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Immune cells play an integral role in affecting successful reproductive function. Indeed,
disturbed or aberrant immune function has been identified as primary mechanisms behind
infertility. In contrast to the extensive body of literature that exists for human and mouse,
studies detailing the immunological interaction between the embryo and the maternal
endometrium are quite few in cattle. Nevertheless, by reviewing the existing studies
and extrapolating from sheep, pig, mouse, and human data, we can draw a reasonably
comprehensive picture. Key contributions of immune cell populations include granulocyte
involvement in follicle differentiation and gamete transfer, monocyte invasion of the peri-
ovulatory follicle and their subsequent role in corpus luteum formation and the pivotal roles
of maternal macrophage and dendritic cells in key steps of the establishment of preg-
nancy, particularly, the maternal immune response to the embryo.These contributions are
reviewed in detail below and key findings are discussed.
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BACKGROUND
It is estimated that fetal viability is only achieved in about
55% of fertilizations in non-compromised cattle, indicating an
embryonic/fetal mortality of about 35%. It is estimated that 70–
80% of the total embryonic loss occurs between days 8 and 16
after insemination [day 16 corresponding to the day of mater-
nal recognition of pregnancy; reviewed by Diskin and Mor-
ris (1)]. There are many reasons, related to both the mother
and the embryo, why implantation fails but there is increas-
ing interest in the role of the maternal immune system. Dis-
turbed or aberrant immune function has been identified as
primary mechanisms behind infertility. In contrast to the exten-
sive body of literature that exists for human and mouse, stud-
ies detailing the immunological interaction between the embryo
and the maternal endometrium in cattle have primarily focused
on the role of the maternal recognition factor, the type I
antiviral cytokine, interferon tau (2, 3) in corpus luteum (CL)
maintenance, and progesterone priming of the endometrium.
Nevertheless, by reviewing the existing studies and extrapolat-
ing from sheep, pig, mouse, and human data, we can draw
a reasonably comprehensive picture of immune cell involve-
ment from follicle development, ovulation, gamete transfer,
maternal recognition of pregnancy, implantation, and placen-
tation. These events are reviewed below and key findings are
discussed.

OVARIAN FUNCTION
The presence and temporal regulation of neutrophils, eosinophils,
macrophages (MΦ), granulocytes, and T-lymphocytes in ovar-
ian tissues has been characterized extensively during the men-
strual cycle in women; a smaller body of data exists for several
farm animal species, including cows, sheep, pigs, buffaloes, and
horses (4).

FOLLICLE DIFFERENTIATION
Taken together, pre-ovulatory follicle differentiation and luteiniza-
tion appear to be characterized by three phases of immune cell
infiltration, which are illustrated in Figure 1: histological analysis
of bovine dominant follicles shows that mast cell infiltration of the
theca layer constitutes the first phase (5) (Figure 1A), luteinizing
hormone (LH) triggered degranulation of the mast cells stimu-
lates the second phase through the direct and indirect actions of
TNF-alpha (TNFA), a constituent of the granules (Figure 1B).
The second phase has been characterized in sheep and pigs as
an influx of eosinophilic and neutrophilic granulocytes and T-
lymphocytes (6, 7). The last phase of leukocyte migration consists
of phagocytic monocytes (Mo); MΦ’s increase in the sow and
ewe follicles at the time of ovulation (6, 7) (Figure 1C), possibly
in response to peak estradiol concentrations (8). The temporal
changes in the influx of leukocytes appear to occur in response to
various chemoattractant cues produced by the developing follicle
(9), indeed leukocyte chemoattractant activity has been demon-
strated in bovine, ovine, and human follicular fluid of ovulatory
follicles (10–12). Immunohistochemical characterization of the
immune cell repertoire of the bovine ovary has largely focused on
the formation and regression of the CL, which will be discussed
later. In contrast, there are many reports detailing the transcrip-
tomic profile of ovarian follicle development in cattle: (13–19).
In particular, the deep sequencing analysis of bovine follicular
theca and granulosa tissue during pre-ovulatory follicle develop-
ment, revealed a profound effect of ovarian follicle stage on the
expression of many genes within immune-related pathways in
these tissues: during follicle differentiation, bovine thecal tissue
was characterized by the expression of immune factors associ-
ated with vascularization, angiogenesis, and cellular proliferation
(15, 20), processes which are carried out by MΦ’s in the theca
layer during this time (21, 22). The bovine transcriptomic data
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Fair The role of the immune system in bovine reproduction

