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Epidemiological studies reveal an increased incidence of obesity worldwide, which is asso-
ciated with increased prevalence and severity of cognitive disorders.The blood–brain barrier
(BBB) represents the interface between the peripheral circulation and the brain, and plays
a fundamental role in the cross-talk between these two compartments. The homeosta-
tic function of the BBB is the protection of the brain from peripheral insult/inflammation.
Alterations in the function of the BBB lead to pathologies of the central nervous system.
Recently, metabolic imbalance has been shown to be an important risk factor associated
with the decline of BBB integrity and function. This has direct etiological consequences
on a variety of cerebrovascular and neurodegenerative pathologies with great impact to
society. Priority areas for future preclinical research include strategies to improve clini-
cians’ ability to diagnose, prevent, and manage BBB abnormalities. In sharp contrast with
epidemiological studies and clinical needs, little is known about the mechanisms that link
metabolic syndrome to BBB functionality and cognitive disorders. Our view is that immune
responses caused by metabolic stress might play a major role in this conundrum.
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INTRODUCTION
Central nervous system (CNS) homeostasis is a prerequisite for
the proper communication and function of neuronal cells. The
endothelial blood–brain barrier (BBB) and the epithelial blood–
cerebrospinal fluid barrier (BCSFB) tightly seal off the CNS from
the continuously changing milieu within the bloodstream (1) by
globally controlling immune cell trafficking. The BBB is a complex
three-dimensional structure composed of specialized endothelial
cells that are reinforced by pericytes, astrocytes end feet, and extra-
cellular matrix (2). The extreme tightness of the BBB is due to
specialized endothelial junctional complexes: the adherens junc-
tions (AJs) and the tight junctions (TJs). TJs formation between
endothelial cells is regulated by astrocytes, astrocyte-derived solu-
ble factors as well as metalloproteases (glia limitans) and pericytes
(so called neurovascular unit-NVU), which are important modu-
lators of the BBB permeability (3). Endothelial cells also express
transmembrane molecules called integrins, which are heteromeric
molecules involved in anchoring the cellular structure to the sub-
endothelial basal lamina/extracellular matrix (4). Integrins inter-
act with so called “focal adhesion” molecules, which are tightly
connected to the actin cytoskeleton and together with TJs and
AJs are key in regulating paracellular permeability (5). We have
recently reported that another important component for barrier
tightness is the anti-inflammatory protein Annexin A1 (ANXA1),
which has a dual role in stabilizing actin and TJ formation, and
protecting the brain by promoting resolution of inflammation (6),
a molecule that we propose to have great potential in correcting
BBB leakage.

Since BBB damage appears to be present in many neurologi-
cal disorders, it is not surprising to see much effort focused on
the development of therapies targeting the barrier (7). As BBB
dysfunction can either be a causative phenomenon or a prop-
agative/exacerbating event in the course of diseases, limiting its
impairment could potentially reduce the severity of pathology and
facilitate recovery (5).

Equally, inflammatory mediators are the primary cause of the
negative effects at the barrier level, and most of the attempts have
been focused at halting the inflammatory reaction. In particular
glucocorticoids like dexamethasone have shown improvement of
the physical and transport properties of the BBB (8), but their use-
fulness, for instance, in patients suffering from multiple sclerosis
(MS) decreases with time (9).

THE IMMUNOLOGY OF BBB
The immune-surveillance of the CNS is essential to keep under
control the entry of potential mediators of infection into the brain
parenchyma (10). Resident microglia are the primary guardians
of the brain parenchyma; however, a small number of T and
B cells, macrophages, and neutrophils from the periphery lie
within close proximity, patrolling the specialized CNS compart-
ments (11). Lymphocyte recruitment across the BBB into CNS,
although very low in healthy individuals, is responsible to main-
tain CNS immune-surveillance. Immune cells gain access to the
CNS via three routes: (a) non-fenestrated vascularized stroma of
the blood–cerebrospinal fluid (CSF) barrier that is surrounded by
the epithelial cells of the choroid plexus, (b) the perivascular space,
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FIGURE 1 | High-fat diet impact on peripheral versus central
function. High-fat diet (A) induces obesity (B) increasing peripheral
chronic inflammation (cytokines release). This has deleterious effects on
brain functionality (e.g., alteration of BBB transporters,

neuroinflammation, and cognitive disorders such as AD). Peripheral
inflammation and increased BBB leakage (C) induce leukocytes
migration into the brain (D), which exacerbates neuroinflammation and
neurodegenerative diseases.

