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Epigenetic silencing of immune-related genes is a striking feature of the cancer genome
that occurs in the process of tumorigenesis. This phenomena impacts antigen processing
and antigen presentation by tumor cells and facilitates evasion of immunosurveillance.
Further modulation of the tumor microenvironment by altered expression of immuno-
suppressive cytokines impairs antigen-presenting cells and cytolytic T-cell function. The
potential reversal of immunosuppression by epigenetic modulation is therefore a promis-
ing and versatile therapeutic approach to reinstate endogenous immune recognition and
tumor lysis. Pre-clinical studies have identified multiple elements of the immune system
that can be modulated by epigenetic mechanisms and result in improved antigen presen-
tation, effector T-cell function, and breakdown of suppressor mechanisms. Recent clinical
studies are utilizing epigenetic therapies prior to, or in combination with, immune therapies
to improve clinical outcomes.
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INTRODUCTION
Immune evasion is a complex phenomenon that entails alterations
in cancer cells and the microenvironment to inhibit recogni-
tion of tumor cells by immune infiltrating cells. This process
includes altered expression and presentation of tumor-associated
antigens (TAAs) and secretion of cytokines that promote a reg-
ulatory/inhibitory milieu of antigen-presenting cells (APC) and
cytolytic T cells (CTL). This complex process is driven by a mul-
titude of factors including altered epigenetic marks in tumor cells
that control gene expression. A growing body of literature also sug-
gests that epigenetic alterations can alter immune cell phenotype
and function, for both regulatory and cytolytic function. These
epigenetic modifications include alterations in DNA methylation
and histone modifications, such as acetylation and methylation.
The accumulation of epigenetic alterations during tumorigenesis
contributes to profound changes in genome-wide transcriptional
regulation and genetic stability that promotes immune evasion.
The availability of state-of-the-art technologies to screen epige-
netic alterations across a variety of malignancies has advanced our
understanding of defects in tumor regulation, and new therapeu-
tic approaches have been devised and studied to reverse epigenetic
silencing. Since site-specific epigenomic patterns may associate
with disease progression, epigenetics has also come into focus
for biomarker research (1). These reciprocal fields identify poten-
tial therapeutic strategies with integrated biomarkers focused on
epigenetic mechanisms to improve antitumor immune responses
(Figure 1).

INTRODUCTION TO EPIGENETICS
METHYLATION AND HYPOMETHYLATING AGENTS
DNA methylation is one of the most studied epigenetic phenom-
enon and involves the enzymatic conversion of cytosine residues

to 5-methylcytosine. This reaction is catalyzed by the five known
mammalian DNA methyltransferases (DNMTs) DNMT1, 3A, 3A2,
3B, and 3L (2). The conversion is typically restricted to cytosine
residues of cytosine-guanine dinucleotides called CpG sites. CpG
islands contain a high density of CpG sites, which are mostly
unmethylated in normal tissues (3). However, most cancers are
characterized by localized aberrant DNA hypermethylation of
CpG islands within the promoters of various genes (4), including
tumor suppressors involved in cell cycle control, cell growth, apop-
tosis, cell adhesion, DNA repair, angiogenesis, and cell adhesion
(5). Furthermore, DNA hypermethylation inhibits gene expres-
sion, as evidenced by numerous studies correlating promoter
methylation with transcriptional repression during both normal
processes as well as tumorigenesis (6–8).

Hypomethylating agents can be used to counteract hyperme-
thylation and restore gene expression. Hypomethylating agents
can generally be grouped into (a) nucleosidic or (b) non-
nucleosidic DNA methylation inhibitors (Table 1).