FIGURE 1 | Schematic diagram of dominant follicle differentiation and
corpus luteum formation: follicle differentiation and luteinization
appear to be characterized by three waves of immune cell infiltration.
(A) Mast cell infiltration of the thecal cell layer (TC) triggered by increasing
estradiol (E2) concentrations, note the intact basement membrane (BM)
separating the follicle granulosa-cell layer (GC) and follicle contents
[cumulus cell layer (CC), surrounding the oocyte (Oo), and the follicular fluid
FF] from the ovarian stroma. (B) A peak in luteinizing hormone (LH)
pulsatility triggers mast cell degranulation which stimulates the second
wave through the direct and indirect actions of TNF-alpha (TNFA), a
constituent of the granules. (C) The last wave is characterized by
macrophage infiltration, possibly in response to E2 and other

chemoattractants such as monocyte chemoattractant protein 1 (MCP1),
acute phase proteins (APP), and GC derived oxidized low density lipoprotein
(oxLDL). Note the expanded cumulus cells surrounding the metaphase II
stage oocyte, there is a switch from E2 synthesis to progesterone
synthesis as the follicular cells become luteinized. (D) Following ovulation,
granulocytes, neutrophils, and eosinophils constitute the majority of
immune cells within the developing corpus luteum (CL), with further
infiltration of macrophages and endothelial cells as development and
vascularization proceed. Macrophage derived tumor necrosis factor (TNF) is
a potent stimulator of luteal prostaglandins (PG), including PGF2a, PGE2,
and PG112, which in concert with TNF drive CL vascularization. Large luteal
cells derived primarily from the granulosa cells produce the >80% of P4.

also concurred with the histological findings described for sheep
and pigs, as factors with known inflammatory/chemotactic prop-
erties such as AKT2, ARHGEF1, GNAI2, IL-1, IL-6, and IL-8b
(23–25) were upregulated and pathways associated with MΦ and
neutrophil function were overpopulated in differentiating thecal
tissue (15).

FOLLICLE LUTEINIZATION AND OVULATION
Findings from studies using rodent models indicate that the ini-
tiation of the ovulatory process occurs primarily in granulosa
cells (26). Following the pre-ovulatory LH surge, morphological,
endocrinological, and biochemical changes occur in the theca and
granulosa cells, which redirect pre-ovulatory follicle development
from differentiation to luteinization and thus the early stages of CL
development (26). In particular, the post-LH deterioration of the
basement membrane (BM) between the theca and granulosa-cell
layers (GCs) (27), facilitates the movement of leukocytes into the
granulosa tissue at luteinization, reflected by the peri-ovulatory
granulosa-cell expression of factors involved in acute inflamma-
tion and immunosurveillance (15,26,28). It has been hypothesized
that the dramatic increase in the expression of these signals in the
follicle compartment activates the ovarian innate immune system
(29) and that the damaged granulosa cells actively secrete alarmins
or passively release them after death (30). Alarmins include acute

phase proteins (APP), S100 proteins, advanced glycation end-
products (AGE), high mobility group box-1 protein (HMGB1),
defensins, and interleukin (IL)-1α, which are all present in follicle
cells and the follicular fluid of pre-ovulatory follicles (26, 31–34)
and can engage toll-like receptors (TLRs). In the case of ovarian
granulosa cells, oxidized low density lipoprotein (oxLDL), which
engages with TLR4 (34), has been proposed as a key alarmin in the
pre-ovulatory cascade (29). This hypothesis is further supported
by the identification of granulosa-cell exclusive expression of TLR
signaling and NF-κB signaling pathways during luteinization in
the bovine transcriptomic data (15). Furthermore, comparing the
gene expression profiles of follicular tissue from heifers to that of
lactating cows, it would appear that the recruitment of leukocytes
to the differentiating follicle is delayed in cows. This is possibly a
result of the demands of parturition/lactation in dairy cows, result-
ing in a reduced positive feedback loop, whereby lower steroid
levels and chemoattractant signals recruit fewer leukocytes into the
follicle, leading to lower steroid and chemoattractant levels (15).

