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T cell fate decisions play an integral role in maintaining the health of organisms under
homeostatic and inflammatory conditions.The localized microenvironment in which devel-
oping and mature T cells reside provides signals that serve essential functions in shaping
these fate decisions. These signals are derived from the immune compartment, including
antigens, co-stimulation, and cytokines, and other factors, including growth factors and
nutrients.The mechanistic target of rapamycin (mTOR), a vital sensor of signals within the
immune microenvironment, is a central regulator of T cell biology. In this review, we dis-
cuss how various environmental cues tune mTOR activity in T cells, and summarize how
mTOR integrates these signals to influence multiple aspects of T cell biology.

Keywords: mTOR, T cells, iNKT cell, Treg cells

INTRODUCTION
T lymphocytes are comprised of heterogeneous populations that
include conventional αβ T cells, γδ T cells, invariant natural killer
T (iNKT) cells, and Foxp3+ regulatory T (Treg) cells. These func-
tionally and phenotypically distinct T cell populations are involved
in immune homeostasis and tolerance, pathogen clearance, and
elimination of cancerous cells. T cell fate decisions are shaped
by environmental signals received from nutrients, growth factors,
cytokines, and cell–cell interactions. The serine/threonine kinase,
mechanistic target of rapamycin (mTOR; formerly known as the
mammalian target of rapamycin), integrates these environmental
cues. The mTOR kinase exists in two, multi-protein complexes:
mTOR complex 1 (mTORC1) where mTOR associates with Rap-
tor, or mTOR complex 2 (mTORC2) where Rictor and mSin1 bind
mTOR (1, 2). mTORC1 activity is sensitive to, while mTORC2
activity is largely insensitive to, rapamycin treatment. Additionally,
the upstream activating stimuli and downstream effector functions
differ between these complexes (1, 2).

While the signaling pathways inducing mTORC2 activation in T
cells are poorly understood, in other cell lineages, mTORC2 associ-
ated with ribosomes is strongly activated, while ER stress or GSK3-
β-mediated phosphorylation of Rictor inhibits its activation (3,
4). Upstream positive regulators of mTORC1 activation include
the PI3K–PDK1–Akt pathway, the RasGRP–Ras–MAPKK (also
known as MEK)-ERK1/2 kinase cascade, and the small GTPase,
RHEB. By contrast, the phosphatase, PTEN, TSC1/TSC2, and the
LKB1–AMPK pathway antagonize mTORC1 function (1, 2).

When activated, mTORC1 signaling promotes S6K function
and suppresses 4E-BP1 activation, while mTORC2 regulates Akt,
SGK1, and PKC catalytic activity (1, 2, 5–8). mTOR signaling also
activates transcription factors, such as c-MYC, hypoxia inducible
factor 1-α (HIF1-α), and sterol regulatory element-binding pro-
teins (SREBPs) (1, 2). Ultimately, the activation of mTOR-induced
pathways impacts gene expression, protein translation, cell metab-
olism, growth, proliferation, survival, or migration in multiple cell
lineages, including T lymphocytes (1, 2). Because of these critical
biological effects, dysfunctional mTOR signaling is also linked

to autoimmunity, obesity, and cancer, among other conditions
(2, 9, 10).

Here, we review the multifactorial roles of mTOR in T cell
biology. We first discuss how different environmental stimuli acti-
vate mTOR within T cells. Second, we describe the role of mTOR
in thymocyte development. We then reveal how mTOR function
is coupled to peripheral T cell quiescence, functional activation,
and differentiation. The ability of mTOR to dampen the immune
response by modulating Treg cell function is also discussed. We
then review the known functions mTOR serves in regulating T
cell trafficking under homeostasis and upon infection. Finally, we
highlight how future studies will further advance our understand-
ing of mTOR functions in T cells, and how these findings may be
applied therapeutically.

MULTIPLE SIGNALS WITHIN THE IMMUNE
MICROENVIRONMENT TUNE mTOR ACTIVITY IN T CELLS
Specialized signals derived from immune microenvironments
shape T cell biology. To develop into mature T cells or gain
effector functions, T cells require stimulation by immune recep-
tors, including the TCR and co-stimulatory receptors. Soluble
factors, such as cytokines, adipokines, growth factors, and nutri-
ents, also affect T cell development and functional activation (1).
mTOR integrates these immunological and environmental cues
to ultimately shape T cell development, activation, and differenti-
ation into effector or long-lived, antigen-experienced memory T
cells. Below, we discuss how various factors within the immune
microenvironment tune mTOR activity, and a select summary of
these pathways is shown in Figure 1.

TCR AND CO-STIMULATORY RECEPTORS
When occurring in the presence of co-stimulation, TCR recog-
nition of self and non-self peptides expressed in the context
of MHC molecules is critical for T cell development and func-
tional activation, respectively (11–15). TCR and co-stimulatory
receptor triggering activate mTOR in multiple thymocyte popula-
tions, peripheral CD4+ and CD8+ T cells, and Foxp3+ Treg cells.
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FIGURE 1 | Select upstream regulators and downstream effectors of
mTOR signaling. Multiple signaling pathways emanating from the TCR,
co-stimulatory receptors, cytokines, and nutrients (amino acids) tune mTOR
activation in T cells. In this figure, black circles represent phosphorylation
events. Solid arrows indicate a direct, activating phosphorylation event
mediated by an upstream kinase, while dashed arrows indicate an indirect,
positive regulatory role for a protein in a particular pathway. Inhibitory
phosphorylation events or control of pathway activation are indicated by
solid or dashed flat-ended arrows, respectively.