Nucleosidic DNA methylation inhibitors are incorporated into
the genome during DNA replication. Thus, this class of agents acts
only in tumor cells actively undergoing cell division. Agents such
as Azacitidine (AZA) and 5-aza-2′-deoxycitidine (5AZA2) were
originally synthetized in the 1960s to use as cytotoxic drugs with
potential anti-leukemic activity (9, 28, 29). However, their effect
on DNA methylation was not identified until later in the process
of drug development. 5AZA2 incorporates into DNA in place of
cytidine during S-phase and covalently binds DNMTs during the
process of DNA replication to ultimately prevent DNA methyla-
tion. 5AZA2 has a dual, dose-dependent antineoplastic action. At
high doses, it covalently traps DNMT into DNA leading to cyto-
toxicity. At lower doses, it suppresses tumor growth primarily via
hypomethylation of promoter CpG islands of tumor-suppressor
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Héninger et al. Epigenetic mechanisms and immunotherapy

FIGURE 1 | Epigenetic modifying agents can enhance multiple aspects of
an antitumor immune response. EMAs may boost tumor antigen
expression, endogenous antigen processing, increase surface CTA display in
context of MHC molecules, and boost presentation to T cells by increasing

expression of co-stimulatory molecules. EMAs may also enhance both
cellular and cytokine-mediated effector T-cell mechanisms and tumor lysis.
EMAs may alter checkpoint inhibition targeting the PD1/PD-L1 and
CTLA-4/CD28 axis resulting in more efficient effector T-cell mechanisms.

specific loci (9, 30). AZA is similar to 5AZA2 but can also incorpo-
rate into RNA in the form of azacytidine-triphosphate and directly
inhibit protein synthesis.

The restoration of gene expression mediated by hypomethy-
lating agents can impact tumor growth in a wide variety of
mechanisms. In prostate cancer (PC), 5AZA2 targets multiple
genes including the tumor-suppressor miR-146a microRNA and
the androgen receptor (AR). 5AZA2-induced miR-146a induction
correlated with both delayed tumor growth and disease progres-
sion of castrate-resistant PC (CRPC) in an LNCap xenograft
model. The miR46a promoter methylation pattern was also sug-
gested as a biomarker for progression from androgen-dependent
to androgen-independent phases of PC (1). Hypermethylation of
the AR promoter was shown to associate with PC tumorigenicity
and the therapeutic potential of epigenetic agents in addition to
anti-androgen therapy has been suggested in several pre-clinical
studies both in vitro and in vivo. 5AZA2 reduced tumorigenicity
and cell proliferation of PC cell lines and PC stem/progenitor cells
via AR promoter demethylation and AR induction (31). 5AZA2
also restored the antiproliferative and pro-apoptotic effects of the
AR-antagonist bicalutamide (BCLT) in both in vitro and in vivo
xenograft models (32). A second-generation derivative, 5AZA2-
p-deoxyguanosine (SGI-110) was formulated to protect 5AZA2
from cytidine-deaminase inactivation and prolong half-life. SG-
110 efficiently retarded tumor growth in an EJ6 bladder cancer
xenograft model with less toxicity compared to 5AZA2 in vivo

(33). Zebularine is a cytidine analog displaying both cytidine-
deaminase and DNMT inhibitor properties (34). An in vitro study
treated breast cancer cell lines with zebularine, potentiating the
antitumor effects of other epigenetic drugs including 5AZA2 and
SAHA by inhibiting tumor proliferation and clonogenic potential.
Other pre-clinical studies in AML and solid tumors found growth
inhibition by zebularine via cell cycle arrest and apoptosis induc-
tion via various pathways including p53-dependent endoplasmic
reticulum (ER) stress (35, 36).

Non-nucleosidic DNA methylation inhibitors directly inhibit
DNMT activity without incorporating into nucleic acids. The
best-studied agents in this class include hydralazine, procaine,
and procainamide. Hydralazine has been studied alone or in
combination with valproate acid/magnesium valproate in refrac-
tory solid tumors, and it was shown to restore chemosensitivity
in gemcitabine-resistant CaLo cervical cancer cell lines via his-
tone methyltransferase inhibition (37, 38). Hydralazine treatment
resulted in significant dose- and time-dependent growth inhi-
bition, increased apoptosis, DNA damage, cell cycle arrest, and
decreased invasiveness of DU145 PC cells via blockage of the
EGF-receptor pathway (39).

Procaine and procainamide are both derivatives of 4-
aminobenzoic acid, ester- and amide-, respectively. Procainamide
is a competitive inhibitor of DNMT1 hemimethylase activity
(40). In an MDA-231 xenograft model, both procainamide and
hydralazine demonstrated potent tumor-suppressor reactivation
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Table 1 | Hypomethylating agents currently in development.