CORPUS LUTEUM FORMATION
The CL is a transient organ established by cells of the follicle fol-
lowing ovulation; it is composed of a heterogeneous mixture of
cell types that consist of not only steroidogenic luteal cells but
also non-steroidogenic cells including vascular endothelial cells,
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Fair The role of the immune system in bovine reproduction

fibroblasts, and immune cells such as lymphocytes and MΦ’s
(35). Studies in human, rat and sheep indicate that the immune
cells of the developing CL are recruited during ovulation (36–
39) (Figure 1D), they were determined to have originated from
the spleen (38), see Ref. (40), for review. Histological data from
cattle indicate that they are primarily granulocytes, neutrophils,
and eosinophils (35, 41, 42). However, as CL development and
vascularization progresses, MΦ’s and endothelial cells infiltrate
(43), providing a source of TNF and TNFR, the presence of which
have been demonstrated in the bovine CL (44). TNF is a potent
stimulator of luteal prostaglandins (PG) including PGF2a, PGE2,
and PG12 (45), TNF and TNF-induced PGE2 have been pro-
posed as key regulators of CL vascularization (46), recent work
in the mare supports this hypothesis (47). Exposure to seminal
plasma has been shown to enhance CL development and ovar-
ian steroidogenesis: gilts treated with seminal plasma had heavier
CLs, higher plasma progesterone (P4) levels, which peaked ear-
lier, without a concurrent increase in ovulation rate, suggesting
that the number and output of steroidogenic luteal cells is greater
in animals exposed to seminal components (48). Immunohisto-
chemical analysis revealed a greater abundance of predominantly
major histocompatibility complex (MHC) class II positive MΦ’s
and/or DCs in the stromal tissues and thecal cells of pre- and peri-
ovulatory follicles, implying greater leukocyte recruitment at the
time of ovulation in seminal plasma treated animals (49).

Immune function is central to CL regression, which must occur
in the absence of pregnancy in order for new follicular develop-
ment to take place (40). The regressing CL is characterized by
an increase in MΦ and Mo populations, which eventually consti-
tute the major proliferating cell type of the late regressing CL (40).
The number of T-lymphocytes appears to increase just prior to the
onset of luteolysis (35, 50), analysis of the bovine CL T-lymphocyte
population revealed that 25% of T-lymphocytes present in a func-
tional CL were T helper cells (CD4+), 45% were cytotoxic T-cells
(CD8+), and 30% were gamma delta (γδ+) T-cells and that this
profile did not alter during luteolysis (51). However, decreased P4
levels and interruption of growth factor signaling in the CL appear
to promote both MΦ and T-cell activation, leading to increased
TNF and INF production, respectively (52–55). TNF and INF are
likely to be key regulators of apoptosis and ovarian tissue remodel-
ing (56), their receptors are expressed in bovine steroidogenic cells
and luteal cells (57). It is probable that Fas expression is induced in
luteal cells by leukocyte-derived cytokines and that Fas L expressed
on T-lymphocytes transduces apoptotic signals to the luteal cells
[see Ref. (46), for review]. This is likely to be a conserved action
as both Fas and Fas L are expressed in theca cells in multiple
species (58).

