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Vaccine-based cancer immunotherapy has generated highly variable clinical results due to
differing methods of vaccine preparation and variation in patient populations among other
lesser factors. Moreover, these clinical responses do not necessarily correspond with the
induction of tumor-specific cytotoxic lymphocytes. Here, we review the participation of
natural killer (NK) cells as alternative immune components that could cooperate in suc-
cessful vaccination treatment. NK cells have been described as helper cells in dendritic
cell-based cancer vaccines, but the role in other kinds of vaccination strategies (whole
cells, peptide, or DNA-based vaccines) is poorly understood. In this article, we address
the following issues regarding the role of NK cells in cancer vaccines: NK cell anti-tumor
action sites, and the loci of NK cell interaction with other immune cells; descriptions of new
data on the memory characteristics of NK cells described in infectious diseases; and finally
phenotypical and functional changes after vaccination measured by immunomonitoring in
preclinical and clinical settings.

Keywords: cancer vaccines, natural killer cells, immunomonitoring, dendritic cells vaccines, NK cells–dendritic cells
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INTRODUCTION
Within the lymphocyte gate in the flow cytometric analyzer,
natural killer (NK) cells are usually defined as CD3− (thereby
excluding T cells) and CD56+, an isoform of the neural cell adhe-
sion molecule (NCAM) (1). NK cells constitute about 5–20% of
peripheral blood (PB) mononuclear cells and are also found in
many tissues such as the liver, peritoneal cavity, placenta, uter-
ine mucosa, and lungs (2–6). Approximately, 90% of PB and
spleen NK cells are CD56dimCD16+ and are characterized by a
potent cytotoxic activity after interaction with target cells. On
the other hand, NK cells in lymph nodes and tonsils are mostly
CD56brightCD16dim/− and have a helper role in the production of
IFN-γ in response to IL-12, IL-15, IL-18, and type I IFN stimula-
tion (1, 6, 7). Unlike T and B cells, NK cells have the unique ability
to kill transformed or virally infected cells without prior sensiti-
zation. Furthermore, NK cells are rapidly recruited to the sites of
virus entry and are critical for the control of acute viral infections
(8, 9). In fact, individuals with NK cell deficiency suffer recur-
rent viral infection as a result of their impaired ability to develop
lasting and effective antigen (Ag)-specific recall responses (8, 9).
Moreover, NK cells can eliminate tumor cells, as has been shown
both in vivo and in vitro (10, 11). NK cells spare healthy cells that
express MHC class I molecules and low levels of stress-induced
self-molecules, but are capable of recognizing and directly killing a
wide variety of tumor or virally infected cells with reduced levels of
MHC class I molecules or that overexpress stress-induced activat-
ing cell surface molecules (e.g., MICA/B recognition via NKG2D)
that may otherwise escape immune detection. These are known
as the “missing-self” and “non-self” phenomenon, respectively
(12). Additionally, NK cells are involved in the immune response
against tumor metastasis (13). For instance, in a mouse model of

metastatic lung cancer, authors found that NK cells prevented pul-
monary metastasis and peritoneal dissemination following treat-
ment with cationic liposomes complexes formed by CpG DNA
(14). Another mouse model of lung metastases showed that NK
cell depletion abolished the protective effect of IFN-γ treatment
on metastases. In fact, there was crosstalk between NK cells and
tumor cells through the IFN-γ-induced transcription factor IRF-
1, which is expressed on tumor cells, supporting the pulmonary
attraction and activation of NK cells (15). Direct tumor cell lysis
by NK cells is thought to be mediated principally by perforins, as
shown in vivo using experimental models of metastases in mice
(16, 17). However, NK subset depletion resulted in more instances
of metastases than observed in perforin-deficient mice, suggesting
that the perforin-independent effector functions of NK cells may
also contribute to protection from tumor metastasis. Moreover,
NK cells can also induce tumor cell elimination through death
receptor-mediated pathways such as TRAIL and FasL (18–20). On
the other hand, activated NK cells are also potent producers of
numerous immunomodulatory cytokines, including IFN-γ, TNF-
α, growth factors such as G-CSF and GM-CSF, and numerous
chemokines (21).

