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Despite effective anti-viral therapies, cytomegalovirus (CMV) is still associated with direct
(CMV disease) and indirect effects (rejection and poor graft survival) in kidney trans-
plant recipients. Recently, an unconventional T cell population (collectively designated as
Vδ2neg γδ T cells) has been characterized during the anti-CMV immune response in all
solid-organ and bone-marrow transplant recipients, neonates, and healthy people. These
CMV-induced Vδ2neg γδ T cells undergo a dramatic and stable expansion after CMV infec-
tion, in a conventional “adaptive” manner. Similarly, as CMV-specific CD8+ αβT cells, they
exhibit an effector/memory TEMRA phenotype and cytotoxic effector functions. Activa-
tion of Vδ2neg γδ T cells by CMV-infected cells involves the γδ T cell receptor (TCR) and
still ill-defined co-stimulatory molecules such as LFA-1. A multiple of Vδ2neg γδ TCR lig-
ands are apparently recognized on CMV-infected cells, the first one identified being the
major histocompatibility complex-related molecule endothelial protein C receptor. A sin-
gularity of CMV-induced Vδ2neg γδ T cells is to acquire CD16 expression and to exert an
antibody-dependent cell-mediated inhibition on CMV replication, which is controlled by a
specific cytokine microenvironment. Beyond the well-demonstrated direct anti-CMV effect
of Vδ2neg γδ T cells, unexpected indirect effects of these cells have been also observed in
the context of kidney transplantation. CMV-induced Vδ2neg γδ T cells have been involved
in surveillance of malignancy subsequent to long-term immunosuppression. Moreover,
CMV-induced CD16+ γδ T cells are cell effectors of antibody-mediated rejection of kid-
ney transplants, and represent a new physiopathological contribution to the well-known
association between CMV infection and poor graft survival. All these basic and clinical
studies paved the road to the development of a future γδ T cell-based immunotherapy. In
the meantime, γδT cell monitoring should prove a valuable immunological biomarker in the
management of CMV infection.

Keywords: antibody-mediated rejection, cancer, cytomegalovirus, gamma-delta T cells, lymphocytes, renal
transplantation

INTRODUCTION
Kidney transplantation is the treatment of choice for patients with
end-stage renal failure (1, 2). However, transplantation implies
long-term chronic immunosuppression to avoid acute rejec-
tion and to extend graft survival. Chronic immunosuppression
reshapes host–pathogen relationships, by modifying the type or
changing the magnitude of immune responses against pathogens
and tumor cells. Therefore, the two main complications associated
with immunosuppressive therapies are opportunistic infections
and cancer.

Cytomegalovirus infection is the most frequent opportunis-
tic infection occurring after kidney transplantation. Human
cytomegalovirus (CMV) is an ubiquitous human herpesviridae,
with a double-stranded linear DNA genome of 235 kb (3). Primary
CMV infection in an immunocompetent host is usually asympto-
matic due to the establishment of a robust and specific adaptive

immune response involving CMV-specific CD4+ T cells, CD8+
T cells, and IgG, which persist lifelong. Moreover, after primo-
infection, all these actors contribute to inhibit virus reactivation
(3). Despite effective anti-viral therapies, CMV is still associated
with CMV infection or disease in immunocompromised kidney
transplant recipients (4, 5). CMV infection is characterized by
CMV DNAemia (CMV DNA in blood or plasma, also called CMV
viremia) regardless of symptoms and occurs in about 50% of
CMV-seropositive patients (R+, patients with peripheral blood
CMV IgG) (6–10), and up to 70% of donor-positive, seronegative-
recipients (D+R−) in the absence of anti-viral prophylaxis (11–
18). CMV disease can be a viral syndrome (CMV DNAemia with
fever, malaise, leukopenia, and/or thrombocytopenia) or a tissue-
invasive disease (where CMV is detected in the injured organs,
mostly lungs, liver and intestines) (4, 5). It occurs in 15–20%
of D+R− patients and 5–10% of R+ patients, with or without
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prophylaxis. Infections with high viral load require prolonged
anti-viral therapy, which can lead to the emergence of CMV gene
mutations associated with anti-viral resistance (mutations in UL97
or UL54 genes), a situation associated with high morbidity, graft
loss, and death (12, 19–21). Moreover, CMV is also associated with
indirect effects after kidney transplantation (22): worse patient
and graft survivals (specially late-onset CMV infection or disease)
(16, 23–28), more interstitial fibrosis/tubular atrophy (17), more
acute rejection (17, 24, 29–31), more other opportunistic infec-
tions (32–35), an increased cardiovascular risk (36), more new-
onset diabetes after transplantation (37, 38), and more graft artery
stenosis (39, 40). Prophylactic anti-CMV immunoglobulin also
prevents the development of early post-transplant non-Hodgkin
lymphoma in kidney transplant recipients (41).