Many studies have aimed to elucidate the mechanisms underly-
ing this activation. PI3K catalyzes the conversion of membrane-
bound phosphatidylinositol (PtdIns)-(4,5)-bisphosphate (PIP2)
into PtdIns-(3,4,5)-triphosphate (PIP3), which acts as a second
messenger to recruit the enzymes, PDK1 and Akt, to the plasma
membrane (13). As we discuss in greater detail below, the PI3K–
PDK1–Akt signaling axis promotes mTORC1 activation by inacti-
vating the TSC1/TSC2 complex, thereby driving RHEB activation
(2). However, downstream of the TCR, RHEB is only required for
early (e.g., during the first 4 h of stimulation) mTORC1 activation
(16), suggesting further mechanisms by which PI3K–Akt regulates
mTORC1 activation. In this regard, PRAS40 is a steric inhibitor of
mTOR, and its direct phosphorylation by Akt releases its suppres-
sive activity and promotes mTOR activation (17). Akt also indi-
rectly promotes mTOR phosphorylation by inducing IκB kinase α

(IKKα) activity, resulting in the formation of stable Raptor–mTOR
interactions that support mTORC1 function (18). The require-
ment for Akt in regulating mTOR activation may differ between
different T cell populations, as TCR-induced mTORC1 activity is
controlled by a PI3K–PDK1-dependent, Akt-independent path-
way in effector CD8+ T cells (19). This Akt-independent pathway
is linked to IL-2 induced metabolic reprograming and T cell prolif-
eration (20). PI3K–Akt signaling is antagonized by PTEN, and loss
of PTEN enhances mTOR activation (1, 2). Thus, the PI3K signal-
ing axis is a critical regulator of mTORC1 activation at multiple
levels.

In addition to PI3K, the modification of membrane-associated
lipids is also controlled by PLC-γ1. Early after TCR stimulation,
PLC-γ1 is activated, resulting in the cleavage of PIP2 into inos-
itol triphosphate (IP3) and diacylglycerol (DAG). DAG supports
the functional activation of the RasGRP–Ras–MAPKK–ERK1/2
pathway (13), and may cooperate with mTORC2 to induce

PKC-θ activity (5). The Ras–MAPKK–ERK1/2 pathway promotes
mTORC1 activation via the ERK1/2-dependent phosphorylation
of TSC2 (21). T cells that lack DAG kinase (DGK)-α and DGK-
ζ, which terminate DAG signaling, have elevated mTORC1 and
mTORC2 activation (22). However, whether the DAG–RasGRP–
Ras–MAPKK–ERK1/2 pathway acts independently or in concert
with PI3K signaling is unknown, as the catalytic function of PI3K
positively regulates TCR-induced ERK1/2 activation in mouse
and human T cells (23, 24). Inducible Tec kinase (Itk), which
directly phosphorylates and activates PLC-γ1, also promotes TCR-
induced mTOR activation by inducing microRNAs that suppress
PTEN expression (25). These studies indicate that many signaling
pathways regulate mTOR activity downstream of the TCR.

Although TCR stimulation is necessary for effective T cell devel-
opment and activation, co-stimulatory receptors must also be
ligated to fully promote these processes and overcome a state of
TCR-induced hypo-responsiveness called anergy (13). The classi-
cal co-stimulatory receptor for naïve T cells is CD28, which binds
CD80–CD86 on antigen presenting cells (APC). However, other
co-stimulatory receptors are expressed on activated T cells and
Treg cells, including OX40 and ICOS (26). OX40 has been demon-
strated to augment TCR-induced PI3K activation to potentiate and
sustain mTORC1 activity (27), further demonstrating the critical
importance of the PI3K pathway in tuning mTOR activation.

Non-enzymatic proteins also regulate mTOR activation in
response to antigen and co-stimulation. The CARD-containing
membrane-associated protein 1 (CARMA1)-mucosa-associated
lymphoid tissue lymphoma translocation protein 1 (MALT1) scaf-
folding complex is a recently identified, positive regulator of
mTORC1 activation (28, 29). Because IKKα is known to associate
with these proteins (14), this scaffolding complex may regulate the
IKKα-dependent phosphorylation of mTORC1 in T cells. Addi-
tionally, the Hsp90 chaperone protein prevents Raptor protein
degradation, thus promoting mTORC1 activation downstream of
the TCR (30). However, the detailed mechanism by which Hsp90
prevents Raptor degradation remains unexplored.

CYTOKINES
The cytokine milieu is another crucial environmental component
regulating T cell fate decisions. Within the thymus and in the
periphery, IL-7 signaling via IL-7R drives T cell development and
homeostasis, respectively (31). In a STAT5-dependent manner,
IL-7 promotes low, transient mTORC1 activation that is critical
to support IL-7 function in conventional T cells (32, 33). IL-12
activates mTOR via a STAT4-dependent mechanism in activated
CD8+ T cells (34), while IL-4 and IL-1 promote mTOR activa-
tion in TH2 and TH17 cells, respectively, to induce cell cycling (35,
36). The cytokine IL-15 regulates memory T cell formation (31,
37); however, although it activates mTOR via the PI3K pathway,
IL-15-induced mTOR activation driving naïve, CD8+ homeosta-
tic proliferation is not necessary for memory T cell formation
(38). Finally, IL-2 is a crucial cytokine that induces clonal expan-
sion in activated T cells and supports Treg cell development and
function (31). After cells express high levels of the high affinity
IL-2 receptor (e.g., CD25 coupled with CD127), IL-2 signaling
strongly activates transcriptional and metabolic reprograming via
the Jak3–STAT5 and PI3K–Akt–mTORC1 pathways (1, 31). Itk is
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also required for efficient mTOR activation following IL-2 stim-
ulation via mechanisms that are not fully elucidated (25). Like
co-stimulatory receptor signaling in conventional T cells, IL-2
signaling also synergizes with TCR-dependent signals to enhance
mTOR activation in Treg cells (1, 39).

