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The adaptive immune system is equipped to eliminate both tumors and pathogenic microor-
ganisms. It requires a series of complex and coordinated signals to drive the activation,
proliferation, and differentiation of appropriate T cell subsets. It is now established that
changes in cellular activation are coupled to profound changes in cellular metabolism. In
addition, emerging evidence now suggest that specific metabolic alterations associated
with distinct T cell subsets may be ancillary to their differentiation and influential in their
immune functions. The “Warburg effect” originally used to describe a phenomenon in
which most cancer cells relied on aerobic glycolysis for their growth is a key process that
sustainT cell activation and differentiation. Here, we review how different aspects of metab-
olism inT cells influence their functions, focusing on the emerging role of key regulators of
glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in
T cell function could provide insights into mechanisms involved in inflammatory-mediated
conditions, with the potential for developing novel therapeutic approaches to treat these
diseases.
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INTRODUCTION
The immune system comprises specialized cell populations that
are conditioned to respond rapidly and vigorously to antigenic
and inflammatory signals. Most research has focused on these sig-
nals in guiding immune responses. Now emerging data indicate
that cellular metabolism regulates immune cell functions and dif-
ferentiation, and consequently influences the final outcome of the
adaptive and innate immune response (1–4). The growth, func-
tion, survival, and differentiation of an activated immune cells
depend on dramatic increases in glucose metabolism as fuel, a
process that is directly regulated and has a profound impact on
health and disease (1, 5–7).

Inflammatory conditions such as HIV infection results in a
heightened inflammatory state that affects the availability and use
of energy. This in turn influences T cell activation and functions
(8, 9). Identifying the pathways that coordinate the metabolic
processes during inflammatory conditions, as observed in HIV
infection will potentially provide new therapeutic opportunities.

METABOLIC PROFILES OF IMMUNE CELLS DURING IMMUNE
ACTIVATION
The functions of peripheral T cells are maintained and are inti-
mately linked to metabolism. Specific effector functions are unable
to proceed without the cell adopting the appropriate metabolic
state (10, 11). Research into T cell metabolism has provided valu-
able insight into the pathways that are important for T cell fate,
plasticity, and effector functions. T cells rapidly transition between

resting catabolic states (naïve and memory T cells) to one of
growth and proliferation (effector T cells) during normal immune
responses (10, 11).

The commitment of an immune cell to a specific metabolic
pathway depends on the particular function. This is evident in the
subsets of CD4+ T cells where effector T cells and Th17 cells rely
on aerobic glycolysis, while memory T cells and T regulatory cells
(Treg) rely on fatty acid oxidation to produce energy (12). Aerobic
glycolysis is also utilized for energy by activated dendritic cells,
neutrophils, and pro-inflammatory macrophages (13).

The vast majority of evidence supporting the significance of
metabolism in immune cell functions is derived mainly from
in vitro and animal models. The reasons why T cells adopt spe-
cific metabolic programs and the impact this has on their function
in the context of human diseases such as HIV infection remains
unclear.

HOW IS GLUCOSE USED BY IMMUNE CELLS TO PRODUCE
ENERGY?
Glucose is transported into T cells via the high affinity Glucose
transporter 1 (Glut1), which is the major glucose transporter on
T cells (14, 15). Through a rate limiting step catalyzed by hexoki-
nase, glucose is trapped inside the cells where it is metabolized via
glycolysis. During this process, each glucose molecules is broken
down into pyruvate with a net production of two ATP molecules.
Most non-proliferating and terminally differentiated T cells such
as naïve and memory T cells completely oxidize pyruvate via the
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tricarboxylic acid (TCA) cycle to generate NADH and FADH2
that fuel oxidative phosphorylation producing 36 molecules of
ATP per glucose molecule. When T cells are activated, pyruvate
is transformed into lactate regenerating NAD+ that subsequently
engages glycolytic reactions.

