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Immunology. Why does it exist? Two
words. Cure disease. People get diseases.
“Test tubes” do not. People fund immu-
nologists for solutions to their health
problems. But, immunologists often study
leukocytes in test tubes – the labora-
tory – away from diseases. Why? Because
much can be learned from analyzing cel-
lular biochemistry and behaviors in vitro
that cannot be ascertained when leuko-
cytes are in animals. At the same time,
isolated leukocyte reactions often do not
reflect how the immune system oper-
ates as a unit. So, it is critical to verify
in vitro observations in vivo. Among leuko-
cytes, macrophages are the central initi-
ating and directing element in immune
systems, and serve this role through four
basic “SHIP” functions in vivo: Sample;
Heal; Inhibit; and Present (antigen) (1–4).
The polar-opposite functions of Heal (M2-
type) and Inhibit (M1-type) can have pro-
foundly different effects on host survival,
and require unique and major changes
in macrophage metabolism and physiol-
ogy. In turn, macrophage populations are
necessarily heterogeneous as they adapt
to protect hosts in different ways: they
exhibit “plasticity.” Some have focused on
measuring ever-expanding lists of cell sur-
face or various other “markers” (mostly
in vitro) to try and sub-type macrophages.
But, the “heterogeneity” created by such
studies can be “illusory” because there are
many more markers than there are func-
tions (e.g., M1/inhibit and M2/heal). Thus,
it is important to focus on classifying
macrophages by functions, such as SHIP,
to navigate through a “sea of plasticity.”
And, thereby realize the enormous poten-
tial of macrophages/innate immunity for
improving health.

BASIC MACROPHAGE FUNCTIONS
IN VIVO
The earliest in vivo SHIP function observed
in macrophages was their ability to “sam-
ple” by ingesting items in their sur-
roundings (5, 6). Through sampling,
macrophages routinely receive “self” sig-
nals that instruct them to repair or replace
lost or effete cells and intercellular matrices.
The heal-type function of macrophages is
now called M2 [(7), reviewed in Ref. (2)].
Following infection (or trauma), M2/heal-
type macrophages can rapidly switch to
become M1/inhibit-type, to promote host
defense (1). M2/heal responses are medi-
ated by ornithine, and other growth-
promoting molecules (8, 9). M1/inhibit
is mediated by nitric oxide (NO) and
other molecules that promote cellular
killing activity (10, 11). Fascinatingly, both
ornithine and NO arise from one amino
acid: arginine (12).

The biochemical basis for the M2/heal
function of macrophages was discovered
before the M1/inhibit function (8, 12). As
illustrated in Figure 1A (top), in sterile
wounds, macrophages produce ornithine
(a precursor of polyamines and collagen
for repair) as healing proceeds (Green – M2
dominance) (13). Around the same time, it
was observed that macrophages in grow-
ing tumors were also the M2/ornithine-
producing type (Figure 1A middle). This
latter finding provided a biological expla-
nation for the association of intratumor
macrophages with tumor growth (14).
M2/heal-type macrophages have since
been shown to also dominate in human
tumors, and are associated with poor sur-
vival (15–18).