where the deep arteries are continuous with the subarachnoid
space, and (c) post-capillary venules that enter the parenchyma
directly. Extravasation migration across the vascular wall and the
glial limitans propagates entry into the brain parenchyma. Within
CSF of healthy individuals, the majority of immune cells (~80%)
include T cells predominantly activated central memory T cells
(CD4+/CD45RA−/CD27/CD69+) (12). They traffic within the
CSF until encountering an antigen-presenting cell (APC) (13). In
the experimental autoimmune encephalomyelitis (EAE), effector
T cells entering the CNS become activated after short contacts with
leptomeningeal phagocytes at the onset of disease. During estab-
lished disease, the activation process is extended to the depth of the
CNS parenchyma, where cells form contacts with microglia and
recruited phagocytes, suggesting that they become able to infiltrate
the brain parenchyma (14). Upon activation, T cells upregulate
integrins and adhesion molecules, which enable leukocyte rolling
and arrest at the vessel wall. Multiple integrins, cytokines, and
adhesion molecules expressed on circulating and CNS-resident
cells are responsible for the initial events of the immune cas-
cade (12), which leads to leukocytes extravasation in the brain
parenchyma. It has recently been shown that intravenously trans-
ferred effector T cells gain the capacity to enter the CNS after
residing transiently within the lung tissues. Inside the lung tissues,
they move along the airways to bronchus-associated lymphoid tis-
sues and lung-draining mediastinal lymph nodes before entering
the blood circulation from where they reach the CNS (15). On their
way, T cells reprogram their gene-expression profile, characterized
by downregulation of their activation status and upregulation
of cellular locomotion molecules together with chemokine and
adhesion receptors. The adhesion receptors include ninjurin (16),
which participates in T cell intravascular crawling on cerebral
blood vessels. In addition, alternative routes can be used by T cells
to gain access to the CNS. In (EAE) Th17 pathogenic T cells enter
the CNS via the choroid plexus, a route controlled by the CCR6–
CCL20 axis (17). Furthermore, an elegant study by Arima et al.
(18) clearly shows that CD4+ pathogenic T cell access the CNS
trough lumbar spinal blood vessel cord being regulated by CCL20.
Such data are very important in the context of neurological disease
with a clear immune component.

METABOLIC STRESS AND BBB DISRUPTION
It is nowadays clear that metabolic syndrome (MetS), a cluster
of risk factors for cardiovascular disease, diabetes, and stroke, is

becoming endemic. Epidemiological studies show that lifestyle
(absence of physical exercise) and misbalanced diet (based on the
so-called “junk food”) are major causes of MetS. Obesity-related
disorders have risen by nearly 90% in the last decade (19). It is
therefore of paramount importance to educate young and elderly
people to a proper lifestyle. However, since socio-economical pres-
sure accounts for the difficulty in meeting these targets, at the
moment, early diagnosis and treatment are possible venues to
halt and prevent the escalation of MetS. For instance, type 2 dia-
betes and Alzheimer disease (AD) have been recently pinpointed
as likely linked to aging (20), clearly indicating a possible path for
the identification of drugs able to control both pathologies (21).

Despite this emerging importance of the environment in
triggering adaptive immunity of the CNS, a potential role for
metabolic stress, an important risk factor for pro-inflammatory
immune imbalance (22) and cognitive imbalance, has not been
investigated so far (Figure 1). For instance, the link between meta-
bolic stress and BBB functions is far from clear, aging factors may
account for alteration in tightness, and chronic peripheral inflam-
mation may also be accountable but no clear studies yet indicate
the molecular and cellular mechanisms underlying such link. One
molecule that we know is downregulated with aging is Annexin
A1 (23), but no studies have related yet such molecule to diet or
even metabolic syndrome. Very recently, the commensal gut flora
has been shown to be essential in triggering immune responses in
the brain (24), implying that the gut-associated-lymphoid-tissue
(GALT) is a potential site for priming brain-targeted immune
responses.