It may seem counterintuitive that T cells, which have increased
demand for energy would be involved in exploiting a relatively
insufficient process to generate energy. Whilst glycolysis is less
efficient in generating ATP than oxidative phosphorylation, it is a
rapid process occurring independently of mitochondrial function.
Furthermore,a widely held assumption is that the shift from oxida-
tive phosphorylation to increased aerobic glycolysis by rapidly
proliferating T cells diverts the use of glucose for macromolecular
biosynthesis (16).

GLUCOSE METABOLISM IN NAÏVE AND ACTIVATED T CELLS
Upon maturation in the thymus, naive CD4+ T cells recirculate
between the blood and secondary lymphoid organs. The immune
quiescence of naïve T cells is accompanied by a catabolic metab-
olism, characterized by the breakdown of glucose, fatty acids, and
amino acids to generate intermediate metabolites, which enter the
mitochondrial TCA cycle (17). The interconversion of metabo-
lites in the TCA cycle generates energy and reducing equivalents,
which subsequently enter the oxidative phosphorylation pathway
effectively increasing ATP production.

The quiescence of naïve T cells is interrupted upon engage-
ment of the T Cell Receptor (TCR) by a specific antigen/MHC
class II complex displayed on the surface of dendritic cells, con-
currently with the recognition of costimulatory molecules by the
receptor CD28. These two signals trigger T cell activation, the
secretion of IL-2, cellular proliferation referred to as clonal expan-
sion, and their differentiation into an effector phenotype. These
changes in the activation status of CD4+ T lymphocytes not only
require energy, but also increased demand for metabolic precur-
sors for the biosynthesis of proteins, nucleic acids, and lipids to fuel
clonal expansion and subsequent differentiation into effector cells.
Therefore, efficient T cell activation requires profound changes in
cellular metabolism (18, 19). In effect, energy generation through
the TCA cycle and oxidative phosphorylation is interrupted and
have been thought to be replaced by glycolysis, in which glucose is
converted to lactate in the cytosol, even when sufficient oxygen is
available to perform oxidative phosphorylation (5, 20).

The peculiar promotion of glycolysis in the presence of nor-
mal oxygen levels is referred to as aerobic glycolysis and it is also
a hallmark of cancer metabolism (21, 22). Although less efficient
in terms of energy production, aerobic glycolysis generates meta-
bolic intermediates that are used in anabolic pathways required
to sustain cell growth and to produce daughter cells. However,
more recently the dogma that CD4+ T cells simply switch from
an oxidative to glycolytic metabolism has been challenged. Cao
and colleagues demonstrated that oxidative phosphorylation is
strongly induced during CD4+ T cells activation (23). By com-
paring CD4+ and CD8+ T cells, the researchers showed that
these cells utilize distinct metabolic strategies to meet their func-
tional demands. Following activation, CD8+ T cells had a higher
glycolytic flux than CD4+ T cells. On the other hand, CD4+

T cells also induced glycolysis upon activation, but had greater

mitochondrial content and oxidative metabolism than CD8+ T
cells. Nevertheless their observation that glycolytic inhibition by
2 deoxy-glucose (2-DG) suppressed CD4+ T cell growth, and
that rotenone inhibited both CD4+ and CD8+ T cell prolif-
eration underscores the significance of glycolysis and oxidative
metabolism in T cell activation (23). It is therefore apparent that
T cell activation is not accompanied merely by a switch from
oxidative metabolism to glycolysis, but that both pathways are
upregulated to support bioenergetic demands. This intimate inter-
relationship between T cell activation and metabolism led to the
concept that changes in T cell metabolism are not simply a conse-
quence of antigen-induced activation, but rather a parameter that
determines T cell proliferation and fate decisions (5, 24).