Cytomegalovirus-specific CD4+ and/or CD8+T cell responses
have been extensively documented after kidney transplantation
(42–48). The efficacy of cell therapy protocols using expanded
CMV-specific CD8+ T cells has demonstrated the central role
played by these cells in the control of the virus (49). There-
fore, it has been proposed to monitor these cells before and
after transplantation to better use anti-CMV prophylaxis and
therapy (50).

In 1999, we observed a massive expansion of a γδ T cell popula-
tion after CMV infection in kidney transplant recipients (51, 52).
This CMV-induced γδ T cell expansion did not involve the Vδ2
subset, which is usually the main subset of γδ T cells observed in
the peripheral blood. Surprisingly, this increase can concern any
of the Vδ1, Vδ3, and Vδ5 sub-populations (collectively designated
as Vδ2neg γδ T cells) (52). This initial observation, since largely
confirmed by others, suggested that a population of Vδ2neg γδ

T cells might play an important role in the immune response to
CMV infection, but raised many questions about these cells. At the
afferent phase of the CMV immune response, where is their site of
priming? When and how are naïve Vδ2neg γδ T cells activated? At
the efferent phase, where is their site of action? What is their func-
tion? When and how do they recognize target cells? This review
summarizes the recent findings tentatively addressing these points
and leading to the conclusion that Vδ2neg γδ T cells are important
actors of the anti-CMV immune response, with direct anti-CMV
effects, but also unexpected indirect effects observed in the context
of kidney transplantation.

LOCALIZATION OF Vδ2neg γδ T CELLS
Once established, the expansion of circulating Vδ2neg γδ T cells
following CMV infection in kidney transplant recipients is promi-
nent and stable over time (51–53). This subset, which represents
0.5% on average of the T cell pool in CMV-seronegative patients,
reaches an average of 5–10% of the circulating T cell pool in
CMV-seropositive patients, and up to 50% in some patients. This
phenomenon is not exclusive to the kidney transplant scenario as
Vδ2neg γδ T cell peripheral blood expansion after CMV infection
has been shown in other solid-organ transplantations (54–56), in
recipients of hematopoietic stem cell transplantation (57–59), in
immunodeficient children (60, 61), in neonates (62), in pregnant
women (63), and in healthy individuals (64). CMV-specific CD4+
and CD8+ αβ T cells on their own already represent around 5% of
the T cell pool in CMV-seropositive healthy individuals (65) and

accumulate in older people (66). Vδ2neg γδ T cell peripheral blood
expansion further strengthens this high magnitude of the anti-
CMV immune response. This accumulation of CMV-induced T
cells may exert a detrimental effect on host by reducing immunity
against other pathogens and could contribute to the CMV-induced
immune senescence (67).

One of the most intriguing questions regarding Vδ2neg γδ T
cells is about their localization during the afferent and efferent
phases of the immune response against CMV. To date, we still
do not know where naïve Vδ2negγδ T cells are primed and where
they exert their function. In physiological context, Vδ2neg γδ T
cells are the first γδ T cell subset to emigrate from the thymus
where they represent 1–15% of thymic T cells (68–71). Although
poorly represented in lymph nodes, they represent 15% of T cells
in the spleen where they are located in the marginal zone and red
pulp (68, 69, 72). In tissues, Vδ2neg γδ T cells are occasional in
the kidney and the lung (68, 69). However, up to 15% of liver
T cells can be γδ T cells (73–75). They are predominantly found
within normal human epithelia, with a selective accumulation in
intestinal and skin epithelia (76–78). In the skin, they are mainly
located in the basal epithelium of epidermis, where they represent
18–29% of T cells, but they are also present in the dermis (7–9%
of T cells) (69, 79–81). They express homing receptors as CCR8
and cutaneous lymphocyte-associated antigen (78, 81). The gut
epithelium is where Vδ2neg γδ T cells are the most abundant. They
are located in the epithelium close to the basal membrane where
they represent one-third of resident T cells. They are also found
within the lamina propria (5% of T cells) (76, 77, 82–84). Both
skin and intestinal Vδ1 repertoire are compartmentalized, with no
overlap with the circulating Vδ1 repertoire, suggesting these cells
are resident cells (85, 86). However, these data are counterbalanced
by observations made in cattle and sheep, showing that γδ T cells
could recirculate from the skin and intestinal epithelium, to the
blood via afferent lymph and lymph nodes (87). Therefore in the
future, the question about the localization of Vδ2neg γδ T cells
during the anti-CMV immune response needs to be addressed to
elucidate if their peripheral blood expansion reflects an expansion
from CMV-injured tissues or if blood and more probably capil-
laries are the theater of an immunological function of these cells.
Primary CMV infection in healthy individuals initiates with repli-
cation in mucosal epithelium, a leading tissue for future Vδ2neg

γδ T cell exploration (3). Alternatively, endothelial cells, which are
also the target of CMV express one of the Vδ2neg γδ T cell recep-
tor (TCR) ligand identified so far, endothelial protein C receptor
(EPCR) (see below), and as Vδ2neg γδ T cells are retrieved in vascu-
lar beds during antibody-mediated allograft rejection (see below),
microcirculation should not be disregarded in these investigations.