Drug Drug description Development stage Reference

CYTOSINE ANALOGS (COVALENTLY BIND dNMTs)

Azacytidine Among the best-studied agents, but has several disadvantages including high toxicity

and a short half-life. Can also incorporate into RNA, reducing specificity

FDA approved (9)

Decitabine Decitabine has a longer half-life than azacytidine and only incorporates into DNA,

increasing specificity over azacytidine

FDA approved (10)

SGI-110 A dinucleotide of decitabine and deoxyguanosine that results in a high resistance to

cytidine-deaminase cleavage. This may increase exposure time to decitabine while

increasing metabolic stability

Phase II (11)

Zebularine Lacks the 4′-amino group but covalently traps DNMTs similarly to other analogs. This

drug has less toxicity and increased chemical stability when compared to azacytidine

or decitabine

Pre-clinical (12)

CP-4200 An azacytidine derivative with an elaidic acid bound to the molecule that permits

diffusion through the cell membrane independent of common nucleoside

transporters, thus increasing cellular uptake but possibly decreasing specificity

Pre-clinical (13)

ADENOSINE ANALOGS (INCREASE COMPETITION FOR DNMT SAM-BINDING SITES)

Cladribine Inhibits SAH hydrolase, which increases SAH concentration, thus increasing

competition for the SAM-binding sites of DNMTs

FDA approved (14)

Fludarabine Similar to cladribine FDA approved (14)

Clofarabine A hybrid of fludarabine and cladribine FDA approved (15)

NON-NUCLEOSIDE INHIBITORS (BLOCK DNMT1 ACTIVE SITE/CATALYTIC ACTIVITY)

Procainamide Reduces DNMT1’s binding affinity to SAM and methylated DNA. Binds DNA

sequences with high CpG density, blocking DNMT translocation

FDA approved (16)

Procaine Inhibits DNMT by masking enzyme target sequences FDA approved (17)

Hydralazine Exact mechanism is controversial. Is thought to bind and block the DNMT1 binding site Phase III (16)

Disulfiram Hypothesized to inhibit the catalytic cysteine of DNMT1 Phase III (18)

RG108 A small molecule inhibitor of DNMT1 that acts by binding its active site with no

detectable toxicity

Pre-clinical (19)

IM25 A procainamide derivative and small molecule inhibitor of DNMT1. It has been shown

to be as potent as but less toxic than azacytidine

Pre-clinical (20)

Nanaomycin A A small molecule inhibitor of DNMT1 that is selective for DNMT3B, which is known to

be critical for de novo methylation

Pre-clinical (21)

NATURAL COMPOUNDS

Genistein Decreases DNMT1, DNMT3A, and DNMT3B concentration in prostate cancer cells,

but the extent of altered DNA methylation is unclear

Phase III (22)

Equol Isolated from soy beans, equol has been shown to have some hypomethylating

effect; however, its role in cancer is controversial, and it may even increase the

viability of metastatic cancer cells

Phase III (23)

Curcumin Binds DNMT1 and blocks its catalytic function with potency similar to some synthetic,

non-nucleoside DNMT inhibitors

Phase III (24)

EGCG A component of green tea that is shown to have chemopreventive characteristics.

Functions as a DNMT inhibitor by depleting the amount of SAM available, leading to

decreased DNMT activity

Phase III (25)

Resveratrol Found in grapes, resveratrol may function by blocking acetylation of STAT3 and

preventing STAT3-mediated targeting of DNMT1 to promoter CpG islands

Phase II (26)

Parthenolide Binds the catalytic cysteine of DNMT1 with low potency Pre-clinical (27)

including demethylation and re-expression of the estrogen recep-
tor (41). Procaine suppressed growth of MCF-1 breast cancer
cells simultaneously with demethylation events (17). New DNMT
inhibitors developed by conjugation of procainamide to L-RG08
or phthalimide showing strong cytotoxicity against DU145 and
HCT116 cell lines (42).