AMINO ACIDS
As we will discuss throughout this review, amino acids also regu-
late T cell activation. Relatively little is known about how amino
acids control mTOR activation in T cells, but RHEB is an essen-
tial regulator of amino acid-induced mTORC1 activation in other
cell lineages (40, 41). Mechanistically, amino acids drive mTORC1
activation by recruiting the heterodimeric complex of GTP-bound
RAG GEFs (RAGA, RAGB, RAGC, and RAGD) to the lysosomes via
the Ragulator complex (40, 41). This process is antagonized by the
GAP activity of TSC2, which, when associated with lysosomes in
the absence of PI3K–Akt signaling, inactivates RHEB (42). Indeed,
TSC1-deficient T cells have hyper-elevated mTORC1 signaling
(43), but it should be noted that amino acids can activate mTORC1
in a TSC1-independent fashion in other cell lineages (44).

Precisely how amino acids regulate T cell responses remains
uncertain. In the absence of TCR and CD28 stimulation, amino
acids promote mTORC1 activation in effector CD8+ T cells
(45). Moreover, amino acids enhance TCR and CD28-induced
mTORC1 activation (29), and IL-7 or TCR and IL-2 stimula-
tion also increases amino acids transport to promote efficient
CD8+ T cell responses (45). However, TCR and CD28-induced
mTORC1 activation is controlled by RHEB-dependent and RHEB-
independent mechanisms (16). One potential explanation for
these data is that amino acids localize mTORC1 to the lysosome to
potentiate the early activation of mTORC1 via RHEB. After pro-
longed antigen exposure, however, other TCR and CD28-induced
signaling pathways are sufficient to sustain mTOR activation inde-
pendently of RHEB (16). Future work will continue to dissect the
mechanisms by which amino acids activate mTORC1 in T cells and
other cell linages, but they may regulate CARMA1–MALT1–Bcl10
complex composition and function (28, 29).

NOTCH
NOTCH signaling promotes thymocyte proliferation and survival,
and aids in their differentiation into terminally differentiated T
cells (15). We discuss the process of thymocyte development in
greater detail in the next section. Ligation of NOTCH activates
mTOR activation through PI3K–Akt (46). Interestingly, aberrant
NOTCH signaling is observed in both human and murine T cell
acute lymphoblastic leukemia (T-ALL), and NOTCH inhibition
in T-ALL lines suppresses mTOR activation by inhibiting c-MYC
expression (47). However, the precise mechanisms by which this
occurs remain undefined.

LEPTIN AND SPHINGOSINE 1-PHOSPHATE (S1P)
Leptin is an adipocyte-derived cytokine, or adipokine, and serves
multiple roles in T cells as discussed throughout this review.
Recently, it was demonstrated that leptin receptor signaling con-
tributes to the high levels of mTORC1 signaling that inhibits
their IL-2-induced proliferation in vitro (39, 48). We describe
how mTOR controls Treg cell development, differentiation, and

function in a later section. The lipid chemokine, S1P, signals via
S1PR1 and drives mTORC1 activation in a PI3K–Akt-dependent
manner (49–51). These studies indicate that multiple, immune-
mediated signals regulate mTOR activation within T cell popu-
lations. Below, we discuss how the integration of these signals
via mTOR regulates T cell development, functional activation,
suppressive function, and migration.

ROLE OF mTOR SIGNALING IN THYMOCYTE DEVELOPMENT
OVERVIEW OF THYMOCYTE DEVELOPMENT
T cell development occurs within the thymus and results in
the generation of mature, conventional αβ CD8+ or CD4+ T
cells or non-conventional T cell populations, including CD4+

Foxp3+ thymic-derived Treg (tTreg) cells, γδ T cells, and iNKT
cells. Thymocytes destined to become any T cell lineage begin
as CD4−CD8− double negative (DN) thymocytes, which can be
further divided into substages: DN1, DN2a, DN2b, DN3a, DN3b,
and DN4. NOTCH signals drive early proliferation and T cell lin-
eage commitment by inducing expression of the pre-TCR (e.g., a
rearranged TCRβ chain with a surrogate α chain) or the γδTCR in
DN thymocytes. DN2 cells that upregulate the expression of the
γδTCR in the presence of high levels of IL-7R signaling will become
mature γδ T cells. By contrast, to develop into conventional αβ T
cells, the DN3a cells must receive signals through the pre-TCR and
NOTCH to undergo β-selection. DN cells next progress into the
CD4+CD8+ double positive (DP) stage. Then, these cells receive
positive and negative selection signals from the TCR to become
CD4+ or CD8+ single positive (SP) cells. These SP will migrate
to peripheral tissues as quiescent, mature CD4+ or CD8+ T cells.
Foxp3+ tTreg cells differentiate from DP cells upon receiving inter-
mediate affinity TCR signals in the presence of IL-2 and/or IL-15.
The coordination of receptor-mediated signals and transcription
factor networks driving T cell development are discussed in other
reviews (14, 15).