WHEN DO THESE CELLS PARTICIPATE TO THE ANTI-CMV
IMMUNE RESPONSE?
The classical pathway for activating adaptive immune response
and achieving a broad systemic immune response, starts with
immature dendritic cells that capture pathogens and then mature
and migrate to lymph nodes where they prime αβ T cells and
B cells, some of which migrating back to infected tissues (88).
This specific response is complemented by γδ T cells, which have
the capability to recognize a large spectrum of stress-induced
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signals (sometimes considered as pathogen-associated-molecular
patterns) and to mount local effector responses at the early stage
of the immune response (89, 90). They act in synchrony with
the innate immune cells as a sensor of self-dysregulation against
infected or tumor cells, a function referred to as “lymphoid-stress
surveillance”(89, 90). In accordance with this concept, natural and
induced γδ T cell IL-17 responses occur within 12 and 60 h after
stimulation, while naïve αβ T cells require antigen-specific priming
and take at least 5–7 days to acquire effector function (88).

In human, early kinetics of γδ T cell response to infections
are generally difficult to depict because patients present to med-
ical care after symptom occurrence and the time of infection is
not known. In this respect, post-transplantation CMV infection
is a unique context because patients can be monitored before and
very early after infection. In kidney transplant recipients during
primo-infection, CMV-specific CD4+ T cells are detectable in the
peripheral blood 7–10 days after CMV DNAemia (42, 48). CD4+
T cells are critical to control virus (44, 91). They are followed
by the production of CMV IgG and CMV-specific CD8+ T cells
20 days after DNAemia (42). Surprisingly, CMV-induced Vδ2neg

γδ T cells undergo an expansion kinetic in the peripheral blood
similar to that of CMV-specific CD8+ T cells (92). This expan-
sion, defined as the time necessary to reach a “plateau,” although
variable between patients, occurs at an average of 50 days after
CMV infection (median: 45 days, min–max: 20–240 days) (93).
This observation is apparently not consistent with the concept of
early “lymphoid-stress surveillance.” To reconcile the late kinetics
of CMV-induced Vδ2neg γδ T cells with the early action of other γδ

T cell populations, it has been proposed that γδ T cell populations
could be divided at least in two groups: (1) innate-like cells that
respond rapidly and at a relatively high frequency in many tissue
sites, and (2) lymphoid-homing γδ T cells that may be primed
in the circulation and clonally expanded in a conventional “adap-
tive” manner (90). Sampling being limited to blood of transplant
recipients may have hampered detection of rapidly responding
innate-like γδ T cells in CMV-infected tissues and permitted only
the observation of late expanded γδ T cells in the blood. In the
future, studies in animals should analyze concomitantly γδ T cells
in tissues and blood, as well as their recirculation, in order to deter-
mine if a bridge exists between innate-like γδ T cells,which act at an
early stage and peripheral blood CMV-induced γδ T cells, which
expand later. What we can detect in blood does not necessarily
represent what is going on in tissues or lymphoid organs.

WHAT IS THE FUNCTION OF CMV-INDUCED Vδ2neg γδ

T CELLS?
Like CD4+ T cells, there are many γδ T cell subsets with various
functionalities. A large literature described their production of Th1
cytokines and their cytotoxic activity against tumor and infected
cells (94–99). However, other γδ T cell sub-populations produce
IL-4 and Th2 cytokines (100), are IL-17 natural or induced γδ T
cells (101–103), or have characteristics of regulatory T cells (104,
105). Moreover, some γδ T cells can also regulate B cells and IgE
production (100) or provide the help to rapidly generate from
immature dendritic cells a pool of mature dendritic cells early
during microbial invasion (106–108). Some γδ T cells can differen-
tiate into professional antigen presenting cells, capable of inducing

CD4+T cell responses and cross-presenting soluble microbial and
tumor antigens to CD8+ responder cells (109, 110). Human epi-
dermal γδ T cells are also able to produce insulin-like growth
factor 1 upon activation to control neighboring stromal cells and
promote wound healing (78, 111). This high level of functional
plasticity could explain why γδ T cells can be found at different
locations and at different stages of the immune response.