SIGNALING PATHWAYS REGULATING GLUCOSE
METABOLISM IN T CELLS
In activated T cells, the rapid induction of glycolysis is promoted
by the increase in the activity of several enzymes and proteins,
which are regulated at the transcriptional and posttranscriptional
levels. Following T cell activation, Glut1, is translocated to the
surface of CD4+ T cells (25–28). This occurs in response to
the activation of the phosphoinositol-3 kinase (PI3K)-Akt path-
way that triggers the recruitment of Glut1 from the cytoplasmic
pool to the cell surface. Increased Glut1 expression and glucose
uptake by activated T cells is accompanied by increased gly-
colysis (Figures 1A,B) (29). An abnormal transduction of Akt
signaling was discovered among Fas-associated protein with death
domain (FADD) knock out thymocytes, and was partly responsi-
ble for a decline in Glut1 expression, a corresponding decrease
in glucose uptake, increased apoptosis, and reduced cell num-
bers (30). In addition, T cell activation accompanies induction
of the mammalian target of rapamycin (mTOR) pathway. mTOR
is a serine/threonine kinase that forms two multiprotein com-
plexes, mTORC1 and mTORC2, as determined by the association
with different adapter and scaffolding proteins. mTOR activation
regulates a myriad of cellular functions, including growth, apopto-
sis, differentiation, and metabolism (31, 32). Recently, the mTOR
pathway has generated enormous attention due to the regulation
and differentiation of distinct T cell subsets by different mTORC
complexes (7), and the considerable interest in these complexes by
the pharmaceutical industry (33). Other signaling pathways that
have been associated with glucose metabolism in T cells are the
extracellular signal-related kinase (ERK) (34), signal transducer
and activator of transcription (STAT5) (15), some MAPKinases
(35), and hexokinase II (36). However, the magnitude by which
these pathways regulate T cell metabolism may vary depending on
the precise environmental conditions. Indeed, it is also likely that
these pathways may also co-operate with the PI3K-Akt and mTOR
pathways to regulate metabolic reprograming of T cells.

mTOR REGULATION OF GLUCOSE METABOLISM, T CELL
ACTIVATION, AND DIFFERENTIATION
During metabolism in CD4+ T cells, activation of the mTOR by
TCR/CD28 coligation interrupts catabolic metabolism by regu-
lating fatty acid oxidation and oxidative phosphorylation (12).
Concurrently, mTOR induces the transcription of many key gly-
colytic enzymes (37). Thus, the increase in glucose uptake due
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FIGURE 1 | Glucose metabolic programs regulate glucose uptake,
activation, and differentiation of CD4+T cells. (A) Mitogenic stimulation
or engagement of the TCR complex activates the phosphoinositide 3-kinase
(PI3K)-gamma (PI3Kg) subunit in CD4+ T cells. Activation of the PI3Kγ in
CD4+ T cells promote Glut1 trafficking from the cytoplasm to the cell
membrane and increases glucose uptake to sustain activation. (B) Upon
activation, T cells increase glucose uptake through Glut1, which facilitate
increased oxidative phosphorylation and glycolysis to sustain cell growth
and proliferation. (C) Unique metabolic changes upon differentiation of T
cells toward different subsets, regulated by various transcription factors and
signaling pathways.

to Glut1 translocation, together with enhanced transcription of
glycolytic enzymes results in an important increase in the gly-
colytic flux. The regulation of metabolic pathways by mTOR is
mainly achieved through the activation of downstream transcrip-
tional factors, such as Bcl-6 involved in the regulation of T cell
immune function (38, 39), which reinforces the current paradigm
that metabolism and T cell function are deeply interconnected.
In particular, mTOR activation stimulates the activity of the tran-
scription factor Myc, which plays a key role in the metabolic switch
following activation by promoting expression of enzymes involved
in aerobic glycolysis and other anabolic pathways (17). In addition,
mTOR enhances the translation of the mRNA encoding HIF-1α.
The increase in HIF-1α level also facilitates the expression of criti-
cal components of the glycolytic pathway and regulates the balance
between Treg and inflammatory Th17 differentiation through

direct transcriptional activation of RORγt thus promoting T cell
differentiation and activation (40, 41).