In humans, NK cells play an important role in tumor immuno-
surveillance alongside specific T lymphocytes. In an 11-year
follow-up survey of a Japanese cohort study, it has been shown that
low peripheral NK cell activity is associated with increased can-
cer risk (22). Other clinical studies have provided evidence that in
several different solid tumors, such as lung, gastric, colorectal, and
head and neck cancers, the presence of high numbers of tumor-
infiltrating NK cells correlates with improved prognosis of cancer
patients (pts) (23, 24). Moreover, decreased NK cell activity was
observed in pts with hereditary colorectal adenocarcinoma (25,
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Pampena and Levy NK cells and cancer vaccines

26); and melanoma pts with metastatic disease have an impaired
perforin-dependent NK cell cytotoxic mechanism (27). Menard
et al. demonstrated the relevance of NK cells in gastrointesti-
nal stromal tumor-bearing pts treated with imatinib mesylate
(a tyrosine-kinase inhibitor). Apparently, those patients whose
NK cell IFN-γ values were higher than or equal to their trial-
entry baseline value after 2 months of therapy had prolonged
disease-free survival compared to the others pts (28).

Considering the important role that NK cells have an immuno-
surveillance, it is desirable to focus the development of cancer
therapies to augment NK cell killing and helping efficacy because
it could aid in the induction of an optimal adaptive immune
response against cancer.

NK CELL LOCALIZATION, TRAFFICKING, AND THE NK CELL
DETECTION ISSUE
Even though NK cells seem to be critical immune effectors in
tumor cell elimination in in vitro experiments and animal mod-
els, they have a limited capacity to traffic to tumor sites. Of
note, in humans, factors regulating NK cell recruitment into
neoplastic tissues are highly influenced by the tumor type and
by the chemokine profile of the tumor microenvironment. A
recent study suggested that CD56+ NK cells could scarcely infil-
trate melanomas, hepatocellular carcinomas, breast cancers, and
renal cell carcinomas (29). Other studies reported that in solid
tumors, NK cells are often located within the stroma area, not
in direct contact with tumor cells, and are usually function-
ally anergic (30, 31). However, in this setting, it is difficult to

establish whether these NK cells are activated (high CD56) NK
cells that lost perforin expression through degranulation, or if
they constitute an altered NK cell phenotype induced by the
tumor cells.

A more recent study found that NK cells were widely distributed
in most solid normal and neoplastic tissues and that the relative
proportion of NK subsets infiltrating was different upon malig-
nant transformation, with a trend toward a tumor-infiltrating NK
population enriched in non-cytotoxic cells (6). Moreover, NK cells
from melanoma metastatic lymph nodes were found surround-
ing tumor cell clusters and although they were mostly CD56bright

and inactive, they could be activated ex vivo by IL-2 or IL-15 and
could lyse metastatic melanoma cells more efficiently than blood-
derived NK cells (32). The appropriate activation of this NK cell
subset could unfold their helper function, thereby turning T cell
activation toward a TH1 response.

However, the apparent limited capacity of NK cell trafficking to
tumor sites could be an artifact of the NK cell detection techniques
used. NK cell detection methods are still a source of discussion
because of doubts about the accuracy of the antibodies and mol-
ecular targets used in NK cell tissue-associated detection. Of note
are the substantial differences when compared with tissue detec-
tion of T CD4 and T CD8 cells, which have good and reliable
antibodies for immunohistochemistry.

As illustrated in Table 1, NK cell detection depends on the
technique and molecular target used. There are several papers
showing that NKp46 presents important advantages over other
NK cell markers, such as CD56 or CD57, in the identification

Table 1 | Detection of NK cells in different normal or neoplastic tissues by technique and molecular target.

Method/technique Target molecule NK cell

presence

Human normal or

neoplastic tissue

Reference

Immunohistochemistry CD57 (c NK-1) Yes Squamous cell lung cancer (24)

CD56 (c 123C3) No or almost

undetectable

Melanoma

Hepatocellular carcinoma

Breast cancer

(29, 33)

Renal cell carcinoma (34)

CD56 (c 123C3) Yes Breast cancer (35)

CD56 (ns) Yes Melanoma (36)

CD57 (c NC1) Yes Gastric cancer (37)

NKp46 (c 195314) Scarce Colorectal cancer (30)

Yes Lung, breast and colon (normal and tumor tissue) (6)

Metastatic melanoma lymph nodes (32)

Non-small cell lung cancer (38)

Immunofluorescence NKp46 (polyclonal), CD56 (c 123C3) Yes Spleen, gut and colon (39)

RT-PCR Specific differentially methylated

regions near NKp46 gene

Yes Leukocytes from peripheral blood from head and

neck cancer pts

(40)

Flow cytometry (from

disaggregated tissue)

CD56 (c AF12-7H3), NKp46 (c 9E2) Yes Lung, breast and colon (normal and tumor tissue)

Gut and colon tissue

Colorectal cancer

Breast cancer

(31)

(39)

(41)

(42)

c, clone; ns, not specified.
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of human NK cells by immunohistochemistry. Moreover, NKp46
is commonly used for NK cell detection by flow cytometry and
RT-PCR.