iNKT cells are a specialized, non-conventional subset of αβ T
cells, and are harmful or protective in a variety of diseases (12).
In both humans and mice, the TCR repertoire is restricted to
Vα18–Jα18 chain paired with a limited number of Vβ chains (12).
This TCR recognizes lipid antigens expressed in the context of the
non-classical MHC molecule, CD1d. iNKT cell development also
occurs in the thymus, diverging from the conventional αβ T cells at
the DP stage in response to strong, CD1d-presented TCR signals in
combination with SLAM ligation (12). In mice, the development
of these cells is tracked by the expression of CD24, CD44, and
NK1.1: immature stage 0 (CD24+CD44−NK1.1−), transitional
stages 1 (CD24−CD44−NK1.1−) and 2 (CD24−CD44+NK1.1−),
and mature stage 3 (CD24−CD44+NK1.1+). The transcription
factors PLZF, GATA3, T-bet, and ROR-γt are expressed at dif-
ferent levels in these stages, determining their IL-4-producing
NKT-2, IFN-γ-producing NKT-1, and IL-17-producing NKT-17
cell fate commitments (12, 52). NKT-2, NKT-17, and NKT-1 cells
are enriched in stages 1/2, stage 2, and stage 3, respectively (52).

mTOR CONTROLS CONVENTIONAL αβ T CELL DEVELOPMENT
To date, many studies have determined the impacts of mTOR
inhibition at different stages of thymopoiesis. The conditional
deletion of Raptor early during thymocyte development results
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in less cell cycling and proliferation, more apoptosis, and severe
thymic atrophy (53). By contrast, abrogation of mTORC1 function
does not appear to affect later stages of thymocytes development,
as no major developmental defects are observed when mTOR is
deleted in the DP stage (54) or when Raptor is deleted in the
DN3 or DP stage by Lck-Cre and CD4-Cre, respectively (16, 53).
Thus, mTORC1 activation serves different functions throughout
thymocyte development (Figure 2).

mTORC2 is also critical for thymocyte development, but it
appears that the mechanisms by which mTORC2 supports thymo-
cyte development differ from mTORC1 (Figure 2). Three different
genetic models (e.g., whole animal, hematopoietic-specific dele-
tion, and T cell precursor-specific deletion) have shown loss of
Rictor at different stages compromises thymocyte development
and leads to thymic atrophy (53, 55, 56). Mechanistically, mTORC2
activity is connected to the stability, de novo synthesis, and/or post-
transcriptional modifications of proteins involved in thymic selec-
tion, including CD4, CD8, pre-TCR, TCR, NOTCH, and CD147,
a receptor expressed on highly proliferative DN4 cells (56). Col-
lectively, these studies reveal discrete functions of mTORC1 and
mTORC2 in regulating thymocyte development.

Negative regulators of mTOR also influence T cell development.
Pten−/− T cells undergo malignant transformation regulated, in
part, by elevated Akt and mTOR activation (57, 58). PTEN defi-
ciency does not affect conventional T cell development, although
only CD4 SP thymocyte frequencies were reported (59). However,
another study demonstrated that loss of PTEN leads to the accu-
mulation of DN, DP, and CD4 SP thymocytes, and a reduction in
negative selection at the DP stage (60). These data are in subtle con-
trast to the positive roles Akt and mTOR play in thymocyte devel-
opment (16, 53–55, 61, 62). Work from our lab and others have

FIGURE 2 | mTOR is a critical regulator of thymocyte development.
T cell progenitors first develop within the bone marrow and migrate to the
thymus. Here, cells respond to multiple environmental stimuli and progress
through CD4−CD8− double negative (DN) stages 1–4 to the double positive
(DP) stage. These DP thymocytes will then adopt different cellular fates in
response to additional cues. Red arrows indicate where mTORC1 and/or
mTORC2 control thymocyte fate decisions, where plus signs (+) represent
positive regulation and minus signs (−) depict negative regulation.

shown that T cell-specific deletion of TSC1 does not inhibit thy-
mocyte development (43, 63, 64). By contrast, Lkb1−/− thymocytes
have a severe developmental block linked to defects in proliferation
and survival (65, 66), but these effects appear to be independent
of the known substrates of LKB1, AMPK1α or the related protein,
MAP/microtubule affinity-regulating kinase 2 (MARK2) (65, 67,
68). Whether LKB1 controls thymocyte development via AMPK-
independent pathways or AMPK family members are functionally
redundant in thymocyte development is currently unresolved.

mTOR SUPPORTS NON-CONVENTIONAL iNKT CELL AND Treg CELL
DEVELOPMENT
γδ T cell
Treating human peripheral blood mononuclear cells with
rapamycin increases the TCR-driven expansion and effector func-
tions of γδ T cell (69), while rapamycin treatment in vivo sup-
presses the functional activation of skin-resident, murine γδ T
cells (70). However, the functional role mTOR signaling serves in
γδ T cell development is currently unknown.

iNKT cells
mTORC1 and mTORC2 are critical regulators of iNKT cell devel-
opment. Rptor−/− iNKT cells accumulate in stages 0 and 1, leading
to a severe reduction of mature iNKT cells in the periphery (71,
72), whereas Rictor−/− iNKT cells are developmentally blocked at
stage 2 (73, 74). The lineage commitment of iNKT cells is com-
promised by loss of Raptor, as the frequency of IFN-γ-producing,
T-bet+ NKT-1 cells is reduced (72). By contrast, Rictor deficiency
does not diminish NKT-1 cell differentiation. Loss of Rictor, how-
ever, does suppress NKT-17 cell and/or NKT-2 cell development
(73, 74). Mechanistically, mTORC1 regulates iNKT cell prolifera-
tion (72), whereas mTORC2 drives TCR-induced proliferation at
stage 1 and protects from TCR-induced apoptosis (73, 74). These
data indicate that mTORC1 and mTORC2 serve important, yet
distinct, functions in iNKT cell development.