METABOLIC SIGNATURES OF CD4+ T CELL LINEAGES
The development of an effective and balanced immune response is
largely determined by the differentiation status (Naïve/memory)
and effector profile of T cells (Th1, Th17, and Treg), and is con-
trolled by distinct metabolic programs (Figure 1C). Each of these
lineages has a distinctive functional property, largely determined
by the production of a defined subset of cytokines (42). The lineage
commitment of activated T cells is determined by the integra-
tion of multiple cues present in the immune microenvironment
at the moment of activation. Interestingly, both the metabolic and
immunologic programs are coordinated by the mTOR (43). Thus,
mTOR activity is required for the differentiation of all the CD4+ T
cell effector subsets but not for the differentiation of Tregs (44, 45).
Indeed, whereas effector T cells are highly glycolytic, Tregs have a
metabolism dominated by the oxidation of fatty acids followed by
oxidative phosphorylation (12).

The activity of mTOR not only influences effector versus reg-
ulatory decisions, but also plays a critical role in the differentia-
tion of the different effector T cell profiles. As follows, signaling
from the mTORC1 is required for the differentiation of Th1 and
Th17 but not of Th2 cells (46). Conversely, the mTOR signal-
ing through mTORC2 is required for the differentiation of Th2
cells (46).

METABOLIC PROGRAMING OF TH1 CELLS
Th1 cells are functionally characterized by the production of
IFNγ and TNF, which are of utmost importance in the induc-
tion of cell-mediated immunity against obligate intracellular
pathogens, such as viruses, as well as bacteria, such as M. tuber-
culosis. Th1 cells possess a high glycolytic rate, which is paral-
leled by high surface expression levels of Glut1 (12). Remark-
ably, the glycolytic metabolism of Th1 cells dramatically influ-
ences their functionality, as evidenced by the fact that inhibi-
tion of glycolysis severely suppresses the secretion of IFNγ (6,
10). In addition to the role of aerobic glycolysis in biomass
production, glycolysis and IFNγ production present one extra
level of interaction. Indeed, it has been proposed that glycolytic
enzymes can regulate the effector phenotype of T cells by per-
forming non-metabolic functions. For example, the glycolytic
enzyme GAPDH, if not engaged in glycolysis, can bind IFNγ

mRNA post-transcriptionally, blocking the translation of this
cytokine. Thus, aerobic glycolysis would be required to engage
GAPDH in its metabolic functions, liberating the IFNγ mRNA
for translation, thereby allowing these cells to attain full effec-
tor functions (10). Interestingly, studies conducted by Cham
and Gajewski elegantly demonstrated that IFNγ, but not IL-2,
production is preferentially inhibited by limiting glucose condi-
tions (47). This further highlights the important link between
glucose metabolism regulated by mTORC1, and CD8+ T cell
effector functions. Although inhibition correlated with reduced
phosphorylation of p70S6 kinase and eIF4E binding protein 1,
surprisingly, inhibition of mTOR failed to block T cell cytokine
production under their experimental conditions (47). This illus-
trates the complex relationship between transcriptional and post
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transcriptional control of T cell effector functions, mediated by
metabolic reprograming.

METABOLIC PROGRAMING OF TH17 CELLS
Th17 cells produce IL-17, IL-21, and IL-22 and are critical for the
control of extracellular bacteria and mucosal immunity. More-
over, Th17 cells are important for of a number of autoimmune
processes (48). Like Th1 cells, Th17 cells are highly glycolytic (12).
In addition to the requirement of signaling from the mTORC1
(46), Th17 cell differentiation is critically dependent on the tran-
scription factor HIF-1α. HIF-1α not only stimulates the glycolytic
activity of Th17 cells, but also transcriptionally activates the mas-
ter transcription factor RORγt (40), which subsequently directs
the differentiation program of Th17 cells (49). Thus, it is there-
fore clear that metabolic programs can now be used to identify
and classify effector T cell lineages as reviewed by Maclver and
colleagues (7).