Natural plant-derived compounds have been also identified
as non-nucleosidic DNA methylation inhibitors and have been
extensively studied for global DNA methylation and tumor
inhibitory effects. Curcumin was shown to reactivate expression of
the Neurog1 gene via promoter CpG site demethylation in LNCap
cells. The promoter methylation status of Neurog1 was proposed
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as a potential biomarker to detect early PC (43). Genistein inhib-
ited the AKT signaling pathway in PC cells via demethylation and
deacetylation of histone-H3-lysine 9 at the PTEN, CYLD, p53,
and FOXO3 tumor-suppressor gene promoters (44). Resveratrol
was also shown to demethylate several tumor-suppressor promot-
ers and restore estrogen sensitivity in triple-negative breast cancer
cells by increasing estrogen receptor expression via the inhibition
of STAT3 acetylation (26). A clinical trial has been initiated to ana-
lyze tissue gene expression patterns in PC patients after genistein
treatment (NCT01126879).

HISTONE ACETYLATION AND HISTONE DEACETYLASE INHIBITORS
Histone modifications can increase spatial separation of DNA
from protein in the nucleosome to permit transcription factor
binding to promoter regions, leading to enhanced global gene
expression. Chromatin acetylation is regulated by the balanced
action between histone acetyltransferases (HAT) and deacety-
lases (HDAC). Histone deacetylase inhibitors (HDIs) block the
catalytic domain of HDACs preventing chromatin condensation
and transcriptional repression. HDIs have been intensively studied
as potential anticancer compounds both alone and in combina-
tion with other therapies in a wide variety of solid tumors and
hematologic malignancies with strong pre-clinical evidence for
antitumor activity (Table 2). In addition to increasing gene expres-
sion of various tumor suppressors, HDIs have also been shown
to exert tumor-selective apoptosis induction and proliferation
arrest via multiple mechanisms including induction of p21 and
the TRAIL-pathway (45). One HDI, suberoylanilide hydroxamic
acid (SAHA), suppressed tumor growth, invasion, and migration
of highly aggressive ovarian carcinomas by modulating a variety
of phenotype-related molecules including members of the cas-
pase pathway, the cell cycle regulator Cyclin B1, tumor-suppressor
genes (p21, p53), and tissue remodeling MMP-9 enzyme, among
others (46). SAHA promoted autophagy both alone and in com-
bination with 5AZA2 (47, 48) and enhanced T-cell and NK
cell-mediated tumor cell targeting by re-sensitizing tumor cells
for the TRAIL/Apo2L death receptor pathway in various cancer
types (49–54). Panobinostat (or LBH589) displays robust growth
inhibition of a wide range of melanoma phenotypes via direct
cytotoxicity and cell cycle arrest and is known to induce cell death
independently from the apoptotic machinery or death receptor
pathways, likely via mitochondrial damage (55, 56). Entinostat has
been tested in combination with AZA and SG-110 in lung can-
cer models, and these combination therapies highlighted robust
gene expression changes in key pathways of antitumor mecha-
nisms including cell cycle, apoptosis, tissue remodeling, and DNA
damage (57, 58).

Romidepsin is a unique natural compound originally isolated
in the early 1990s from Gram-negative Chromobacterium vio-
laceum from a Japanese soil sample and was FDA approved in 2009
for the treatment of cutaneous T-cell lymphoma. Romidepsin was
originally described as an anti-Ras molecule and later identified as
an HDAC inhibitor. Romidepsin induces G1 phase cell cycle arrest
(103) primarily via p21 induction (103, 104).

Sirtuins are potent regulators of cell division that promote sur-
vival. SIRT inhibitors have been tested as potential candidates for
novel anticancer agents in pre-clinical studies. Sirtinol, a SIRT1/2

Table 2 | Histone deacetylase inhibitors.