Elevated mTOR signaling also alters iNKT cell development.
Compared to conventional T cells, iNKT cells express higher lev-
els of Tsc1 and Tsc2 mRNA (75). Importantly, this high level of
TSC1/TSC2 expression regulates the terminal maturation of iNKT
cells, as Tsc1−/− thymocytes have severe limitations in developing
past stage 2 and into functional NKT-1 cells (75). Recent work has
also demonstrated that folliculin-interacting protein 1 (Fnip1) is
required for iNKT cell progression beyond stage 2 (76). Mech-
anistically, Fnip1−/− iNKT cells are more sensitive to apoptosis,
which may be attributed to excessive mTOR signaling and mito-
chondrial disruption (76). Finally, PTEN also regulates iNKT cell
development and function. Suzuki and co-workers demonstrated
that PTEN deficiency blocks progression from stage 2 to stage 3
and also abrogates TCR-induced IFN-γ production in these cells
(77). Moreover, we have recently demonstrated that NKT-17 cell
development is enhanced in the absence of PTEN, in part because
mTORC2 signaling is elevated in these cells (74). These studies
demonstrate a pivotal role for mTOR signaling in controlling iNKT
cell development.

Foxp3+ tTreg cells
In addition to iNKT cells, Foxp3+ tTreg represent a non-
conventional T cell population that develops within the thymus
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(14). It has been reported that mTOR conditional knockout mice
have normal frequencies of Treg cells (54). Conditionally deleting
PTEN within T cells does not dramatically alter Treg cell develop-
ment, although PTEN does suppress the IL-2-induced expansion
of these cells (59). Moreover, TSC1 deficiency within the total T
cell or Treg cell compartments does not alter thymic or peripheral
Treg cell ratios (43, 78), but does impair their function as we dis-
cuss below. It is noteworthy that these studies did not distinguish
between tTreg and peripherally induced Treg cells (pTreg), which
differentiate from naïve CD4+ T cells following antigen stimula-
tion in the presence of select cytokines. We discuss the pharmaco-
logical and genetic evidence linking mTOR signaling to pTreg dif-
ferentiation later in this review. Additional studies should explore
the effects of LKB1–AMPK signaling on tTreg cell development.

mTOR CONTROLS PERIPHERAL T CELL HOMEOSTASIS,
ACTIVATION, AND DIFFERENTIATION
In the periphery, naïve T cells undergoing IL-7–IL-7R-driven
homeostatic proliferation are maintained in a quiescent state
(11). Upon receiving the appropriate antigen, co-stimulatory,
cytokine, and nutrient signals, these T cells rapidly prolifer-
ate, generating multiple, antigen-specific T cell clones capable
of inducing effective adaptive immune responses (13, 79, 80).
These signals also induce the expression of transcription fac-
tors, including T-bet, GATA3, ROR-γt, Bcl-6, and Foxp3, which
promote CD4+ T helper (TH)1, TH2, TH17, T follicular helper
(TFH), and pTreg cell differentiation, respectively (79). Similarly,
these signals drive CD8+ T cell differentiation into short-lived
effector T cells [SLECs; T-bethiEomesodermin (EOMES)+Blimp-
1hiKLRG1+IL-7Rαlo] or memory precursor cells (MPECs; T-
betloEOMESloBlimp-1hiKLRG1loIL-7Rαhi) (80, 81). The switch
from naïve to activated to memory T cells is coordinated by an
intricate network of epigenetic, transcriptional, and metabolic
programs, many of which are directly influenced by mTOR acti-
vation (1, 82, 83). Below, we discuss how alterations in mTOR
signaling affect mature T cell quiescence, functional activation,
and differentiation. A summary is shown in Figure 3.

T CELL HOMEOSTASIS REQUIRES LOW LEVELS OF mTORC1 SIGNALING
Tonic TCR signaling induced by host-derived antigens in com-
bination with IL-7R signaling maintains T cell homeostasis (11).
Moreover, recent work has linked PI3K–Akt–mTOR signaling to
the homeostatic proliferation of NKT-17 cells, which preferentially
require IL-7 for their homeostasis (84). While mTOR, Raptor, or
Rictor-deficient T cells have no alterations in steady-state periph-
eral T cell homeostasis (16, 54), low levels of mTOR signaling
appear to maintain CD4+ and CD8+ T cell quiescence. In support
of this idea, Tsc1−/− T cells have excessive mTORC1 signaling,
which promotes aberrant cell cycling (43, 63, 64, 85). Tsc1−/− T
cells have reduced homeostatic proliferation in response to IL-7
signaling and are hyper-responsive to TCR-induced apoptotic sig-
nals (43, 63, 64, 85). Bcl2 overexpression rescues this defect in
apoptosis, but does not restore quiescence (43).