The biochemical basis of how M1/
inhibit-type macrophages kill pathogens

(or, abnormal “self”) also came from the
study of wounds and cancer described
above, as well as other studies [(19–
26), reviewed in Ref. (3, 12)]. As men-
tioned, macrophages have a unique abil-
ity to switch from making the heal mol-
ecule, ornithine, in vivo to making the
killer molecule, NO (1). Such a switch is
shown in Figure 1A (top). For a brief
period following wounding, a high con-
centration of NO is present (M1 activ-
ity, Red), which can protect the wound
if infectious agents have been introduced
(13). It is not clear exactly what stimuli
cause this injury-induced NO production,
though neutrophils are also involved (27,
28). If the wound is sterile, macrophage
NO production stops, neutrophil emigra-
tion ends, and wound macrophages make
ornithine (M2 activity) as mentioned.
Another example of the key protective
function of macrophages making NO is
shown in Figure 1A (bottom). It can be
seen that if a host is vaccinated against
the tumor shown in Figure 1A (middle),
implantation of the tumor causes intratu-
mor macrophages to make a large quantity
of NO that helps cause tumor rejection
(12). Macrophage NO is also an important
defense against a variety of infectious dis-
eases (29). That M2/ornithine or M1/NO
are important effector molecules are sup-
ported by studies showing that interfer-
ence with these activities in vivo alters
healing or host protection [reviewed in
Ref. (12)]. Conversely, overexpression
of M1/inhibit responses is associated
with conditions such as atherosclero-
sis and arthritis, while M2-type con-
tribute to chronic infections, promo-
tion of tumor growth, and allergies (3,
29). Together, these results demonstrated
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FIGURE 1 | (A). Predominance of M1 or M2-dominant macrophage responses in vivo in different types
of inflammation. Top: a wound results in a strong, but brief, shift from local macrophages making
primarily ornithine to making NO. Wound macrophages then become M2-dominant to aid in wound
healing. Middle: a growing tumor elicits macrophages, and macrophage production of NO is
suppressed and ornithine production predominates. Bottom: if a host is vaccinated against a tumor,
implantation of the tumor results in T cell-dependent M1 dominance and the tumor is rejected. (B) M2
to M1-type macrophage conversion and the illusion of “subsets.” Top: resident macrophages primarily
produce ornithine via arginase (Arg). Middle: upon stimulation, macrophage production of iNOS/NO
increases. And the production of other cytokines, etc., changes during this time. Bottom: after 16 h,
macrophage NO production increases further and ornithine production declines.

two core functions that result from
macrophages sampling their environment,
and that affect health in very impor-
tant, and opposite, ways: the M1/inhibit
response and the M2/heal response.

Inhibit-type macrophages and heal-
type macrophages were specifically
renamed M1 and M2 because these
macrophage responses [or dendritic cells1

(30–32)] were also found to stimulate T
cells to make Th1-type (cellular-based), or
Th2-type (antibody-based) cytokines (7),
respectively. This fourth SHIP function of
present (antigen) is only expressed in ver-
tebrates (1). Although T cells can pro-
duce molecules that “activate” or “alter-
natively activate” macrophages (33, 34),
macrophages evolved first and respond

first. They directly sense Pathogen or
Damage – Associated Molecular Patterns
(PAMP or DAMP) that can initiate M1
or M2-type responses (35–39). Subse-
quently, macrophages can stimulate T cells
(that cannot recognize antigens directly),
and thereby further amplify M1 or M2
responses. This “secondary” type of T cell-
driven response (macrophage “activation”)
was discovered by Mackaness and col-
leagues using mice preimmunized to Lis-
teria and other pathogens (40). It was not
known at this time that macrophages were
actually responsible for initially activating
T cells (41, 42). The recent revelation about
the central role of macrophages in immune
responses caused a sea change in under-
standing how immune responses occur and
are regulated in vivo (1, 7).

BIOCHEMICAL AND PHYSIOLOGIC
HOST ELEMENTS THAT INFLUENCE
HOW MACROPHAGES PROTECT HOSTS
Macrophage SHIP functions (sample, heal,
inhibit, and present) are regulated by inte-
gration of a variety of endogenous (e.g.,
host-derived and resident microbiota) and
exogenous signals (1, 43). For example, in
the absence of infection or injury, TGF-β
helps maintain macrophages in the rou-
tine M2/heal mode (7). Other host-derived
molecules, such as oxidized LDL, can stim-
ulate M1-type responses that contribute to
atherosclerosis (4, 44). Following infection
or injury, certain PAMPs and DAMPs stim-
ulate macrophages to switch from M2/heal
to M1/inhibit mode (35–37). IFN-γ was
shown to be the primary T cell product
that further amplifies M1/inhibit activity
(45). Later, macrophage IL-12 was found
to be a key cytokine (along with increased
Class II MHC expression) that stimulates
IFN-γ production by T cells (41, 42, 46).
Macrophages have also been reported to
secrete IFN-γ upon stimulation via IL-12
and IL-18 (47) or via CD40 (48), which
might further enhance M1 polarization
through auto- or paracrine activity. Not
all pathogens stimulate macrophages to
switch from M2/heal to M1/inhibit, and
some seem to suppress such a switch. In
this circumstance, M2-type macrophages
can stimulate T cells to make very dif-
ferent cytokines (such as IL-4, IL-13, and