The function of CMV-induced Vδ2neg γδ T cells can be first
understood by analyzing their phenotype. Whereas a naive phe-
notype is observed in Vδ2neg γδ T cells of CMV-seronegative
patients, peripheral blood CMV-induced Vδ2neg γδ T cells exhibit
an effector/memory TEMRA phenotype, strikingly similar to and
characteristic of that observed in CMV-specific CD8+ αβ T cells
(112, 113). Most of these cells are CD27−, CD28−, CD45RA+,
CD45RO−, Perforin ++, Granzyme B++, CCR7−, CD62L−,
and have an activated phenotype (CD69+, HLA-DR+, and but
CD25−), suggesting a potential cytotoxic function against CMV-
infected cells (Figure 1) (52, 64, 92). A central/memory phenotype
is observed less frequently than on CMV-specific CD8+T cells (92,
112, 113). The accumulation of the TEMRA CD45RA+CD27−
phenotype on both CMV-specific CD8+ T αβ cells and Vδ2neg

γδ T cells, suggests that this phenotype is induced by the virus
(92, 114). Like the CD4+ CD28− αβ T cells and the CD8+
CD45RA+ CD27− αβ T cells described by van Lier (114), the
presence of CD45RA+CD27− Vδ2neg γδ T cells can also be con-
sidered as a cell signature of a “past contact with CMV” (64). The
absence of these cells in the peripheral blood of patients infected
with others viruses is the witness of its peculiar CMV specificity,
probably under the dependence of a specific CMV-induced stress
signature.

Three quarters of CMV-induced Vδ2neg γδ T cells also express
CD16 (FcγRIIIA), which is a low-affinity receptor for Fc portion
of immunoglobulin. This feature, shared with NK cells, represents
a specificity of Vδ2neg γδ T cells when compared to CD8 αβ T cells
responding to CMV. CMV infection has therefore the unique capa-
bility to deeply reshape the CD16 compartment, because CD16 is
only expressed by 20% of Vδ2neg γδ T cells of CMV-seronegative
patients (115). As depicted in Figure 2, CMV infection dou-
bles the number of circulating CD16+ lymphocytes, through this

FIGURE 1 | Phenotype of CMV-induced Vδ2negγδT cells and
CMV-specific CD8+ αβ T cells. Both subsets exhibit a similar
effector/memory TEMRA phenotype.
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FIGURE 2 | Composition of the CD16+ lymphocyte compartment in
CMV-seropositive (CMV+) and CMV-seronegative (CMV−) people.
CMV infection doubles the number of circulating CD16+ lymphocytes,
through this expansion of CD16+ Vδ2negγδ T cells.

expansion of CD16+ Vδ2neg γδ T cells. A majority of these cells
also express NK receptors (NKG2D, CD158b/j, and NKp80), by
contrast to CMV-specific CD8+ T αβ cells (52, 64, 92, 115, 116).
This innate-like cell phenotype probably confers to Vδ2negγδ T
cells a mode of activation and of regulation different from that
of αβ T cells and a non-redundant role in the control of CMV.
Moreover, heterogeneity in NK receptor expression can be found
within a single clone of Vδ2neg γδ T cells. Therefore, Vδ2neg γδ T
cell clones can be a mosaic of cells with similar TCR but different
activating or inhibiting susceptibility, which could regulate them
differently according to the context or tissues (117). In line with
this singular phenotype, Vδ2neg γδ T cells can be considered at the
crossroads between T cells and NK cells (118, 119).

In vitro, Vδ2neg γδ T cells are activated in the presence of free
IgG-opsonized CMV or of CMV-infected fibroblast lysates, but
not uninfected or other herpes virus-infected fibroblast lysates
(HSV or VZV) (52). In culture with CMV-infected cells or IgG-
opsonized human CMV, Vδ2neg γδ T cell lines or clones coming
from CMV-infected solid-organ transplant recipients produce
large amounts of TNF-α and/or interferon-γ (58, 59, 62, 115,
120). In vitro, this CMV-induced interferon-γ production is able
to inhibit CMV replication. Vδ2neg γδ T cells also show per-
forin/granzyme B dependent cytotoxicity against CMV-infected
cells in vitro (62, 120). All the data coming from different groups
support the concept that most of the Vδ2neg γδ T cells share the
same cytotoxic effector function as CMV-specific CD8+T αβ cells
(42, 49). However, distinct CMV-induced Vδ2neg γδ T cell clones
can also provide the help to generate from immature dendritic
cells a pool of mature dendritic cells (58).

In BALB/c mice and Sprague-Dawley rats, the number of γδ T
cells increase after CMV infection in the draining lymph nodes,
liver, peritoneal cavity, and salivary glands (121, 122). γδ T cell-
depleted mice have a significantly higher viral load after CMV
infection (123). Using C57BL/6 αβ and/or γδ T cell-deficient mice,
we recently observed that γδ T cells were as competent as αβ T cells
to control viral spread and murine CMV-induced disease and to
protect mice from death (unpublished data).

All these in vitro indications of an anti-viral function of
Vδ2negγδ T cells are supported in vivo by the observation that
early expansion of Vδ2neg γδ T cells correlates with low viral loads,
less symptomatic infection, and a rapid viral clearance in renal
transplant patients (93).