GAMETE TRANSFER
INFLAMMATORY RESPONSE TO INSEMINATION
The site of semen deposition is very much a species-specific loca-
tion (59). In cattle, and also in humans, sperm enters the cervix
canal rapidly after semen deposition. The stimulation of vagi-
nal insemination ensures the migration of neutrophils in to the
cervical and uterine tissues (60, 61) and has been proposed as
the initial point to optimize pregnancy success (62). The early
immune response to insemination appears to contribute to both

the ovulatory process and sperm cell selection; as reports from
several species, including cattle, suggest that neutrophilic granulo-
cytes target dead or capacitated sperm, thus removing non-motile
or damaged spermatozoa (63–65), rather than motile, fertile sperm
(62). In both humans and mice, it has been clearly demonstrated
that the post-mating inflammatory response is mainly caused by
the seminal plasma, with sperm having a negligible part (66). The
cytokine, transforming growth factor-β (TGFβ), is the principal
inflammatory trigger found in seminal plasma; it is primarily
present within the male seminal plasma fluid in latent form, which
is activated in the female reproductive tract by plasmin and other
enzymes after insemination (62, 67). Although TGFβ itself can be
chemotactic for a variety of immune cell types (68), in the murine
uterus it was reported to act indirectly, by inducing cytokine and
chemokine expression (69).

SPERM TRANSPORT
The delivery of seminal fluid to the female reproductive tract at
coitus represents the first exposure of the female immune sys-
tem to paternal alloantigens (62), raising the possibility that the
female activates an immune response to male antigens in semi-
nal fluid that may ultimately confer immunological tolerance to
paternal antigens (70). This theory is supported by data from mice,
which show that chemoattractants, secreted by eosinophils and
neutrophils, attract both Mos and DC’s and shape the inflamma-
tory status of MΦ’s (71, 72). The response is not restricted to
vaginal exposure; intrauterine horn insemination was shown to
induce recruitment of MHC class II positive cells in gilts (73).
Seminal plasma contains estrogen and testosterone, PG, and vari-
ous signaling molecules, including IL-8, TGFβ, and IFNG, as well
as bacterial lipopolysaccharide (LPS) (62). When murine uterine
and cervical cells come into contact with the constituents of
semen, they are stimulated to synthesize and release granulocyte-
macrophage colony-stimulating factor (GM-CSF), IL-6, and fur-
ther chemokines (66, 74), which stimulate MΦ’s, DC, and granulo-
cyte infiltration of the uterine and cervical tissues (75). The induc-
tion of IL-6 is required for TGFβ to induce the generation of IL-17
producing, pro-inflammatory TH-17 cells, which in turn favor
the induction of neutrophil-chemotactic IL-8 (76). In conjunc-
tion with IL-8, TGFβ induces the secretion of pro-inflammatory
cytokines such as IL-1B, IL-6, and leukemia inhibitory factor (LIF)
(77). Although, the expression of TGFβ was shown to increase in
the bovine endometrium during the implantation period (78), the
relatively high pregnancy rates achieved in cattle following artifi-
cial insemination or embryo transfer undermines the importance
of maternal exposure to seminal plasma in cattle. The findings of
studies designed to address this point indicate that neither expo-
sure to seminal plasma nor TGFβ is critical for to the establishment
of pregnancy in cattle (79, 80).