1Both macrophages and dendritic cells can direct the type of T cell response. So, the word “macrophage” will be used here to refer to both. Readers are directed elsewhere
for discussions of macrophages and dendritic cells.
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TGF-β) that cause B cells to become
antibody-producing plasma cells (7, 29).
These same cytokines also inhibit the
M2 to M1 switch, and thus can amplify
M2/heal activity (1). Of course, because
there are many different pathogens invad-
ing different locales of hosts, there are
always mixtures of M1/Th1 or M2/Th2-
type responses as disease regression or pro-
gression occurs. In this connection, it is
now known that tissue macrophages can
arise from local renewal or from the blood
(1, 4). The ontogeny of M1 and M2-
type macrophages is not yet clear, and is
beyond the scope of this article. Recent
advances in metabolomics, defining resi-
dent microbiota, other areas, are opening
up new horizons for understanding the
myriad signals that regulate “immunity”
(43). Though more is to be known, the
aforementioned results have established
important biochemical and physiologic
elements that influence how macrophages
serve to protect (or fail to protect) against
infectious or other threats to host home-
ostasis.

IN VITRO VERSUS IN VIVO
MACROPHAGE CONUNDRUM
In addition to the basic macrophage func-
tions necessary for life (such as SHIP),
some investigators (primarily working
in vitro) have employed ever-expanding
lists of “markers” for macrophage “activa-
tion.” These include: cell surface antigens;
expressed gene products; and other factors,
and have created the notion that there are
many different “varieties” of macrophages
such as “M2 a, b, c,”“regulatory,” and “alter-
natively activated” macrophages (49–53).
Unlike classifying macrophages by func-
tions (e.g., M1/inhibit or M2/heal), the
use of markers has created subsets with-
out clear functional roles in vivo. Likewise,
defining macrophage populations based on
cytokine production patterns has caveats
that are often overlooked. For example,
macrophage cytokines such as IL-6 are
“inflammatory,” yet they can be found in
almost any site where macrophages are
present (1). Indeed, the very presence of
macrophages is inflammatory that raises
questions about what “anti-inflammatory”
macrophages are (47–49). Efforts to define
macrophage “subsets” based on which
cytokine (or agonist) has been used to stim-
ulate them in vitro (such as IL-4 or IFN-γ)

also leads to confusion since macrophages
do not encounter isolated cytokines in vivo.
Rather, they are constantly receiving hun-
dreds of signals, the integration of which
ultimately defines a cell’s behavior. Fur-
thermore, because a selected cytokine
can elicit a given macrophage reaction
in vitro does not mean it has the same
effect in vivo. For example, adding IL-
4 to macrophages in vitro does increase
M2-type activity (50). And IL-4 from T
cells or innate cells can upregulate M2-
type antibody responses (7, 29): what has
been has been termed “alternative acti-
vation”). However, it is hard to ascribe
M2-type responses in circumstances such
as sterile wounds or tumors to “alterna-
tive activation” because little or no IL-4
is present (54, 55). Using T cell-derived
cytokines to stimulate macrophages in vitro
has also propagated the long-held notion
that T cells are necessary to “activate”
macrophages (23, 24). This perception
runs counter to the observations that
macrophages initiate and direct innate or
adaptive responses (1). Another poten-
tial artifact of in vitro cultures is that
macrophages can exhaust critical media
components, and thus behave in ways
(including dying) that are not observed
in vivo where nutrients/other products are
replenished (24).