DIET AND CEREBROVASCULAR FUNCTION
The escalating incidence of obesity worldwide has mounted large
interest in studying the pathological consequences of increased fat
and cholesterol intake (25) that heavily contribute to the progres-
sion of MetS. MetS develops as a consequence of low-grade chronic
inflammation due to high-fat consumption and increases the
risk of deleterious outcomes such as cognitive impairment (25),
stroke (26), and neurodegenerative conditions such as Alzheimer’s
disease (AD) (27) and MS (28).

Although the BBB is exposed to both the peripheral and central
environments, the effects of obesity and MetS are bleak. In addi-
tion, age and excessive energy intake/obesity are reported as risk
factors for cerebrovascular disease. A recent study suggested that
reduction in neurofactors (named brain-derived neurotrophic
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factor and basic fibroblast growth factor) as well as inflam-
matory pathways (the antioxidant enzyme heme oxygenase-1)
with aging is responsible for the poor outcome post-infarction
in aging (26). Moreover, epidemiological studies on the effect
of western diet on learning and memory are ascribed to BBB
degradation (29).

CEREBRAL METABOLISM AND BBB TRANSPORTERS
Being one of the most metabolically active organs in the body,
the brain does not store excess energy and derives almost all of
its energetic needs from the aerobic oxidation of glucose. There-
fore, it requires continuous supply of glucose and oxygen to meet
its energy demands. Glucose can enter the brain from the blood
through two different routes: (a) the sodium-dependent glucose
transporters (SGLTs) and (b) the sodium-independent glucose
transporters (GLUTs). GLUT-1 is expressed in brain capillary
endothelial cells (30, 31) and safeguards glucose transport across
the BBB. Glucose transport and transporters are also affected by
systemic autoimmune-inflammation, for example, GLUT-1 is up-
regulated by interleukin-1β (IL-1β) at endothelial level although
its effects at neuronal level are deleterious (32). Therefore, one
could argue that since metabolism is associated with a degree of
on-going inflammation, the alteration of glucose transport and
transporters at the BBB could impact on brain networking result-
ing in learning deficit in young obese individuals and in cognitive
impairment in aged subjects. Moreover, another important BBB
transporter member of the ATP-binding cassette protein family,
the P-glycoprotein (which transports various molecules in and out
the brain parenchyma) appears to be modulated both in its activity
and expression by inflammatory events occurring at the level of
the BBB endothelium (33). Consequently, as P-glycoprotein activ-
ity is important for the passage of therapeutic molecules through
the BBB, understanding its regulation during inflammation would
aid in the development of drugs (32, 33).

Another important molecule with different functions in the
CNS compared to the peripheral system is insulin. Brain endothe-
lial cells (BEC) contain saturable transporter pores (34) that
translocate insulin from the blood to the brain. Produced most
exclusively by the pancreas, insulin crosses the BBB affecting feed-
ing and cognition (35). Similar to insulin, leptin (secreted by
adipocytes) crosses the BBB through a saturable transport mecha-
nism possibly independent of insulin (36) regulating appetite and
energy balance (37). Moreover, leptin produced by adipocytes and
lymphocytes (metabolic inflammation) has pro-inflammatory
activity possibly contributing to CNS inflammation (38).

BBB FUNCTION AND PATHOLOGY
The composition and structural organization of the BBB is key
to maintaining a constant and optimal cerebral environment for
neuronal function through a combination of barriers and selec-
tive transport systems that tightly regulate the passage of essential
and unwanted molecules (39). Nowadays, the BBB is not consid-
ered as a static, passive structure that serves as an impediment
to molecular access into the CNS (40). In contrast, it modulates
and actively filters molecules and blood born cells into the CNS,
and functions as a highly specialized transport, metabolic, physi-
cal, and immunological barrier. Consequently, alterations in BBB

integrity and function are associated with many pathologies of the
CNS (41), namely, MS, hypoxia and ischemia, edema, Parkinson’s
disease (PD) and AD, epilepsy, glaucoma, and lysosomal storage
diseases (3). Barrier dysfunction can range from mild and transient
TJ opening to chronic barrier breakdown and changes in transport
systems and enzymes (5). Breakdown of the BBB allows immune
cell infiltration to aid clearing debris and repair injuries. How-
ever, in several cases, it results in damage to the CNS, causing
neuronal dysfunction, injury, and degeneration (41). Hence, it
is not clear if changes in BBB physiology should be considered
as one of the causes of the disease, part of the pathophysio-
logical process, a consequence of the disease, or a combination
of all. Nonetheless, recent evidence supports the hypothesis of
endothelial dysfunction as a link between vascular disorders and
neurological impairment, exacerbating the development of CNS
disorders (40, 42).

