (Figure 2). Initial TRIM overexpression
studies in Jurkat T-cells suggested that TRIM upregulates the sur-
face expression of the TCR and mediates increased calcium release
after TCR ligation (105). However, T-cell development, TCR sur-
face expression, and signaling events induced by TCR ligation are
not impaired in TRIM-deficient mice (104). LAX is expressed as
a monomer and possesses a longer cytoplasmic tail (398 aa ver-
sus 186 aa), which contains eight tyrosine-based motifs; five of
them represent binding sites for Grb-2/Gads (103). LAX negatively
impairs TCR signaling events as shown with LAX overexpression
studies in Jurkat T-cells leading to inhibition of p38 and NFAT/AP-
1 (106). Although LAX deficiency does not impair lymphocyte
development, T- and B-cells are hyperresponsive upon TCR or
BCR ligation and show increased cell survival (107). Mutation
studies of the tyrosine-based motifs revealed the importance of
the binding signaling proteins (Grb-2, Gads, and PI3K) in the
inhibitory function of LAX (103).

Initial shRNA knockdown and overexpression studies demon-
strated that TRIM facilitates the transport of CTLA-4 to the cell
surface (108, 109). TRIM specifically co-precipitated CTLA-4, but
not other T-cell co-receptors such as CD28. Overexpression of
TRIM potentiated CTLA-4 expression due to increased release to
the cell surface, which in turn led to increased suppression of T-cell
activation. Subsequently, LAX was also found to bind, co-localize,
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FIGURE 3 | Mechanisms of CTLA-4 trafficking. Left panel: CTLA-4 forms a
multimeric complex composed of TRIM, LAX, and Rab8 for post-Golgi
transport to the cell surface. TRIM and LAX bind to the cytoplasmic tail of
CTLA-4, while LAX binds via its N-terminus to active GTP-Rab8 (inset). TRIM
requires LAX for binding to Rab8 in a complex. LAX functions as a central
coordinator by bridging Rab8 with the other LAX-associated proteins TRIM
and CTLA-4. This multimeric complex facilitates the transport of newly
translated CTLA-4 to the cell surface. The transmembrane adapters TRIM and
LAX play a role for CTLA-4 transport similar to the TCRzeta chain, which
resides in the TGN and surrounding vesicles and is needed for the association

with the hexameric TCR/CD3 in the TGN for proper and efficient cell surface
expression. Right panel: non-phosphorylated CTLA-4 associates with the
clathrin adapter complex AP-1 and AP-2. AP-1 regulates trafficking of CTLA-4
by shuttling the receptor from the TGN to lysosomes. In activated cells, newly
synthesized CTLA-4 is transported to the cell surface, which is facilitated by
the TRIM/LAX/Rab8 complex (left panel) and by more generic factors such as
ARF-1, PLD, and calcium. Phosphorylation of CTLA-4 by Fyn and Lck recruits
PI3K and SHP-2. Dephosphorylated CTLA-4 binds to AP-2 leading to the
internalization of CTLA-4 to intracellular compartments such as endosomes
and lysosomes from where it can recycle to the cell surface.

and facilitate CTLA-4 transport to the cell surface (110). CTLA-4
binding to TRIM and LAX was specific in that it did not associate
with LAT. These data indicate that TRIM and LAX, both immune-
specific type III proteins, bind to CTLA-4 to facilitate its transport
to the cell surface (Figure 3).

Strikingly, downregulation of TRIM and LAX markedly
reduced the presence of CTLA-4 expressing TGN proximal vesi-
cles. This observation suggested a connection between CTLA-4
binding to TRIM/LAX and the budding of CTLA-4 positive vesi-
cles from the TGN needed for transport to the cell surface.
Further, these findings resemble that found for the transport of
the TCR/CD3 complex to the cell surface (111). TCRζ, which
resides in the TGN and surrounding vesicles needs to associate
with the hexameric TCR/CD3 in the TGN for proper and effi-
cient cell surface expression. Rab proteins are members of the Ras
superfamily and regulate protein transport of the secretory and
endocytic pathway (112, 113). They are active in a GTP-bound
state and become inactive with the conversion of GTP to GDP.
Among the different members of the Rab family, Rab8 has been

shown to mediate the trafficking of newly synthesized proteins
from the TGN to the plasma membrane (114), whereas other
family members mediate transport of proteins among other intra-
cellular organelles such as endoplasmatic reticulum, endosomes,
and lysosomes. In addition, Rab8 alters the reorganization of actin
and microtubules, as well as directing membrane transport to cell
surfaces (115, 116). Activation of Rab8 can lead to cell protru-
sions, whereas its depletion promotes the formation of actin stress
fibers (117, 118). The α2β and β2-adrenergic receptors have been
described to bind Rab8 for transport to the plasma membrane
(119). However, until recently, despite its high expression in T-
cells, no immune cell-specific binding effectors of Rab8 have been
identified.

A recent study by Banton et al. showed that the transmem-
brane adaptor LAX bound to the active form of Rab8, while at
the same time also associated with CTLA-4 and TRIM (110).
By contrast, CTLA-4 and TRIM failed to bind to Rab8. These
findings demonstrate that CTLA-4 interacts with a protein com-
plex in which TRIM and LAX bind to the co-receptor, TRIM
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and LAX to each other, and LAX to Rab8 (Figure 3, see inset).
Importantly, disruption of LAX-Rab8 binding profoundly reduced
the formation of CTLA-4 containing vesicles proximal of the
TGN as well as the expression of CTLA-4 on the cell sur-
face. The reduction in CTLA-4 expression resulted in augmented
immune responses. Overall, given the established role of Rab8
as a molecule that mediates intracellular trafficking of proteins
from the TGN to the plasma membrane, its association with
CTLA-4 provides a pathway for the control of CTLA-4 surface
expression.