NK–DENDRITIC CELL CROSSTALK
Altogether, it is well accepted that NK cells possess potent anti-
tumor functions that could be targeted for immune-based ther-
apies (43–46). NK cell direct killing of target cells also impacts
T cell responses, possibly by decreasing the antigenic load (47)
and because target cell debris may promote Ag cross-presentation
to CD8+ cytotoxic T cells (48). However, these direct anti-tumor
effects can be attributed not only to cytotoxicity but also to their
cytokine-producing capacities (IFN-γ,TNF-α, IL-10). Because NK
cells can also indirectly contribute to tumor control by communi-
cating with other immune cells (e.g., dendritic cells – DCs, NKT
cells, macrophages, and T cells), there is an efficient adaptive anti-
tumor response (12, 21, 49). Furthermore, it is well known from
in vitro studies and colocalization experiments that NK cells can
interact bidirectionally with DCs in areas of inflammation causing
DC maturation, a consequent enhancement of NK cell func-
tion through positive feedback and exerting an influence on the
polarization of primary T cell-responses toward a TH1 response
(50–55). In fact, mature DCs can activate NK cell cytotoxicity
and IFN-γ production, whereas activated NK cells are capable of
enhancing DC maturation and IL-12 production. The previously
described interactions are cell contact and TNF-α-dependent (50,
56–58). Furthermore, mature DCs recruit NK cells to the lymph
nodes, where NK cells serve as an early source of the IFN-γ neces-
sary for TH1 polarization, possibly by direct interaction with naïve
T cells (54).

On the other hand, it has been shown that activated NK cells
can kill autologous immature DCs, while they spare fully acti-
vated DCs. This work lead to the proposal that activated NK
cells might select a more immunogenic subset of DCs during a
protective immune response (58, 59). Interestingly, in a recent
mouse model of vaccination against breast cancer, authors showed
that the addition of YAC-1 (a NK target cell devoid of MHC)
in a vaccine composed of irradiated tumor cells boosted the
expansion of tumor-specific cytotoxic T lymphocytes, eventu-
ally resulting in enhanced survival of mice upon challenge with
a lethal dose of tumor cells. NK cells removed immature tolero-
genic DCs and the residual DCs were highly immunogenic. These
DCs could induce proper T cell clonal expansion, which gave
anti-tumor protection. The depletion of NK cells impaired the
tumor-specific T cell response and, consequently, their protec-
tive roles upon tumor challenge (60). In a more recent tumor
model, Bouwer et al. found that in vivo depletion of NK cells
at the time of tumor challenge completely abolished the benefit
of bacteria-stimulated DC immunotherapy. Although CD4+ or
CD8+ T cells may be required for an optimal anti-tumor response,
the loss of NK cells resulted in a more profound defect in tumor
immunity. They also found that NK cells exert a helper role in
priming and reactivating tumor-specific T cells because the con-
tribution of NK cells was dependent on tumor-Ag presentation
by DCs. However, unlike the previous work, the contribution of
NK cells in the context of this vaccination did not rely on the
perforin-dependent lysis of tolerogenic DCs in draining lymph

nodes because IFN-γ, not perforin, was essential for the success of
DC immunotherapy (61).

Since NK cells cooperate with DCs and T cells to enhance anti-
tumor responses, cancer vaccines could be improved by strategies
aimed at activating NK cells. There is a rationale for NK cell
immunomonitoring in cancer immunotherapeutic approaches.
However, although it is clear that effector cells are the main targets
of immunotherapy, treatments should also focus on immune cell
trafficking to tumor sites. The knowledge that tumors disrupt T
and NK cell homing through different mechanisms is useful for the
implementation of combination immunotherapies to overcome
these immunosuppressive mechanisms (62).