PTEN and LKB1 are also regulators of peripheral T cell home-
ostasis. Mature PTEN-deficient T cells are hyper-proliferative,
resistant to apoptosis, and drive autoimmunity (86). Similar to
Tsc1−/− T cells, peripheral Lkb1−/− T cells are hyper-activated

FIGURE 3 | mTOR signaling controls peripheralT cell fate decisions. In
the peripheral tissues, T cell quiescence is controlled by low levels of
mTORC1 signaling. Upon receiving antigen and co-stimulatory signals,
T cells rapidly expand. In the presence of select cytokines, CD4+ T cells
further differentiate into different effector CD4+ T cell lineages. CD8+ T cells
will become effector T cells before becoming memory T cells. The roles
mTORC1 and mTORC2 serve in various T cell states are indicated within
the figure, with positive roles shown with plus (+) signs and negative roles
indicated by minus (−) signs. Question marks (?) indicate pathways
requiring further investigation.

and are more sensitive to TCR-induced apoptosis (87). Moreover,
anti-CD3 and anti-CD28 antibody, but not IL-7, induced prolifer-
ation is impaired in the absence of LKB1 (66). Although TSC1 and
LKB1 have similar defects, multiple metabolic pathways, includ-
ing mitochondrial functions, are dysregulated in Tsc1−/− T cells
(43, 63), while glycolysis is enhanced in the absence of LKB1 (87).
Thus, TSC1 and LKB1 are both critical to maintain quiescence, but
they control naïve T cell homeostasis by different mechanisms.

mTOR SIGNALING IS COUPLED TO T CELL CLONAL EXPANSION
It has been demonstrated that mTOR, RHEB, and Raptor-deficient
T cells have defects in antigen-driven proliferation (16, 54). This
effect is largely dependent upon mTORC1-mediated signaling
driving cell cycle entry from quiescence, as loss of Raptor or
rapamycin treatment in naïve, but not proliferating, T cells blocks
clonal expansion and instead promotes T cell anergy (16, 88).
Rapamycin-treated, human T cells also have reduced prolifera-
tion (89), further supporting the idea that mTORC1 is a critical
regulator of T cell proliferation. Raptor-deficient T cells have
reduced c-MYC and SREBP expression and activation, respectively,
leading to decreased glycolysis, oxidative phosphorylation, and/or
lipogenesis (16, 90).

In addition to TCR and co-stimulatory signals, amino acids
also regulate mTORC1 activation to promote T cell proliferation.
Depletion of select amino acids, including arginine, leucine, or
tryptophan, impairs T cell proliferation (91–93). Similarly, glut-
amine uptake is required for efficient T cell responses, and dele-
tion of leucine transporters, including CD98, Sla7a5, and ASCT2,
reduces mTOR activation and T cell clonal expansion (29, 94–
98). Interestingly, leucine and glucose import appear to be linked,
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as ASCT2-deficient T cells have reduced expression of the glu-
cose receptor, Glut1 (29). This observation may functionally link
amino acid sensing to proliferation, as glucose uptake and glycol-
ysis are intimately linked to this process (99). Collectively, these
studies reveal that mTOR signaling is a crucial determinant of T
cell activation.

mTOR REGULATES TRANSCRIPTIONAL AND METABOLIC PROGRAMS
TO CONTROL T CELL DIFFERENTIATION
CD4+ T cells
In addition to driving T cell proliferation, mTORC1 and mTORC2
also serve different roles in priming effector CD4+ T cell differenti-
ation in response to antigen, co-stimulatory, and cytokine signals.
In the absence of mTOR function, TH1, TH2, and TH17 polariza-
tion are all impaired (16, 54, 89, 100–102). mTORC1 activity con-
trols TH1 and TH17 differentiation (100, 101). However, whether
mTORC2 is also required for TH1 generation remains contro-
versial (100, 101). TH2 polarization and function are severely
impaired in the absence of Raptor (16), but are retained in RHEB-
deficient T cells that exhibit a partial loss of mTORC1 activity (16,
101). Interestingly, although other studies link Rictor–mTORC2
to TH2 differentiation, rapamycin treatment of Rictor−/− T cells
diminishes TH2 polarization more profoundly than Rictor defi-
ciency alone (16, 100, 101). These data highlight the central role
of mTORC1 in shaping TH2 differentiation.

Additional work has aimed to determine the mechanisms by
which mTOR links immunological signaling to effector CD4+ T
cell differentiation. Rapamycin treatment impairs TCR and CD28-
induced T-bet and GATA3 upregulation, and also abrogates per-
missive de-methylation of the Ifng and Il4 gene loci (103). These
results may explain why deleting various mTOR-related proteins
inhibits TH1 and TH2 differentiation. We have demonstrated that
Rptor−/− CD4+ T cells have profound defects in metabolic repro-
graming driven by the transcription factors, c-MYC and SREBP
(16), which impairs the functional activation and differentiation
of these cells. TH17 differentiation is reduced in the absence of
HIF-1α, a transcription factor functionally regulated by mTORC1
activity (104, 105). Interestingly, although Rictor−/− CD4+ T cells
do not exhibit defective TH17 differentiation, recent studies link
the mTORC2 substrate, SGK1, to the IL-23-driven generation of
highly inflammatory, “pathogenic” TH17 cells that can promote
autoimmune disease development in mice (106, 107). Future work
will investigate if mTORC2 regulates IL-23R signaling to facilitate
this process.

Environmental cues also signal to mTOR, supporting the differ-
entiation of CD4+ T cells. It has been demonstrated that Asct2−/−

T cells have reduced TH1 and TH17 differentiation and function
as a result of reduced leucine import (29, 98). This defect is linked
to attenuated TCR and CD28-induced mTORC1 activation (29).
Slc7a5-deficient T cells, which have impaired amino acid trans-
port, also have reductions in TH1 and TH17 differentiation (45).
Moreover, S1PR1 signaling promotes TH1 differentiation (51),
while leptin receptor signaling drives TH1 and TH17 differentia-
tion (108, 109). Future work will explore the detailed mechanisms
by which these and other environmental signals, including addi-
tional amino acids, influence effector CD4+ T cell differentiation.
We describe studies implicating how mTOR signaling shapes pTreg

differentiation in a later section of this review.