IMMUNE TOLERANCE POST-FERTILIZATION
Exposure to paternal antigens occurs in two waves in the repro-
ductive process: initially during transmission of seminal fluid at
coitus, and secondly when placental trophoblast cells come in
contact with maternal tissues during embryo implantation (81).
In sheep and cattle, morula-stage embryos enter the uterus around
day 4–5 and blastocysts are formed by day 6 and 7, respectively,
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hatching occurs within 48–72 h. The hatched blastocyst subse-
quently elongates reaching 10 cm or more in length by day 14 and
25 cm or more in length by day 17 and the conceptus trophec-
toderm and endometrial luminal epithelium (LE) become closely
apposed, see Ref. (82), for review. Implantation is a superficial,pro-
tracted affair in these species, commencing after attachment and
adhesion of the trophectoderm to caruncular and intercaruncular
areas on day 16 in sheep and day 19 in cattle. Again, in contrast to
the volume of data that has been acquired in human and mouse
studies, the number of investigations carried out in farm animal
species on the involvement of the maternal immune system in the
establishment of pregnancy is very limited, particularly, for early
pregnancy. For several decades, human pregnancy was described
as a Th1/Th2 dichotomy with an imbalance toward a Th2 type
immune response (83, 84). However, this paradigm is considered
a simplistic explanation of the molecular events occurring dur-
ing pregnancy, as it does not account for reported endometrial
expression of Th1-type cytokines during implantation (85, 86).
In ruminants, studies investigating maternal immunomodulation
by pregnancy have focused on the actions of the type 1 interferon,
IFNT,which is secreted by the elongating conceptus and is the main
signaling factor in maternal detection/recognition of pregnancy
(87, 88). Initial studies demonstrated that endometrial luminal
epithelial cell estrogen receptor and oxytocin receptor expression
was down regulated in response to IFNT (89, 90). Critically for
the continuation of pregnancy in cattle, this binding eventually
results in the attenuation of endometrial PGF2a secretion, allow-
ing CL production of P4 to be maintained (90). In addition to
its anti-luteolytic properties, IFNT appears to be the key regu-
lator of the maternal immune response in ruminants (91, 92),
acting on the endometrium to induce or enhance the expression
of genes hypothesized to regulate uterine receptivity to implan-
tation and conceptus development (78, 93–95). The expression
of IFNT is limited to the embryonic trophectoderm during the
peri-implantation period (96). Additionally, there is significant
evidence that the bovine conceptus does not endeavor to conceal
itself immunologically, as MHC-I transcripts have been detected
in early cleavage stage bovine embryos (97) and in first and second
trimester and term trophoblast tissues (98). Furthermore, MHC
class I mRNA expression by bovine embryos is both transcript-
and embryo stage-specific (97) and can be regulated by a number
of cytokines including IFNG, IL-4, and LIF (99, 100).

MATERNAL RECOGNITION AND RESPONSE TO PREGNANCY
MONOCYTES, MACROPHAGES, AND DENDRITIC CELLS
Macrophage recruitment to the pregnant endometrium occurs in
a wide range of mammalian species, including the mouse (101),
human (102, 103), cynomolgus and vervet monkeys (104), sheep
(105), and cattle (78, 106, 107). While their role has not been com-
pletely elucidated, functions include clearing of apoptotic cells,
regulation of apoptosis (108), and regulation of placental lacto-
gen concentrations at the fetal–maternal interface (109). Given
the potential antigenicity of the conceptus due to paternal anti-
gen and classical MHC protein expression (97), MΦ’s may also
feature in curtailing the activation of anti-conceptus immune
responses (106). In cattle, the maternal immune response to the
developing embryo is characterized by the expansion of Mo, MΦ’s

(CD14+-cells), and DC (CD172a–CD11c+) populations in the
endometrial stroma as early as day 13 of pregnancy (78). Interest-
ingly, there was a parallel decrease in CD11b+-cells; CD11b is asso-
ciated with Mo movement through the endothelium, which would
imply that the Mo had acquired a stationary phenotype (78).

Dendritic cells have been shown to play an important role in
decidua formation and the induction of immune tolerance in
human and murine pregnancy (110, 111). Employing individ-
ual and combined CD172a and CD11c labeling of the bovine
endometrium, it was determined that there was a high prevalence
of immature cells within the endometrial DC population during
early pregnancy (78). Immature DC’s have been associated with
the initiation and maintenance of peripheral tolerance (112) and
their presence in large numbers in the uterine decidua has been
associated with the establishment of healthy pregnancies in women
(113). It is most likely that in cattle, IFNT induces this initial mater-
nal response to the presence of the elongating embryo, either by
attracting monocytes into endometrium or by modulating their
differentiation into MΦ’s or DC. Indeed, gene expression analysis
of the same endometrial tissue revealed dramatic up-regulation of
mRNA expression of IFN stimulated genes IL12B, MCP1, MCP2,
PTX3, RSAD2, ISG15, and TNFA (78). Furthermore, MCP1 and
MCP2 are members of the cellular chemoattractant chemokine β