NK CELL MEMORY
In recent years, a new role for NK cells has been described. Under
certain experimental conditions, NK cells share some features
with adaptive immune cells, such as the Ag-dependent expan-
sion observed in mice infected with murine cytomegalovirus. This
NK cell subset expansion is associated with long-lasting functional
changes with features similar to memory T cell populations (63).
There is another mouse model in which the challenge is made
by hapten-induced contact hypersensitivity. Work in this model
demonstrated that these memory–NK cells are confined to the
liver, since hapten-specific memory is conferred to naïve mice by
adoptive transfer only of liver NK cells from sensitized donors
(64, 65). In another work, the authors show that in vitro cytokine-
activated NK cells transferred into naïve recipients can persist for
at least a month. Although they are phenotypically similar to naïve
cells and do not constitutively produce IFN-γ, these memory-like
NK cells produce significantly more IFN-γ when restimulated,
displaying an intrinsic capacity to respond more robustly after
reactivation with cytokines or via engagement of activating NK
receptors (66). However, Horowitz et al. demonstrated in an exper-
imental model of a rabies virus vaccine, that there are no intrinsic
differences between prevaccination and post-vaccination NK cells,
although the last cells to respond have a more robust response. In
fact, post-vaccination NK cells are simply responding to IL-2 pro-
duced by memory CD4+ T cells and IL-12 and IL-18 produced by
accessory cells after virus rechallenge (67).

Nevertheless, there is a lack of definitive evidence for NK cell
memory in humans. Study suggests that infection with human
cytomegalovirus skews the NK cell receptor repertoire toward
the activating CD94/NKG2C receptor that is usually expressed on
<10% of total NK cells in PB (68). After expansion, the NKG2C+

NK cells were more potent producers of IFN-γ than their NKG2C
counterparts and expressed CD57, a marker of terminal differenti-
ation (69). These findings suggest that once NK cells are activated,
they acquire certain characteristics that influence their behavior
during subsequent encounters with Ags.

IMMUNOMONITORING
The primary objective of immune monitoring in cancer vaccine
clinical trials is to find a correlation between an efficient induction
of tumor-specific T cell responses and clinical efficacy that reflects
the importance of the host immune system in controlling tumor
progression. However, although there is evidence of increased fre-
quency of tumor-specific T cells in several cancer vaccine trials,
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no validated biomarkers exist yet for cancer immunotherapy. As
mentioned above, NK cells cooperate with T cells to enhance anti-
tumor response and this emphasizes the importance of optimizing
NK cell activation for tumor immunotherapeutic protocols. NK
cell monitoring was studied more frequently in tumor-Ag-loaded
DC immunization trials (Table 2). The range of vaccines devel-
oped has included peptide/protein-based vaccines, cell lysates, and
whole-tumor cell vaccines with different delivery systems and
adjuvants (70). In practice, though, only a few groups have imple-
mented the evaluation of NK cells in clinical trials. Table 2 provides
an overview of DC-based tumor vaccination trials implementing
NK cell monitoring. The main NK cell activities include IFN-
γ production and lytic activity against the K562 cell line. High
IFN-γ production is an indicator of resident immunostimula-
tory NK cells, which is especially interesting in light of DC-based
approaches. Other cytokines produced by NK cells, e.g., TNF-α,
GM-CSF, IL-10, and IL-13, may be considered for the evalua-
tion of tumor cell sensitivity to NK cell-mediated killing and
could be significant predictive markers for therapy effectiveness
(71). Moreover, NK cells are defined by their intrinsic capacity to
kill transformed cells and in this sense, their activation could be
evaluated as the capacity to degranulate, produce granzymes or
perforins, and lyse tumor target cells or their canonical target, the
K562 cell line. However, it is important to note that cytotoxicity
against the universal target K562 may not correlate to cytotoxicity
against patient tumor cells.

Natural killer cell immunomonitoring in DC vaccine clini-
cal trials showed a correlation between the clinical responses of
treated pts and NK cell status. NK cell responses were analyzed in
a phase I trial of a vaccine consisting of autologous DCs loaded
with a fowlpox vector encoding CEA and the data were compared
with pt clinical outcome. DCs enhanced NK activity in vitro, by
both sustaining NK cell survival and by enhancing the expres-
sion of NK-activating receptors, including NKp46 and NKG2D.
Of the nine pts, four had increased cytolytic NK activity, includ-
ing three pts with increased NK cell frequency; this remained
stable in two pts and decreased in three as compared to pre-
treatment values. NKp46 and NKG2D expression were correlated
with the pts’ NK cell activity. When pts were grouped by clini-
cal response, the majority in the stable/NED (no evident disease)
group had increased NK activity. Anti-CEA T cell response was
enhanced in all of the nine pts analyzed, but it was not significantly
different between groups. Thus, NK responses following DC vac-
cination may correlate more closely with clinical outcome than do
T cell responses (73). In a study of ER/PR double-negative stage
II/IIIA breast cancer pts vaccinated with autologous DCs pulsed
with autologous tumor lysates, DC vaccines elicited TH1 cytokine
secretion and increased the number of NK cells (78). In another
immunization treatment with monocyte-derived DC incubated
with preheated autologous tumor lysate and subsequently with
IFN-γ, TNF-α, and polyinosinic:polycytidylic acid to attain type
1 maturation, treatment induced sustained, elevated IL-12 serum
levels that correlated with the IL-12p70 output of cultured DC
from each individual. NK activity in PB increased and was also
correlated with the IL-12p70 serum concentration in each pt (76).