CD8+ T cells
In CD8+ T cells, mTORC1 inhibition or deletion increases mem-
ory CD8+ T cell formation or maintenance by regulating the
expression of various transcription factors, including FoxO1, T-
bet, and Blimp-1 (38, 110–113). Memory CD8+ T cells may arise
due to asymmetric cell division or impaired differentiation from
effector CD8+ T cells (81, 114). However, knocking down Rap-
tor in activated CD8+ T cells also potentiates memory functional
CD8+ T cell differentiation (113), and deleting TSC1 from acti-
vated CD8+ T cells impairs memory differentiation and function
(115). Thus, mTORC1-mediated control of memory CD8+ T
cell differentiation appears to be linked to defective effector to
memory differentiation. mTORC1 signaling regulates CD8+ T
cell differentiation, in part, by controlling glycolytic and oxidative
phosphorylation metabolism following IL-15 stimulation (115).
However, it should be noted that IL-15-independent functions for
mTOR in controlling CD8+ T cell memory formation have been
described (38). For instance, mTORC1 imparts control over effec-
tor versus memory T cell fate decisions by regulating the expression
of NOTCH on naïve CD8+ T cells (116). Thus, mTORC1 utilizes
multiple mechanisms to influence effector versus memory CD8+

T cell differentiation and function.
Recent data revealed a site-specific role for mTOR signaling

in the generation of CD8+ T cell memory. Marzo and colleagues
found that rapamycin treatment enhances memory CD8+ T cell
differentiation in the blood and spleen, but the number of mem-
ory CD8+ T cells in the lungs and peripheral lymph nodes are
not affected (117). In fact, mucosal CD8+ T cells isolated from
the small intestine lamina propria are reduced in numbers upon
rapamycin treatment, in part due to defects in T cell trafficking as
discussed below. Collectively, these data indicate a critical role for
mTOR in modulating tissue-specific, effector versus memory fate
decisions in CD8+ T cells.

In response to chronic infections, CD8+ T cells become
functionally impaired or exhausted (118). Kaech and colleagues
recently demonstrated that Akt and mTOR signaling are impaired
in CD8+ effector T cells following a chronic viral infection as
compared to an acute infection (119). This event leads to the
FoxO1-dependent upregulation of PD-1 and promotes the sur-
vival of terminally differentiated, exhausted CD8+ T cells. Sig-
naling downstream of PD-1 antagonizes mTOR activation (120),
which drives CD8+ T cell exhaustion (119). Consistent with this
idea, PD-1 blockade restores function in exhausted, CD8+ T cells
in an mTOR-dependent manner (119). Therefore, in addition to
supporting CD8+ T cell effector versus memory formation, the
mTOR–FoxO1 axis also regulates CD8+ T cell exhaustion.

mTOR MAINTAINS IMMUNE TOLERANCE BY CONTROLLING
Treg CELL FUNCTION AND STABILITY
Foxp3+ Treg cells maintain T cell homeostasis in the periphery,
and their loss of function causes severe, multi-organ autoimmu-
nity in humans and mice (121). Interestingly, mTOR signaling
serves discrete functions in Treg cell differentiation and func-
tion. Several groups demonstrated that Treg cell differentiation is
potentiated in vitro (called iTreg cells) in the presence of rapamycin
(54, 122–128). An inhibitory role for mTOR in the generation of
iTreg cells was further supported using Mtor−/− T cells (54), with
mTORC1 and mTORC2 serving functionally redundant roles in
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suppressing iTreg differentiation (54, 101). Likewise, HIF-1α defi-
ciency enhances Treg cell differentiation (104, 105). However, the
functional capacities of Mtor−/− or rapamycin-expanded Treg cells
require further investigation, as the source of the Treg cells used
in the in vitro suppression assays were not a highly purified pop-
ulation of Foxp3+ Treg cells. The in vivo suppressive activity of
these cells also remains largely unexplored, although rapamycin-
expanded, human Treg cells are functional in a xenograft transfer
model (129).

Regulatory T cells have high, basal levels of mTOR signaling
compared to their naïve T cell counterparts (39, 48). However,
the proper threshold of mTOR signaling is critical to support their
suppressive function in vitro and in vivo. We recently demonstrated
that Raptor-deficient Treg cells lose suppressive activity in vitro and
in vivo, the latter of which contributes to rampant autoimmunity
and lethality in mice (39). Mechanistically, Raptor-mTORC1 sig-
naling is linked to cholesterol biosynthesis and lipid metabolism,
processes that are important to support the expression of the Treg

cell effector molecules, ICOS and cytotoxic T lymphocyte antigen
(CTLA)-4. These effects are not observed in Treg cells lacking Ric-
tor, and combined loss of Raptor and Rictor partially restores the
suppressive function of Treg cells in vitro and in vivo (39). Thus,
loss of mTORC1, but not mTORC2, activity is linked to Treg cell
dysfunction.

While these studies show that loss of mTORC1 activity is
deleterious to Treg cell function, excessive mTOR signaling within
Treg cells also compromises their function and affects their sta-
bility. TSC1-deficient Treg cells are impaired in their ability to
suppress inflammatory responses, as they lose Foxp3 expression
and acquire TH17 cell effector-like functions in vitro and in vivo
(78). Consistent with this study, recent work demonstrated that
patients with autoimmune diseases have elevated mTOR activa-
tion within their Treg cells (10). Although they proliferate more
robustly following IL-2 stimulation, Pten−/− Treg cells appear to
retain their suppressive capacity in vitro and can suppress coli-
tis development in vivo (59). However, the role of PTEN in Treg

cells has not been specifically addressed using a conditional dele-
tion model. Thus, distinct negative regulators of mTOR activity
appear to serve different functions in Treg cells.