METABOLIC IMBALANCE AND COGNITIVE DECLINE
A link between nutrition and mental health has been recently
established. Many eating-related peptides and regulatory proteins
produced by peripheral tissues and with receptors in the brain
have been found to cross the BBB. Thus, the fact that BBB results
permeable to factors that are important for the brain functional-
ity can be seen under the umbrella of BBB physiological conduits
toward the control of signaling between the peripheral and central
system. Consequently, dysfunction of BBB and its transporters can
result in disease. Resistance to leptin caused by its decreased trans-
port across the BBB in obesity is an example (37). Although rare,
patients with Glut-1 deficiency (caused by genetic mutations) can
have severe learning difficulties that may be corrected through the
diet (43).

Impairment of insulin transport due to change of BBB com-
ponent such as pericytes is also at the origin of pathological
manifestation in diabetes and hyperglycemia. Resistance to insulin
may occur also in the brain (so called diabetes mellitus type
III) and it may or not be linked to peripheral resistance, as for
ADs (35).

However, additional consideration has been put forward sug-
gesting that prolonged increased high-fat intake may be linked
to inflammatory and aging-related neurodegenerative diseases
including MS, PD, and AD (44). The development of various neu-
rodegenerative disorders have been associated with BBB damage
and increased permeability. Thus, it is thought that obesity can
potentially activate the onset of vascular disorders that affect BBB
permeability later in life (29, 45).

Moreover, BBB modifications are often characterized by the
disturbance of endothelial glial interactions (2). In addition,
decreased number of TJ proteins, in particular Claudin-5 and
Claudin-12, is found within the BBB and choroid plexus, increas-
ing the permeability of the barriers and enabling the entry of toxic
molecules (29, 46). During BBB disruption, agrin (a large pro-
teoglycan) is lost from the abluminal surface of the BEC. This is
thought to contribute to BBB damage in AD. Amyloid-B accumu-
lation, a key characteristic of AD is first seen in the neighboring
hood of blood vessels with toxicity on endothelium and astro-
cytes, before causing extensive neuronal loss and CNS homeostatic
imbalance (47).

www.frontiersin.org January 2015 | Volume 5 | Article 677 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mauro et al. Obesity, blood-brain barrier and immunity

Population studies are now more and more aligned to the con-
cept that MetS has a negative impact on learning and cognition.
Multiple factors and etiology spanning from impaired vascu-
lar reactivity to autoimmune-inflammation and oxidative stress
are potential factors affecting brain functionality as exhaustively
reported in Ref. (48). Insulin resistance and diabetes are indeed
strongly associated with deficiency in cerebrovascular functional-
ity. Indeed, it has recently been reported that insulin-signaling dys-
function in AD may be treated with administration of intranasal
insulin, which has been reported to improve mood and behavior in
diabetic patients (21). Such treatment has great potential because
of the beneficial effects not only on the functionality of peripheral
organs but also of the brain. Metformin together with amylin and
leptin analogs also deserve better investigation of their potential
beneficial effects in CNS pathologies that arise as consequence of
metabolic syndrome (21).