Drug Target Development Reference

HYDROXAMATES

Vorinostat Class I and II HDACs FDA approved (59)

Panobinostat Class I, II, and IV HDACs Phase III (60)

Belinostat Class I and II HDACs Phase II (61)

Abexinostat Class I and II HDACs Phase II (62)

Givinostat Class I and II HDACs Phase II (63)

Resminostat Class I and II HDACs Phase II (64)

Quisinostat Class I and II HDACs Phase II (65)

Pracinostat Class I, II, and IV HDACs Phase II (66)

Dacinostat Class I and II HDACs Phase I (67)

Pyroxamide HDAC1 Phase I (68)

CHR-3996 Class I HDACs Phase I (69)

CBHA Class I and II HDACs Pre-clinical (70)

Trichostatin A Class I and II HDACs Pre-clinical (71)

Oxamflatin Class I and II HDACs Pre-clinical (72)

MC1568 Class IIa HDACs Pre-clinical (73)

Tubacin HDAC6 Pre-clinical (74)

PCI-30451 HDAC8 Pre-clinical (75)

BENZAMIDES

Entinostat Class I HDACs (excluding

HDAC8)

Phase III (76)

Tacedinaline HDAC1, HDAC2, and

HDAC3

Phase III (77)

Mocetinostat Class I HDACs Phase II (78)

Chidamide HDACs 1, 2, 3, and 10 Phase II (79)

BML-210 Class I and II HDACs Pre-clinical (80)

M344 Class I and II HDACs Pre-clinical (81)

ALIPHATIC ACIDS

Valproic acid Class I and IIa HDACs Phase III (82)

Butyrate Class I and IIa HDACs Phase II (83)

Sodium butyrate Class I and II HDACs Pre-clinical (84)

CYCLIC PEPTIDES

Romidepsin HDAC1 and HDAC2 FDA approved (85)

Trapoxin A Class I and IIa HDACs Pre-clinical (86)

Apicidin Class I HDACs Pre-clinical (87)

SIRT INHIBITORS

Nicotinamide SIRT1 Phase III (88)

Splitomicin SIRT1 Pre-clinical (89)

EX-527 SIRT1 Pre-clinical (90)

Dihydrocoumarin SIRT1 Pre-clinical (91)

Tenovin-D3 SIRT2 Pre-clinical (92)

AGK2 SIRT2 Pre-clinical (93)

AEM1 and AEM2 SIRT2 Pre-clinical (94)

Cambinol SIRT1 and SIRT2 Pre-clinical (95)

Sirtinol SIRT1 and SIRT2 Pre-clinical (96)

Salermide SIRT1 and SIRT2 Pre-clinical (97)

Tenovin-6 SIRT1 and SIRT2 Pre-clinical (98)

OTHER

TMP-269 Class IIa HDACs Pre-clinical (99)

Psammaplin A Class I HDACs Pre-clinical (100)

Nexturastat A HDAC6 Pre-clinical (101)

RGFP966 HDAC3 Pre-clinical (102)
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inhibitor, suppressed growth of MCF-7 breast cancer cells via var-
ious pathways including G1 cell cycle arrest and induction of
apoptotic machinery by PARP cleavage, cytochrome c release,
Bax up-regulation, and BCL-2 down-regulation. Furthermore,
sirtinol elevated autophagy-related markers and increased tumor-
suppressor p53 acetylation (105). Inhibition of p53 deacetylation
was also shown as a key pathway of tumor suppression and cyto-
toxicity exerted by two novel SIRT2-specific inhibitors, AEM1 and
AEM2 (94).

EPIGENETIC MODIFYING AGENTS IN CANCER THERAPY
Clinical utility of epigenetic modifying agents (EMAs) has been
demonstrated in a growing body of clinical research studies.
Current FDA-approved EMAs include DNMT inhibitors Vidaza
(AZA), Dacogen (5AZA2) for AML and MDS, and HDAC
inhibitors Istodax (romidepsin) and Zolinza (vorinostat) for treat-
ment of cutaneous T-cell lymphoma. AZA and 5AZA2 have pro-
vided a significant advancement in treatment of high-risk hemato-
logic malignancies; however, their clinical efficacy and therapeutic
value in solid tumors is limited. This is due to many factors includ-
ing both the relative molecular instability and significant toxicity of
these agents. These dose-limiting toxicities include myelosuppres-
sion, fatigue, and infection (106). Furthermore, the lack of clinical
benefit at the maximally tolerated doses (MTD) of these agents in
patients with solid tumors significantly hindered interest in further
clinical development. However, recent studies utilizing EMAs with
doses lower than the MTD have found significant antitumor effects
renewing interest in these agents. Further pre-clinical work has led
to the development of alternative formulations to decrease toxic-
ity and improve pharmacokinetics of these agents (107, 108). For
example, the pharmacokinetic profile of the second-generation
derivative, 5-aza-2′-deoxycitidine-p-deoxyguanosine (SGI-110) is
promising, and this agent is being tested in AML, CMML, and
MDS in a Phase I/II dose escalation study (NCT 01261312).