As mentioned above, NK cells were mostly studied in the con-
text of antigen-loaded DC immunotherapy, and so far, we were

not able to find another tumor vaccine study highlighting the
importance of this lymphocyte subset. In our laboratory, we are
testing an anti-melanoma vaccine composed by four irradiated
melanoma cell lines plus BCG and GM-CSF as adjuvants against
conventional IFN-α therapy. We have not seen changes in T CD4+

or T CD8+ cell frequencies post-treatment, although we did find a
significant increase in NK cell number and frequency in vaccinated
pts when comparing pre- and post-treatment samples. Studies are
needed to find the cause of this NK cell number increase, and to
see if this effect is correlated with pt clinical outcome (80).

Antibody-dependent cellular cytotoxicity (ADCC) is probably
the most thoroughly evaluated activity performed by NK cells
during treatment with monoclonal antibodies. NK cells can trig-
ger ADCC to lyse IgG opsonized target cells. Several authors have
reported a correlation between NK function and response to treat-
ment with Cetuximab, Rituximab, and Trastuzumab in animal
models and cancer pts (81, 82). Not only ADCC but also NK–CD
interaction was observed in antibody treatments. For example, the
interactions between Cetuximab with cancer cell EGFR and NK
cell FcδR IIIa enhances cross-presentation of tumor Ags, such as
EGFR by DC to cytotoxic T lymphocytes. In fact, there are more
circulating EGFR-specific T cells in Cetuximab-treated head and
neck cancer pts than in treatment naïve pts (83). This suggests that
antibody administration could trigger a tumor-Ag-specific cellu-
lar immune response and could be combined with cancer vaccines
to improve cancer immunotherapy.

In summary, although immunomonitoring demonstrated NK
cell relevance in DC immunotherapeutic approaches and a corre-
lation with pt response in several clinical trials, our understanding
of their role remains incomplete. In fact, doubts remain about
whether NK cells function primarily through tumor cytotoxicity
or if NK cells also exert a relevant helper function through their
interaction with DCs, T cells, and other immune cells. This second
type of interaction remains the source of much discussion. Conse-
quently, it is important to monitor NK cell numbers as well as phe-
notypic and functional changes, such as the ability to exert tumor
cell lysis and the production of immunomodulatory cytokines
during the course of immunotherapy. Furthermore, addressing
the capacity of treatment to generate the kind of NK memory-cell
described in the prior section (for example, measuring changes
on NKG2C expression after treatment) could contribute to the
long-term protection expected from cancer vaccines.

CONCLUDING REMARKS
This review ventured beyond a description of the plurality of
NK cell activities into the changes that therapeutic cancer vac-
cines can affect in NK cells, and how these lymphocytes can
potentiate the immune system through DC vaccination. In this
bidirectional crosstalk, NK cells hold the capacity to control and
enhance DC-mediated anti-tumor immune responses by induc-
ing the maturation of TH1-polarizing DCs, providing DCs with
antigenic material for presentation and by killing inappropriately
matured DCs. On the other hand, DCs stimulate NK cells by
both soluble and contact-dependent activators, thereby enhancing
their cytokine production, proliferation, survival, and cytotoxic-
ity. Although this DC–NK cell interaction has been demonstrated
in vitro and in animal models, a review of the literature found very
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Table 2 | NK cell immunomonitoring from different clinical trials using dendritic cell cancer vaccines.

Protocol Vaccine

type

Tumor

type

NK n° and

phenotypic

changes

NK cells

lysis

NK cells

cytokines

production

Association

with pts

outcome

Refer-

ence

Dose-

escalation

phase I trial

Autologous DCs

transfected with

an adenovirus

encoding IL-12

gene

Metastatic

gastrointestinal

cancer

Not evaluated ↑ Cytotoxic

activity vs. K562

cells in 5/15 pts

after treatment

↑ IFN-γ and

↑ cytotoxic in

4/15 pts after

treatment.