HOW DO Vδ2neg γδ T CELLS RECOGNIZE CMV-INFECTED
CELLS OR CMV?
Given their large panel of activating receptors, activation of Vδ2neg

γδ T cells during CMV infection may be multifactorial. We will
develop here the involvement of the TCR and the CD16 mole-
cule, which could act at different stages of the immune response.
While often involved in γδ T cell activation, NKGD or its ligands
(MICA/B and ULPB1-3) do not seem involved in this situation
(120), probably because these γδ T cells are selected by CMV, which
is able to inhibit NKG2D-ligands surface expression on infected
cells (124). Two other molecules have been shown to co-stimulate
activation of CMV-induced Vδ2neg γδ T cells: CD8αα (58) and
LFA-1, which recognizes up-regulation of ICAM-1 expression by
CMV on infected cells (125).

γδ TCR
T cell receptor involvement in Vδ2neg γδ T cell reactivity against
CMV-infected cells has been demonstrated by inhibition of their
activation using blocking anti-TCR antibodies or through trans-
fer of reactivity after transduction of the γδ TCR in reporter cell
lines (120, 125). Analysis of γδ TCR junctional diversity shows
that expansion of Vδ1 and Vδ3 T cells during CMV infection
is associated with a restricted repertoire, which is suggestive of
an antigens-driven selection (52, 64). This was also observed in
neonates infected in utero with CMV, who specifically display
a preponderant expansion of a particular γδ T cell population
expressing a public invariant Vγ8Vδ1 TCR (62). This population
has not been reported in CMV-infected adults, suggesting that it
might recognize an antigen specifically induced during in utero
infection or that this invariant TCR is generated only during fetal
life. Recognition of CMV-infected cells by Vδ2neg γδ T cells is inde-
pendent of classical major histocompatibility complex (MHC)
antigens, by contrast to CMV-specific αβ T cells. This is consis-
tent with the reported recognition by γδ T cells of structurally
diverse proteins of self and microbial origins (88), and that resem-
bles immunoglobulin-like antigen recognition (126). Vδ1 TCR
have also been shown to recognize MHC-like molecules such as
MICA/B and CD1. MICA and MICB (MHC class I chain-related
proteins A and B) are overexpressed in stressed cells, as in tumor or
infected cells. They co-localize with Vδ1 γδ TCR in some tumors.
Both γδ chains are necessary for the recognition of the MICA/B
α1 and α2 domains, which is independent of any loaded peptide
(94, 127–129). CD1c and CD1d are non-polymorphic molecules,
which present lipids and glycolipids to NKT cells (130, 131) and
also activate Vδ1 and Vδ3 γδ T cells (107, 132). Specific interac-
tion between Vδ1 γδ TCR and CD1c molecule has been demon-
strated using TCR transduction in reporter cell line, showing that
no glycolipid are involved in this recognition (107). Interaction
between Vδ1 γδ TCR and CD1d has also been demonstrated using
tetramers, recombinants TCR, and structural studies (133–135).
CD1d can be recognized by Vδ1 γδ TCR as an “unloaded” form or
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when loaded with endogenous glycosphingolipids (133–135) or
exogenous phospholipids (108, 136).

MICA/B and CD1d are not expressed on the surface of CMV-
infected cells (120) and only 0.3% of CMV-induced Vδ2neg γδ

T cells are stained with CD1d-αGalCer tetramers (our unpub-
lished data), suggesting that CMV does not select for MICA/B
or CD1d-specific Vδ2neg γδ T cells. CMV-infected cells therefore
offer the opportunity to discover new Vδ2neg γδ T cell ligands.
Using a strategy based on the generation of monoclonal antibod-
ies with the same antigen specificity as the CMV-induced Vδ2neg

γδ T cells, we identified EPCR as another MHC-like ligand for a
Vγ4Vδ5 TCR (125). EPCR is a non-polymorphic protein constitu-
tively expressed on endothelial cells and involved in the regulation
of coagulation through the activation of protein C (137). It did not
have any described “immunologic” function, although it displays
a structural homology with CD1d (125). Recognition of EPCR
by Vγ4Vδ5 TCR is independent of glycosylation and has a bind-
ing mode that does not involve discrimination of lipid antigens.
Cell infection by CMV does not increase EPCR expression and
Vγ4Vδ5 T cell clone reactivity requires co-stimulatory molecules,
which are over expressed in CMV-infected cells, such as LFA-
3 (CD2 ligand) and ICAM-1 (LFA-1 ligand) (Figure 3A) (128,
138–140). This constitutive expression of EPCR opens the possi-
bility of its homeostatic interaction with γδ TCR, as previously
reported for mice skin epithelial γδ T cells and ligands expressed

on keratinocytes (141). This interaction could serve either to keep
tissue γδ T cells pre-activated and ready to swiftly engage in the
immune response or to activate regulatory functions necessary for
maintenance of tissue integrity at steady state. Whether such a con-
stitutively expressed TCR ligand needs conformation, topology or
molecular interaction changes at the surface of target cells to prime
stress surveillance response of γδ T cells deserves further investi-
gations. Not all Vδ2neg γδ T cells reactive against CMV-infected
cells recognize EPCR, indicating the existence of other TCR lig-
ands. Their characterization will be important to improve our
knowledge of how cell stress and self-dysregulation are captured
by Vδ2neg γδ T cells.