Finally, the source of the “macrophages”
being studied in vitro varies and has cre-
ated confusion. Specifically, people study-
ing humans have primarily used mono-
cytes from blood because of convenience.
And doing so has caused some to con-
clude there are major species differences
in “macrophages,” including that humans
seem less able (or unable) to produce
iNOS/NO or arginase/ornithine (3, 56, 57).
However, comparing monocyte-derived
macrophages to tissue macrophages is
an apples and oranges-type comparison.
When human tissue macrophages have
been examined, they do not appear fun-
damentally different from those of other
vertebrate species (58).

Thus, a variety of pitfalls can make it dif-
ficult to translate results from in vitro cul-
tures to understanding how macrophages
function in vivo. In turn, rather than rely-
ing on “markers” or selected culture stim-
uli to try and define different macrophage
“activation” states (59), it seems prudent
to focus on characterizing macrophages

by their known in vivo functions, such as
SHIP (1).

SHIP FUNCTIONS TO NAVIGATE A SEA
OF PLASTICITY
Macrophage SHIP functions are associated
with major differences in their metabo-
lism and physiology (1). And hence, at the
population level, macrophages must dis-
play considerable heterogeneity. “Plastic-
ity” usefully describes the unique adapt-
ability of macrophages as they change
from, for example, producing a growth-
promoting molecule (ornithine) to pro-
ducing a growth-inhibiting molecule (NO)
(12, 60). However, for some the concept
of plasticity has morphed into a notion
that macrophages are a fluid cell type
that are always only changing (47–51).
Like they say, “change is good” (humor
intended). But, like changing clothes, it is
not the changing that matters: it is the
result. Perhaps, the clothes help one get
a job, or, get a date, etc. And so it is
with macrophages. As macrophages make
major switches in their metabolism, they
are “changing.” But, the changes in func-
tional properties of macrophages can cre-
ate illusory heterogeneity as illustrated in
Figure 1B. Specifically, if a population of
resting/resident macrophages (or a single
macrophage, left) receives appropriate sig-
nals (e.g., LPS and/or IFN-γ) and commits
to switching from M2/heal to M1/inhibit
dominant activity, it takes the cell(s) several
hours to accomplish this major change in
metabolism. In turn,at any given time there
will be a variety of different macrophages
expressing different M2 and (increasingly
in this example) M1-type activity. In turn,
if one examines macrophages (or a sin-
gle macrophage) at any given time there
will be intermediate phenotypes in terms of
marker or cytokine expression. Also often
overlooked is that M1-type macrophages
produce non-specific killer molecules (like
NO) that inhibit or kill macrophages too
(24). In turn, analysis of whole popu-
lations can create the additional illusion
that M1-type have converted back to M2-
type, when actually, they are dead/missing
(1) In turn, examining macrophage pop-
ulations (particularly in vitro) can cre-
ate impressions of reversible plasticity or
heterogeneity, but which are not based
on what functions the macrophages have
(e.g., M1/inhibit or M2/heal) (49). Thus,
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heterogeneity (or plasticity) is a means to
an end. The “end” immunologists should
strive for is identifying macrophages by
their health-impacting functions (1).

SUMMARY
Immunology has and will continue to
cure important diseases. And, the abil-
ity to culture macrophages in vitro, the
expanding power of“transcriptome”analy-
sis to examine thousands of genes, the
capability of analyzing single macrophages,
and other new technologies are provid-
ing necessary new information about the
cellular biochemistry and physiology of
leukocytes. But, as demonstrated here with
macrophages, overemphasis on ambiguous
“markers,” or analyzing whole populations
of macrophages that are changing their
functions, can create an illusion – a “sea of
plasticity.” Therefore, to navigate this sea,
it is critical to focus on SHIP functions
(e.g., sample, heal, inhibit, and present)
that importantly affect health. Doing so
will help unleash the tremendous poten-
tial for usefully modulating innate immu-
nity/macrophages against a variety of con-
ditions ranging from cancer to atheroscle-
rosis. To cure disease.
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