From pts with ↑ cytotoxic

NK cell activity: 1/5 patients

achieved a PR and 1/5

experienced a clear SD. 3/4

pts with PD had a transient

↑ cytotoxic activity

(72)

Phase I trial Autologous DCs

loaded with a

fowlpox vector

encoding CEA

CRC, lung cancer

and urachal

adenocarcinoma

5/9 pts ↑ NK cell n°

during vaccination, 2 did

not change and 2 ↓ NK

cell n°. ↓ NKG2A in 2/5

pts; ↑ NKG2D in 3/5 pts.

NKp46 and NKG2D

expression correlated

with activity

4/9 pts ↑ NK cell

activity (3 of

them had also

↑ NK cell

numbers). 2/9

stable NK cell

activity, and 3/9

↓ NK cell activity

Not

evaluated

4 of 5 SD/NED pts had

↑ NK cell activity

(73)

Pilot trial DCs loaded with

autologous HS-

and

UV-C−treated

tumor cells

FL B cell NHL

and lymphoplas-

mocytoid

lymphoma

↑ CD3−CD56dimCD16+

and ↑ CD16 MFI ratios

and ↑ NKp46 after

treatment

Not evaluated Not

evaluated

↑ CD3−CD56dimCD16+ in

R compared with NR pts.

↑ NKp46 4/6 R pts in

comparison with 1/4 NR

pts with a similar change

(74)

Phase I/II

trial

Monocyte-

derived WT1

mRNA-loaded

DC

AML ↑ HLADR+ NK cells in

pts after treatment

Not evaluated Not

evaluated

Correlation between CR

and ↑ of activated NK cells

post-vaccination (i.e., more

than 40% HLA-DR+ cells

within the total NK cell

population in 4/5 CR and

0/5 NR)

(75)

Pilot trial Autologous DC

loaded with

autologous

tumor lysates

preheated+pre-

treatment with

CTX+PegIFN

HCC, ChC, CRC,

Carc, M

6/17 pts ↑% of NK cells

modestly

↑ Cytotoxic

activity against

K562 cells after

first cycle (11/17

pts) and after

second cycle

(8/17 pts)

Not

evaluated

No clinical correlates with

immune and biological

parameters observed

(76)

Phase I/II

trial

Autologous

DCs+ IL-2

Renal cell

carcinoma and

BC

2/6 pts ↑

CD16+CD56dim

6/10 pts ↑

cytotoxic activity

vs. K562 cells

Not

evaluated

Only one patient with

objective CR, associated

with CD8+ IFNγ production

(77)

Phase I DCs loaded with

autologous

tumor lysates

ER−/PR− stage

II/IIIA BC

↑ n° of NK cells Not evaluated Not

evaluated

Not analyzed (78)

Phase I DC pulsing with

autologous

tumor cell

lysates

Recurrent

Glioblastoma

6/15 pts ↑% of NK

cells, which further

augmented after the

second vaccination

Not evaluated ↑ IFNγ

associated

with a ↑% of

NK cells after

the first

vaccination

Pts with ↑ NK V/B ratio had

longer PFS and OS. And pts

with ↑TGFβ2 and VEGF V/B

ratios had a shorter PFS

and OS

(79)

n°, numbers; ↑, increase; ↓, decrease; CR, clinical responders; FL, follicular; NHL, non-Hodgkin lymphomas; lymphoplasmocytoid lymphoma; R, responder; NR,

non-responder; IL, interleukin; ITI, intratumoral injection; PR, partial response; SD, stable disease; NED, no evident disease; PFS, progression free survival;

OS, overall survival; V/B, vaccination/baseline ratio; CTX, cyclophosphamide; PegIFN, PegIFN alpha-2a; HCC, hepatocellular carcinoma; BC, breast cancer; ChC,

cholangiocarcinoma; CRC, colorectal carcinoma; Carc, carcinoid tumor; M, melanoma; HS, heat-shocked.
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few clinical trials that performed NK cells immunomonitoring.
The majority of these DC cancer vaccine clinical trials showed a
correlation between NK cell number/percentage and/or activity
augmentation and pt outcome. Surprisingly, to the best of our
knowledge, NK cell analysis has not been carried out in trials for
other kinds of tumor vaccines. To gain more knowledge about the
role of NK cells in immunotherapeutic cancer vaccines, NK cell
monitoring must be systematically incorporated into clinical vac-
cination trials. This could lead to a better understanding of the
real impact of NK cells in the vaccine field.
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