CD16
As mentioned above, CMV infection is associated with the expres-
sion of CD16 at the cell surface of a large majority of circu-
lating Vδ2neg γδ T cells. This expression did not allow γδ T
cells to perform antibody-dependent cell-mediated cytotoxicity
(ADCC) against CMV-infected cells pre-incubated with CMV
hyperimmune IgGs, probably because of the seemingly low rate
of IgGs directed against CMV-infected cells in sera of infected
people (115). However, even in the absence of TCR stimula-
tion, CD16+ Vδ2neg γδ T cells produce interferon-γ and inhibit
CMV replication when activated by IgG-opsonized free CMV, in
presence of IL-12 and interferon-α, two cytokines produced by

FIGURE 3 | In vitro and in vivo direct and indirect effects of CMV-induced
Vδ2negγδT cells. (A) In culture with CMV-infected cells, Vδ2neg γδ T cell lines or
clones coming from CMV-infected solid-organ transplant recipients produce
large amounts of TNF-α and/or interferon-γ, and exert a strong cytotoxicity
against CMV-infected cells. Vδ2neg γδ T cell reactivity requires EPCR
expression and co-stimulatory molecules, which are over expressed in
CMV-infected cells, as LFA-3 (CD2 ligand) and ICAM-1 (LFA-1 ligand). (B) In
the absence of TCR stimulation, CD16+ Vδ2negγδ T cells produce interferon-γ
and inhibit CMV replication when activate by IgG-opsonized free CMV, in

presence of IL-12 and interferon-α, two cytokines produced by
monocytes/macrophages and dendritic cells during CMV infection.
(C) CMV-induced Vδ2neg γδ T cells have a TCR-dependent cross-reactivity
against CMV-infected cells and tumor cells. (D) CMV-induced CD16+ Vδ2negγδ

T cells are able to perform antibody-dependent cell-mediated cytotoxicity
(ADCC) against endothelial cells (EC) coated with donor-specific antibody
(DSA). Within the grafts, γδ T cells are retrieved in close contact with
endothelial cells in the peritubular capillaritis and glomerulitis associated with
acute antibody-mediated rejection, only in CMV-experienced patients.
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monocytes/macrophages and dendritic cells during CMV infec-
tion (Figure 3B) (115). This antibody-dependent cell-mediated
inhibition (ADCI) is a new function of Vδ2neg γδ T cells in their
arsenal to control the virus, where antigen specificity is mediated
by the antibody and not by the TCR, and is probably controlled
by the cytokine microenvironment. ADCI could be restricted to
specific areas, such as CMV-infected tissues or mucosa infiltrated
by activated macrophages or dendritic cells, and where Vδ2neg

γδ T cells are homing and suspected to play a pivotal role. In
accordance with the late expansion of Vδ2neg γδ T in the blood
during the infection, ADCI could be involved in the prevention of
CMV reactivation by Vδ2neg γδ T cells, when antibodies have been
generated (42).

UNEXPECTED ANTI-TUMOR EFFECTS OF CMV-INDUCED
Vδ2neg γδ T CELLS
Because of their immunosuppressed status, the risk of cancer in
kidney transplant recipients is between 2.5 and 4 times greater
than in the general population, with mainly non-melanoma skin
cancer (the most common type of malignancy in kidney transplant
recipients), lymphoma, cancer of the lip, vulvovaginal tumors,
and kidney cancers (142–145). This is consistent with the con-
cept of cancer immunosurveillance and cancer immunoediting,
which has been well characterized in recombinase-activating gene
(RAG) knock-out mice (146), as well as in humans (147–150).
Among the cells involved in anti-tumor immunity, γδ T cells are
considered to play a key role (95). As a major demonstration, γδ