Altogether, the TRIM-LAX-Rab8 connection to CTLA-4 traf-
ficking to the cell surface will operate in co-operation with other
generic processes. The ADP ribosylation factor (ARF) family
GTPases and PLD are needed for the budding of vesicles at the
Golgi apparatus (120–122). As in the case of Rab8, ARFs are mem-
bers of GTP binding proteins of the Ras superfamily. There are six
conserved ARF proteins in mammalian cells and are well estab-
lished regulators of vesicle trafficking and actin re-modeling. In
particular, ARF1 is involved in the regulation of vesicle transport
in the TGN and the activation of PLD. PLD hydrolyzes phos-
phatidylcholine generating phosphatidic acid (PA) and choline.
Further, the hydrolyzation of PA generates diacylglycerol, which,
in addition to its signaling role, has a functional role in membrane
modulation (123, 124). Dominant negative mutants of ARF-1 or
PLD inhibit the release of CTLA-4 to the cell surface (97). However,
unlike Rab8, none have been reported to associate with CTLA-4.
Most likely, other key regulators of trafficking (i.e., SNAREs) are
also needed for CTLA-4 expression. These mechanisms have been
described for many surface expressed receptors and are not specific
for CTLA-4.

RECYCLING OF CTLA-4
Following cell surface expression, CTLA-4 is rapidly internalized
and again recycled to the plasma membrane of T-cells. This pre-
sumably occurs due to control of the inhibitory effects of CTLA-4
on the immune response (i.e., needs to be tightly regulated).
The one exemption is Tregs, which show constitutively surface
expressed CTLA-4 (24, 125). Rapid removal of CTLA-4 from the
cell surface is mediated by the heterotetrameric adapter protein
AP2 via clathrin-dependent internalization (68–70). AP-2 bind-
ing is regulated by the phosphorylation of the YVKM motif in
the cytoplasmic tail of CTLA-4 (126, 127). Phosphorylation of
CTLA-4 by protein tyrosine kinases p56lck, p59fyn, and Rlk (128,
129) promotes binding to PI3K or SHP-2 leading to the pro-
duction of phosphatidylinositol (3,4,5)-triphosphate (D3 lipids)
or dephosphorylation of tyrosine residues on substrates such
as ITAMs in the TCR/CD3 complex and ZAP-70 (130). AP-2
binding to CTLA-4 is inhibited by the phosphorylation of the
YVKM motif. Instead, once the recruitment and engagement of
PI 3K is complete, CTLA-4 is dephosphorylated exposing the
non-phosphorylated TGVYVKM motif. Binding of AP-2 generally
involves the independently folded appendage domains of the large
α (α1 or α2 isoform) and β2 subunits, each separated from the het-
erotetrameric adapter core by a flexible hinge (131). Its binding to
CTLA-4 mediates the internalization of the co-receptor from the
cell surface to endosomal and lysosomal compartments. Golgi-
associated CTLA-4 also binds to the heterotetrameric AP-1 via

the same motif (69) where it shuttles the receptor from the TGN
to lysosomes. Further, upon TCR stimulation, CTLA-4 contain-
ing secretory lysosomal vesicles are released to the cell membrane
resulting in increased CTLA-4 surface expression (132). Further,
under conditions of T-cell inactivation, CTLA-4 colocalizes with
the TCR to lipid rafts in the IS (61). The polarized release of CTLA-
4 toward the site of TCR engagement has been correlated with
a repositioning of the microtubule organizing center (MTOC)
in T-cells (96, 133). The extent of CTLA-4 surface expression is
determined by the strength of the TCR signal (133). In contrast to
full-length CTLA-4, ligand-independent CTLA-4 (lacking exon 2
encoding the ectodomain including the MYPPPY motif needed for
CD80/86 binding) expressed in resting mouse T-cells is downreg-
ulated during activation (21). Also, compared to activated effector
T-cells, CTLA-4 is considerably longer retained on the surface of
memory T-cells (134). The molecular basis for the different expres-
sion levels of CTLA-4 in both cell types remains to be established.
Intracellular trafficking to the cell surface as well as endocytosis
and recycling determine the overall level of CTLA-4 on the surface
of T-cells.

SUMMARY
Optimal regulation of CTLA-4 surface expression is crucial for
the balance of stimulatory and inhibitory signals to elicit proper
immune responses. Minor changes in surface expression levels
could have major effects on the outcome of T-cell activation. Levels
of surface expressed CTLA-4 are regulated by endocytosis, recy-
cling, and newly synthesized CTLA-4. Besides generic factors (i.e.,
ARF-1, PLD, SNAREs) needed for transport of multiple receptors
to the cell surface, the recently identified CTLA-4-TRIM-LAX-
Rab8 complex is specific in facilitating CTLA-4 transport to the
cell surface. This finding is of potential importance for the devel-
opment of new therapeutics that will be designed to enhance
anti-tumor immunity or to increase expression in the control
of autoimmune disease. Cell permeable peptides (CPP) and/or
siRNA targets of immune cell trafficking adapters TRIM or LAX
could provide an alternate therapy especially for patients with
severe IRAE during treatment with CTLA-4 antibodies. Further, a
combination of anti-PD-1 antibodies and CPP could achieve an
even more effective anti-tumor response.
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