METABOLISM AND ADAPTIVE IMMUNITY IN THE
PERIPHERAL–CENTRAL AXIS
Although different metabolic needs and activity certainly follow
changes in signaling and proliferation rate, recent evidence sug-
gests that the regulation of T cell metabolism is tightly linked to
T cell function and differentiation. T lymphocytes are finely regu-
lated by signals that, once delivered through T cell receptor (TCR)
and cytokine receptors, induce the activation of different intra-
cellular metabolic pathways (49). Signals deriving from growth
factors and cytokines such as IL-2 or IL-7, together with ligation
of co-stimulatory molecules, lead to an increase in glucose uptake
and glycolysis through induction of phosphoinositide-3-kinase
(PI3K)-dependent activation of Akt (50, 51). T cell activation is
also accompanied by an increased rate of protein synthesis, which
supports cell growth and effector functions. Downstream of TCR
and CD28, Akt controls the activation of the mammalian Target of
Rapamycin, mTOR, which is the main regulator of protein synthe-
sis in T cells (52, 53). The importance of the mTOR pathway for T
cell activation is testified by the evidence that rapamycin, a selective
inhibitor of mTOR, induces a condition of immunosuppression,
through the induction of a cell cycle arrest in proliferating T lym-
phocytes. It has recently been shown that changes in nutritional
status of the host can directly affect survival and proliferation
of pro-inflammatory CD4+ T cells. Of note, dietary restriction
causes metabolic and physiological changes that have beneficial
effects in different pathological conditions, such as obesity, insulin
resistance, inflammation, oxidative stress, and autoimmune dis-
eases (54–56). The overall increase of obesity has focused the
attention on the biology of adipose tissue, so far considered only
a “passive” energy storage site. It is well accepted now that the
adipose tissue can also produce hormones and cytokines, named
“adipokines,” that bridge metabolism and immune homeostasis,
such as leptin, IL-1β, IL-6, IL-8, interferon-γ (IFN-γ), tumor
necrosis factor-α (TNF-α), transforming growth factor-β (TGF-
β), leukemia-inhibiting factor (LIF), and many chemokines (57,
58). Leptin is produced by the adipose tissue in proportion to
the body fat mass; its role is to regulate body weight through
the inhibition of food intake and stimulation of energy expen-
diture but evidence has indicated that leptin is also one of the
main regulators converging signals from the environment (food

availability) to effector (Teff)/regulatory (Treg) T cell prolifera-
tion both in vitro and in vivo (59, 60). The evidence that adipose
tissue has an important role on the control of central functions,
such as immunity and metabolism, is providing novel insights into
the pathogenesis of metabolic and inflammatory disorders. Leptin
secreted by adipocytes sustains Th1 responses by promoting Teff
cell proliferation and pro-inflammatory cytokine production and
by constraining Treg cells expansion: this balance between Teff
and Treg cells leads to immune tolerance on one side and to pro-
tection from infections on the other (59, 60). Recent evidence
suggests that leptin acts as an endogenous “sensing” factor, link-
ing the environment (availability of nutrients) to circulating Treg
number. Since nutritional deprivation increases the susceptibility
to infection and associates with the amelioration of clinical mani-
festations of inflammation and autoimmunity, it will be important
to address how this condition relates to the influence of leptin
on both Teff and Tregs. In MS, leptin secretion is increased in
serum and CSF of naive-to-treatment subjects and this directly
correlates with the secretion of IFN-γ in the CSF. Leptin levels
inversely correlate with the percentage of circulating Treg cells,
a subset able to dampen the autoimmune response mediated by
myelin-specific Teff cells present in MS subjects, thus reinforcing
the link between the number of Treg cells and leptin secretion
in vivo (61). The findings that different intracellular metabolic
pathways have an impact in the control of self-immune tolerance
and the study of how metabolic dysregulation in overweight and
obesity could alter immune tolerance are now topics of inten-
sive investigation. Recent evidence suggests that metabolic and
autoimmune diseases, characterized by chronic inflammation and
altered self-immune tolerance,are more common in affluent coun-
tries; the reasons for such phenomena are still not completely
understood, but the “metabolic disturbances” induced by nutri-
tional overload, observed in more developed countries, seem to
play the main role.

CONCLUSION
Despite the overwhelming indirect evidence correlating MetS and
inflammation to brain cognition, direct causative effects of meta-
bolic imbalance in pathological alteration of the BBB remain to
be established. Specifically, the metabolic pathways that affect the
cellular component of the BBB, as well as those regulating T cell
function and access to the CNS, are yet to be defined. The identi-
fication of molecules selectively altered by MetS will provide new
targets for corrections/interventions in all those neurodegenera-
tive disorders with a clear metabolic imbalance and autoimmune
pro-inflammatory component as well as biomarkers of early-stage
BBB malfunction with the aim of preventing disease onset and
progression.
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