METABOLIC PROGRAMS IN DIFFERENTIATION AND
EXPANSION OF Tregs
Lipid oxidation via AMPK and oxidative phosphorylation are
considered the predominant metabolic programs in differenti-
ated Tregs (7, 12). However, Neildez-Nguyen and colleagues have
recently shown that higher expression of Glut1 is detected on
mouse Tregs generated under hypoxic (5% O2) culture condi-
tions compared to those cultured under ambient oxygen levels
(21% O2) (50). Indeed following differentiation, amplification of
the committed Tregs was explicitly favored by low oxygenation,
and by glycolysis probably through induction of Glut1 on the
cell membrane (50). This observation underscores the significance
of culture conditions such as oxygen levels in regulating metab-
olism and thus cautions how one interprets and relate in vitro
metabolic activity to those in humans. The significance of these
distinctions is confirmed by the expression and stability of HIF-
1α, which is highly dependent on the level of oxygenation in the
cellular environment. Augmented Glut1 expression, mediated by
HIF-1α, is observed in response to low O2 levels in several cell types
including CD4+ T cell (9). HIF-1α transcriptionally activates
genes encoding glucose transporters, and rate limiting enzymes
involved in glycolysis, and therefore plays a significant role in T
cell differentiation and functions (39, 51).

T CELL METABOLISM IN INFLAMMATORY DISEASES
Despite the overwhelming evidence suggesting that specific meta-
bolic alterations is associated with T cell functions and differentia-
tion; how these metabolic changes influences immune functions in
human diseases has only recently been examined. Studying Glut1
levels on immune cells, Palmer and co-workers have shown that
increased glycolytic metabolism in CD4+ T cells is associated with
abnormally high levels of immune activation, and low CD4+ T cell
count in HIV-infected persons (52), at least in part due to “meta-
bolic exhaustion” of these cells. Indeed, recent investigations have
demonstrated that Glut1 is a CD4+ T cell activation marker essen-
tial for cell growth and proliferation, and HIV infection in vitro (9,
53). It is unknown whether other inflammatory conditions such as
obesity, diabetes, cardiovascular diseases, and rheumatoid arthritis

can impact cellular metabolism of T cells and other immune cells.
In the context of HIV infection, an established chronic inflam-
matory disease, increased glucose metabolism in inflammatory
monocyte subsets was associated with elevated levels of markers
of inflammation (54, 55).

As discussed above, following activation and differentiation,
the pro-inflammatory CD4+ T cell subsets are distinguished
from the anti-inflammatory CD4+ Tregs based on their meta-
bolic signatures. Thus, intense investigations are now focused on
the hypothesis that elevated glycolysis is a hallmark of inflamma-
tory cells. Indeed, inhibition of glycolysis by rapamycin has been
shown to facilitate the generation of murine naturally occurring
CD4+CD25+Foxp3+ Tregs in vitro, which were able to prevent
allograft rejection in vivo (56), illustrating the link between T cell
differentiation, metabolism, and immunity.

Recently, the role of oxidative stress, a hallmark in several
inflammatory conditions has been discussed in the framework of
metabolism in immune cells (1). In inflammatory macrophages,
reactive oxygen species (ROS) have been implicated in increased
Glut1 expression and glycolysis, mediated in part by NF-kB sig-
naling (1). Data regarding the role of ROS in T cell metabo-
lism are sparse; however, upon T cell activation, mitochondrial
ROS are generated within minutes, and at low levels is associ-
ated with cellular proliferation (57, 58). Therefore, a plausible
model in the context of T cells is that ROS induce HIF-1α by
activating PI3K/mTOR and or NF-kB-linked signaling to upreg-
ulate metabolic pathways that facilitate T cell expansion and
proliferation (59). Another important consideration is the inter-
action between T cells and other immune cells such as monocytes
and macrophages. Inflammatory mediators produced by activated
monocytes and macrophages are potential sources of activating
stimuli for T cells (54), thus a thorough understanding of the
shared metabolic checkpoints by which diverse inflammatory cues
and oxidative stress modulate metabolic programing will provide
important insight into combined approaches to target cellular
metabolism in T cells. Moreover, the prominence of immune
cells in controlling inflammatory-associated inflammation such as
obesity has now gained considerable attention (60). The exciting
advances in immunometabolism may provide new opportunities
to develop novel interventions for the treatment of inflammatory
and metabolic diseases.
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