TCR knock-out mice have been shown to develop more skin can-
cers than wild-type mice (151). In humans, γδ T cells infiltrate
many carcinomas and exert a strong interferon-γ production and
cytotoxicity against carcinoma cells in vitro (77, 79, 81, 94–99,
151–157). More recent studies also reported opposite results sug-
gesting pro-tumoral functions of γδ T cells both in human cancers
(158) and in murine models (159–161) making the role played by
the different γδ T cells in tumor surveillance more subtle. Nev-
ertheless, during the past years, γδ T cells have been targeted in
cancer immunotherapy trials showing mitigated but encouraging
clinical benefit [reviewed in Ref. (162)]. It is noteworthy that all
these trials uniquely targeted Vγ9Vδ2 T cells. Immunity to tumors
may be acquired during events that have no clear relationship to
cancer, and some infectious diseases have been associated with a
reduced risk of cancers (163, 164). In line with these observations,
CMV-induced Vδ2neg γδ T cells have a TCR-dependent cross-
reactivity against CMV-infected cells and tumor cells (Figure 3C)
(58, 120). Vδ2neg γδ T cell lines or clones kill tumor cells as effi-
ciently as CMV-infected cell in vitro. Moreover, using a human
tumor xenograft models in immunodeficient mouse, we observed
that CMV-induced Vδ2neg γδ T cells could inhibit tumor growth
in vivo (165, 166). Finally in kidney transplant recipients, high
CMV-induced Vδ2neg γδ T cell counts as well as a past contact
with CMV were associated with reduced cancer occurrence in the
upcoming years (167). Taken together, these data reveal a dual role
for CMV-induced Vδ2neg γδ T cells in kidney transplant recipients
in viral control and in surveillance of subsequent malignancy. This
shared reactivity against CMV-infected and tumor cells has been
observed also after allogeneic stem cell transplantation (58), where
CMV infection is associated with a decreased risk of acute myeloid

leukemia relapse (168, 169), and where γδ T cell expansion is asso-
ciated with a reduced risk of relapse (170). This potential protective
role of CMV against cancer in transplant recipients has been chal-
lenged by other groups (171), and could be in apparent contrast
to the previously reported presence of the CMV genome and anti-
gens in diverse types of carcinomas (172, 173). However, even if
CMV has been suggested to play a direct role in carcinogenesis,
one cannot exclude that its reactivation in tumors represents an
epiphenomenon due for instance to inflammation (174, 175). All
of these studies may be consistent with our results if we assume
that both CMV-infected cells and tumor cells (infected or not)
express the same stress-induced molecules recognized by γδ TCRs,
resulting in the selection of common immune effector cells among
which Vδ2neg γδ T cells take an important part. They also highlight
the ambiguous relationships interwoven between a virus, CMV,
and its host: Parasitism or symbiosis?

UNEXPECTED INDIRECT EFFECT OF Vδ2neg γδ T DURING
ANTIBODY-MEDIATED REJECTION
The epidemiological link observed between CMV and acute or
chronic rejection is still not well understood. Many hypotheses
have been proposed. CD4+ T cells of CMV-seropositive patients
produce interferon-γ and induce both MHC class II and adhe-
sion molecules overexpression on endothelial cells, which could
potentiate in situ allogeneic reaction (176, 177). A cross-reactivity
of CMV-specific T cells against alloantigens is also discussed (178,
179). A direct CMV effect is also likely because the persistence of
the virus in the blood or the kidney leads to aggressive fibrotic
lesions (26, 28, 180–182).

Recently, the importance of the recipient’s humoral response
against the renal allograft has been recognized to play a key role in
immunological injuries contributing to graft deterioration (183–
191). Nowadays, antibody-mediated rejection is considered as the
leading cause of graft loss on the long range (192). From an
immunological point of view, donor-specific antibody (DSA)-
mediated lesions are considered to rely on complement-fixing
DSA-mediated lysis (187), direct DSA-mediated apoptosis (193),
and/or ADCC by NK cells (194, 195). Until recently, comple-
ment was the most recognized way leading to graft endothelial cell
injury, because deposition of C4d, a breakdown product of com-
plement component C4, in peritubular capillaries represented the
only specific tool providing the “immunopathological evidence”
of DSA interaction with graft tissue (191, 196, 197). However, it
does not encompass all DSA-mediated lesions (198). Glomerulitis
and peritubular capillaritis, which are defined by an accumula-
tion of polymorphonuclear cells, macrophages, and lymphocytes
around capillaries, are associated with DSA, are more predictive
of graft loss than C4d deposition (188, 199), and are now recog-
nized as the main lesions of antibody-mediated rejection (200).
Among these infiltrates, NK cells have recently been shown to
be involved in DSA-mediated lesions of kidney microcirculation,
suggesting that ADCC could play a role in DSA-mediated lesions
through DSA interaction with the low-affinity Fc receptor for IgG
(FcγRIIIA-CD16) expressed on NK cells (194, 195, 201). Inter-
estingly, NK cells are not the only candidate as cell mediator of
these lesions. As pointed before, CMV infection deeply reshapes
the CD16+ lymphocyte compartment composition in CMV+
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transplant recipients who exhibits an equal amount of CD16+
NK cells and CD16+Vδ2neg γδ T cells at the periphery (115). We
have shown that CMV-induced CD16+ Vδ2neg γδ T cells are able
to perform ADCC against stromal cells coated with DSA in vitro
(Figure 3D) (202). Within the grafts, γδ T cells are found in close
contact with endothelial cells in the peritubular capillaritis and
glomerulitis associated with acute antibody-mediated rejection,
only in CMV-experienced patients. Their localization in antibody-
mediated microcirculation injuries is similar to that reported for
NK cells (195) and macrophages (203). Finally, an inverse corre-
lation between a persistently increased percentage of circulating
CMV-induced γδ T cells and the 1-year estimated glomerular fil-
tration rate is observed only in kidney recipients with DSA (202).
γδ T cells are usually viewed non-alloreactive because they do
not recognize peptides bound to MHC molecules. However, our
recent data support the conclusion that CMV-induced CD16+
γδ T cells are a new player in antibody-mediated lesions of kid-
ney transplants. As for recognition of IgG-opsonized CMV, the
antigen specificity of γδ T cell activation relies on the antibody
and not on γδ TCR. Moreover, these findings suggest that γδ T
cell ADCC could represent a new physiopathological contribu-
tion to the well-known but poorly understood association between
CMV infection and the increased occurrence of rejection (17, 29),
poor long-term graft function (16, 23, 180, 204), and low graft
survival (25, 26).