Several pathways have mechanistically been shown to modu-
late mTOR activity within Treg cells to regulate their proliferation,
differentiation, and function. Leptin receptor signaling restrains
TCR and/or IL-2 stimulation-induced Treg proliferation in vitro
(48, 130), suggesting that leptin levels may be a critical factor
influencing Treg cell proliferation in vivo (131). Maintenance
of Foxp3 expression is required for Treg suppressive function
(132). Transient TCR stimulation drives PI3K–Akt–mTOR sig-
naling that antagonizes Foxp3 expression (133), and rapamycin
treatment enhances Foxp3 expression by modulating DNA methy-
lation within the Foxp3 locus (103). Through multiple mecha-
nisms, Treg cells can modulate amino acid availability within a
microenvironment (92, 121, 134). Interestingly, mTOR inhibition
and amino acid deprivation synergize with TGF-β signaling to
augment Foxp3 expression in vitro (91, 92). Finally, S1PR1 signal-
ing to mTORC1 restrains Treg differentiation in the thymus and
periphery, and limits their suppressive function in vitro and in vivo
during homeostasis and inflammation (50, 51).

mTOR REGULATES T CELL TRAFFICKING
After an infection occurs, chemokine and adhesion receptors local-
ize T cells to the proper anatomical location. The adhesion receptor
CD62L and chemokine receptors, CCR7 and S1PR1, allow T cells
to enter and be retained in peripheral lymph nodes such that
T cell activation may occur (49, 135). As with T cell develop-
ment and activation, mTOR signaling is also a critical regulator
of T cell trafficking. PI3K or mTORC1 inhibition in activated
CD8+ T cells reduces IL-2-induced downregulation of CCR7,
CD62L, and S1PR1 expression (136), which causes these cells to
traffic to lymph nodes (34). By contrast, the downregulation of
these molecules occurs more efficiently in the absence of PTEN
or TSC1 (43, 115, 136, 137). These trafficking defects may par-
tially account for why rapamycin treatment enhances and TSC1
deficiency suppresses memory CD8+ T cell differentiation (34,
115, 136). Although the precise mechanisms by which mTOR
signaling regulates trafficking are not known, mTOR modulates
the expression of Kruppel-like factor 2 (KLF2) and HIF-1α, two
transcription factors that modulate the expression of lymph node
homing receptors (19, 136). Further, mTORC2 may inhibit FoxO1
function by enhancing Akt activity, and FoxO1 transcriptional
activity modulates the expression of lymph node homing receptors
(137). Finally, mTORC1 activity induces T-bet expression (34),
which drives CXCR3 upregulation and subsequently localizes T
cells to sites of infection (138, 139). Thus, mTOR activity regulates
T cell trafficking via multiple mechanisms (Figure 4).

Recent work also demonstrates a role for mTOR in T cell
trafficking to non-lymphoid tissues. Trafficking into the gut-
associated mucosa is regulated by CCR9, the α4β7 integrin, and
CD103 (140). In CD8+ T cells, rapamycin treatment suppresses
the expression and/or function of these molecules, leading to a
severe reduction in these cells within mucosal sites (117). Similarly,
knocking down mTOR within activated CD8+ T cells also reduces
trafficking to the small intestine. Although it was not mechanis-
tically determined how mTOR controls mucosal site homing, the
retinoic acid receptors (RARs) induce CCR9 and α4β7 integrin

FIGURE 4 |T cell trafficking is linked to mTOR. mTORC1 and mTORC2
control T cell trafficking by regulating the expression and/or functional
activation of multiple transcription factors. In this manner, mTOR signaling
regulates trafficking into inflammatory sites, lymph nodes, and mucosal
sites.
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expression in activated T cells (141, 142). As Treg cells, TH17 cells,
and iNKT cells play pivotal roles in gut-associated lymphoid reac-
tions (143, 144), future work will need to explore how mTOR
inhibition or hyper-activation influences trafficking to mucosal
sites within these cell lineages.

CONCLUDING REMARKS
Current work has highlighted the critical role the environmen-
tal sensor mTOR plays in T cell biology. mTORC1 and mTORC2
both support thymocyte development, but integrate distinct and
overlapping signals and impart discrete functions to facilitate this
process. In contrast to thymocytes, mTORC1 is the dominant
regulator of the functional activation and differentiation of con-
ventional T cells in the periphery. mTORC1 activation is critical for
clonal expansion, effector CD4+ T cell differentiation, and Treg cell
function, while mTORC2 also contributes to these processes but
with limited effects. However, further work is needed to determine
the role mTORC1 and mTORC2 serve in the induction of site-
specific immune responses, including the generation of TFH cells
and tissue-specific Treg cell populations, the latter of which play
critical functions in dampening immune responses in mucosal
sites, adipose tissues, and tumors (121, 145).

From a clinical perspective, it will be critical to deter-
mine the impacts of mTOR inhibition on the specific immu-
nity to pathogens, tumors, and auto-antigens. Hyper- or hypo-
activation of mTOR has a profound impact on T cell development
and activation, so these investigations will provide insight into
how rapamycin, its rapalogs, and other next generation mTOR
inhibitors will influence localized and systemic immune responses
in different disease settings. Given the intricate link between
mTOR function and T cell fate decisions, it is feasible that one
could modulate mTOR activation within specific inflammatory
sites and/or immune cell types to modulate the immune response
in states where both mTOR and T cells are dysfunctional. These
studies will be key toward determining if mTOR suppression in
T cells is a viable target for treating autoimmunity, cancers, and
infectious diseases, or for boosting memory CD8+ T cell responses
to enhance vaccine efficacy.
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