Epigenetic aberrations have been shown to associate with resis-
tance to chemotherapy. Several studies addressed the potential of
EMAs to reinstate chemosensitivity. When 5AZA2 was admin-
istered prior to standard chemotherapy for AML patients, the
overall complete remission was 83% (NCT00538876) (109). A
recently concluded Phase I/II study on metastatic, docetaxel-
resistant CRPC studied the effect of AZA in combination with
docetaxel and prednisone and found significant PSA response,
favorable clinical outcome, and demethylation of tumor-derived
DNA (110). The efficacy of hydralazine and magnesium valproate
treatment prior to re-challenge with chemotherapy was addressed
in a Phase II clinical trial with patients with refractory, chemore-
sistant solid tumors (NCT00404508). This study reported a reduc-
tion in global DNA methylation, histone deacetylase activity, and
80% of the patients showed clinical benefits with partial response
or stable disease (111). A Phase I study in chemoresistant metasta-
tic melanoma (NCT00925132) assessed the potential of sequential
epigenetic therapy including 5AZA2 and panobinostat combined
with temozolomide chemotherapy. This regimen was generally
well tolerated by the cohort with no patient reaching dose-limiting
toxicity (112) and has advanced to Phase II testing to further evalu-
ate if EMAs may modify chemosensitivity and apoptosis. A Phase II
clinical study of hydralazine and valproic acid in combination with

neoadjuvant cytotoxic chemotherapy in locally advanced Stage IIB
and IIIA breast carcinoma (NCT00395655) reported an overall
response of 81% with complete clinical response in 31% of the
patients (113), as well as increased efficacy of conventional cyto-
toxic agents. A significant decrease in global DNA methylation and
in HDAC enzymatic activity was also observed. This study is being
continued in a randomized ongoing Phase III study to analyze the
efficacy of epigenetic cancer therapy. A Phase II evaluation of effi-
cacy of AZA and/or lenalidomide in relapsed/refractory follicular
and marginal zone lymphoma (NCT 01121757) is also ongoing.

Other novel EMAs are in development, such as chromosome-
remodeling bromodomain inhibitors (114). These agents have
promising pre-clinical data with robust, targeted antitumor effects
in a broad range of malignancies. Further clinical development,
including evaluation of optimal dosing strategies and toxicity
evaluations, will be required to evaluate potential combinator-
ial strategies with other agents. However, great potential exists for
these novel agents to be deployed in a range of clinical contexts.

EPIGENETICS AND ANTITUMOR IMMUNE RESPONSES
During tumorigenesis, epigenetic alterations play a key role in the
suppression of immune recognition and immune surveillance to
promote immune evasion via alterations in both the tumor and
microenvironment. Immunosuppression is a striking feature of
the global methylation pattern of the cancer genome, and it is also
a common feature that extends across heterogenous cancer phe-
notypes. The potential for EMAs to reverse these phenomena is
an exciting therapeutic approach to reinstate immune recognition
and enhance endogenous tumor clearance. Multiple studies have
indicated the potential of epigenetic therapies prior to or in com-
bination with immune therapies, which can act through a variety
of mechanisms to enhance antitumor immune responses. These
include improving immune recognition via expression, process-
ing, and presentation of TAAs in tumor cells and efficient recogni-
tion, T-cell activation, and lysis of tumor targets by immune cells.
It is within this complexity of an effective antitumor immune
response that epigenetic therapies could play multiple roles.