In contrast to these data, two teams have proposed that Vδ1 γδ T
cells play regulatory functions associated with an operational tol-
erance in liver transplantation (205–209). However, The Spanish
team finally showed that alterations in the γδ T cell compartment
were not restricted to tolerant liver recipients and confirmed the
association between CMV infection and Vδ1 γδ T cell expansions
(55). Most interestingly, the Japanese team described Vδ1 T cells
with a public TCR infiltrating all tested tolerant liver grafts and
normal livers and not found in rejected organs (209). Identifica-
tion of the antigen recognized in healthy liver by this TCR could
valuably contribute to decipher the mode of activation of γδ T
cells with regulatory functions involved in preservation of tissue
integrity.

Altogether, these data suggest that depending on the presence
of CMV and/or DSA, γδ T cells could play different seemingly
opposite functions on transplanted organ, which deserve further
investigation in the future.

CONCLUSION AND PERSPECTIVES
In summary, numerous studies have now shown the involvement
of Vδ2neg γδ T cells within the immune response directed against
CMV, with direct anti-viral effects, but also unexpected indirect
effects in the context of kidney transplantation. Although most
of the literature about γδ T cells considers them as actors of
the innate immune response, the peripheral blood CMV-induced
Vδ2neg γδ T cells exhibit surprisingly at least three characteris-
tics of the adaptive immunity. First like B cells, and αβ T cells,
they use somatic rearrangement of V, D, and J genes to generate
diverse antigen receptors (88). Secondly, they undergo monoclonal
to polyclonal expansions, characterized by a variable extent of
their repertoire from one patient to the other. Finally, these cells
seem to have the ability to mount anamnestic responses, because

they have the phenotype of effector/memory cells, and undergo
a more rapid expansion during CMV reactivation than during
primo-infection (64).

At the efferent phase of the immune response, their functions,
activating pathways and kinetics have been better characterized.
Understanding where, when and how naïve Vδ2neg γδ T cells are
activated at the afferent phase of the CMV immune response is
more challenging and will most probably require in vivo stud-
ies in animal models. The encouraging results obtained by ours
and Thomas Winkler’s team on the protective role of mouse γδ T
cells against murine CMV, certainly pave the way for addressing
these issues (210). Molecular understanding of how CMV-induced
Vδ2neg γδ T cells recognize CMV-infected cells and tumor cells
necessitates the identification of representative antigenic ligands
that could reveal valuable tools for vaccination trials targeting γδ

T cells. An alternative is the use of γδ T cell therapy after ex vivo
expansion of Vδ2neg γδ T cells. Interesting progress has recently
been made in this direction by the teams of Laurence Cooper and
John Anderson who set up conditions for clinical scale propagation
of polyclonal γδ T cell lines (211, 212).

All these basic and clinical studies are prerequisite to improve γδ

T cell-based immunotherapy, but a shorter term use of Vδ2neg γδ T
cells in the clinics, will probably come from solid-organ transplan-
tation, in which Vδ2neg γδ T cell monitoring could prove a useful
immunological biomarker to classify patients at risk to develop
CMV infection or cancer.

Moreover, transplant patients are also prone to develop other
types of infections, either parasitic (with e.g., Toxoplasma gondii)
or bacterial (bartonella, atypical mycobacteria), which induce
Vγ9Vδ2 T cell expansion due to their production of phospho-
antigens. Routine monitoring of Vγ9Vδ2 T cells in our center
also allowed us in several cases during the last decade to make
differential diagnosis of these infections in kidney transplant
recipients.
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