subfamily, which have highly potent MΦ recruitment and activa-
tion properties (114), thus increased MCP1 and MCP2 expression
may be associated with the recruitment of Mo/MΦ from the sys-
temic system into the endometrium. The up-regulation of the evo-
lutionary conserved PTX3 is very interesting; gene deletion studies
in mice have shown that it is essential for female fertility, partic-
ipating in the assembly of the cumulus oophorus extra-cellular
matrix (115). Moreover, PTX3 is involved in innate immunity, pro-
posed roles include selected pathogen recognition, opsonization
leading to enhanced phagocytosis, regulation of the inflammatory
response, complement-mediated clearance of apoptotic cells, and
control of autoimmunity (116–118).

T-LYMPHOCYTES
Despite the evidence from studies in humans and mice linking
successful pregnancy with an imbalance toward a Th2 immune
response type, data from cattle indicate that CD4+, CD8+,
γδTCR+, and FoxP3 T-lymphocyte populations are not regu-
lated temporally during estrus or early pregnancy in cattle (119).
However, mRNA expression analysis on the same tissue revealed
that the Th1 immune factors IFNA, LIF, IL1B, IL8, and IL12A
were down regulated during the luteal phase of the estrus cycle,
whereas the Th2 factors LIF and IL10 were upregulated, sug-
gesting that the phenotypes/inflammatory status of Th cells are
tightly modulated during the estrous cycle in anticipation of preg-
nancy. Additionally, LIF and IL-10 have been shown to regulate
MΦ activation (120, 121). Similarly, endometrial TGFβ2 expres-
sion is down regulated during the ovine and bovine implanta-
tion period and is subsequently increased during placentation
(78, 122), which may reflect TGFβ2 involvement in Mo recruit-
ment and regulation of MΦ inflammatory status (123). Fur-
thermore, the study in cattle showed TGFβ localization to the
fetal–maternal interface of the bovine placentome, which may
indicate TGFβ2 involvement in restricting trophoblast invasion
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during the implantation phase, while enhanced expression during
placentation and in vitro cell culture studies, suggest that TGFβ2
may play a mitogenic role during placentation, promoting carun-
cular growth, and coordinating epithelial cell development leading
to placentome formation (123, 124).

Surprisingly, and in contrast to the situation in human and
mouse models, where NK cells can constitute up to 70% of the
endometrial lymphocyte population during the preimplantation
phase of pregnancy (112), when uterine NK (uNK) cells are
believed to play a pivotal role in local vascular remodeling and
regulation of trophoblast invasion [for review see Ref.(125, 126)];
NK cells do not appear to play such a critical role during early
pregnancy in cattle. Indeed, the only published data suggests the
bovine endometrium population of CD335+ NK cell population is
not expanded as an immediate response to maternal recognition of
pregnancy (119). The findings of an in vitro study which demon-
strated anti-proliferative effects of recombinant IFNT exposure
on immune and uterine cells, particularly leukocytes, infers that
the IFNT secretion by the embryo may actively restrict NK cell
expansion in early pregnancy (127), which is in keeping with the
non-invasive nature of implantation in cattle [see review by Bazer
et al. (128)]. However, further studies are required to determine if
the NK cell population expands when IFNT secretion wanes and
to what degree, if any, they are involved in placentation.

CONCLUDING REMARKS
Intensive cattle production systems have been associated with
postpartum immunosuppression and subsequent reduced fertil-
ity; it is vital that basic research in the area of bovine reproductive
immunology is expanded to generate new knowledge by which
these issues can be overcome. However, although the number of
studies investigating the contribution of the maternal immune
system to reproductive function in cattle is a fraction of that
carried out in human and mouse species, it is possible to con-
clude that maternal macrophage and dendritic cells play pivotal
roles in key steps of the establishment of pregnancy, particularly,
development of the CL and maternal immune response to the
embryo.
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