NOVEL TUMOR-ASSOCIATED ANTIGENS
Tumor immune evasion is due, in part, to tolerance for self-
antigens and reduced expression of neoantigens. In 1943, Gross
published a study demonstrating that foreign antigens expressed
by tumor cells may induce immune-mediated rejection of syn-
geneic tumor grafts (115). The identification of these TAAs and
their potential to enhance immunogenicity has been well stud-
ied in the field of tumor immunology. These novel TAAs include
cancer testis antigens (CTAs) or germline antigens as potential can-
didates for novel vaccine therapies. CTAs are ideal targets as their
expression occurs during tumorigenesis with expression confined
to the tumor. The otherwise limited expression in normal tis-
sue beyond the blood-testis barrier suggests these TAAs may be
highly immunogenic. However, expression of CTAs in medullary
thymic epithelial cells was previously reported (116), and further
evidence supported the existence of some level of central tolerance
against these germline antigens (117). CTA expression has been
detected in a wide variety of hematologic and solid tumors types,
although expression levels often vary between disease models, and
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significant heterogeneity can be observed at different tumor loci
within the same host or even the same lesion (118, 119). Lung,
ovarian, head and neck, bladder, PC, melanoma, and multiple
myeloma have been shown to express a considerable amount of
CTAs, and clinical trials have been testing CTA-based therapies
with promising results in these groups. Genome-wide analysis has
described CTAs as a heterogenous group of antigens characterized
by three distinct expression profiles: testis-restricted, testis/brain-
restricted, and testis-selective (120). Almost half of the discovered
CTAs are linked to the X chromosome (CG-X),which are predomi-
nantly testis-restricted. Other CTAs located on various autosomes
are typically involved in later stages of germ-cell differentiation
with lower antigenic potential (121, 122).

Although their function is not completely understood, prior
studies have demonstrated that CTAs play a role in orchestrat-
ing cell differentiation processes during germline development.
CTAs interact with transcriptional factors driving various signal-
ing pathways involved in gametogenesis, maintenance of genomic
integrity, mRNA regulation, metabolic activity, meiosis, and sperm
motility. Interestingly, most of the known CTAs show redundancy
in germline development as shown in small-animal knock-out
models. While the role of CTAs in tumor pathogenesis is even
less characterized, data suggest that besides regulating transcrip-
tional activity, CTAs also promote tumor development by sup-
porting cell cycle processes and the mitotic machinery including
centrosome formation, mitotic spindle assembly, chromosomal
alignment, and nuclear envelope breakdown. Additionally, CTAs
promote tumor growth by suppressing apoptosis signaling cas-
cades, inducing aberrant gene expression patterns and impairing
response to cancer treatment drugs.

Cancer testis antigens have been proposed for use as biomark-
ers of disease progression in multiple disease models. Microar-
ray screening of both primary and CRPC revealed remarkable
differences in CTA expression. The MAGEA/CSAG family was
up-regulated in CRPC but not in primary cancer. Interestingly,
PAGEA4 was shown as a strong marker of primary tumors and
was silenced in CRPC (123). A study on tumor biopsies demon-
strated that SSX expression was an exclusive marker of metastatic
lesions and was not detected in primary tumor tissue (124). The
expression pattern of 30 CTA antigens was evaluated in glioblas-
toma samples compared to normal brain tissue. Glioblastoma lines
co-expressing three to four CTAs were found to be associated with
significantly better overall survival (125). A study in patients with
PC (126) detected CTA-specific IgG in sera including NY-ESO-1,
LAGE-1, NFX-2, and SSX-2. SSX-2 mRNA levels were also sig-
nificantly elevated in metastatic PC tissue compared to primary
tumors or to benign prostate tissue (126). SSX proteins were also
up-regulated in MCH class I-deficient germline cells and in var-
ious types of advanced cancers with poor prognosis. SSX-2 was
most frequently expressed across prostate cell lines, but SSX-1 and
SSX-5 were also inducible after 5AZA2 treatment. SSX expres-
sion detected by immunohistochemical tissue arrays in patient
tumor samples was restricted to metastatic lesions with no expres-
sion detected in primary prostate tumors. Cross-reactive immune
responses to a dominant HLA-A2 SSX epitope (p103-111) were
observed after immunization of A2/DR1 transgenic mice with SSX
vaccines (124).

This tumor-specific expression suggests CTAs may be ideal
antigens for tumor-targeting vaccines. In fact, the first CTA was
discovered by studying a patient with unusually favorable cytolytic
immune responses against melanoma. The CD8-restricted antigen
was identified as MAGE-A1 (127). The MAGE family was subse-
quently recognized as a potent target to enhance tumor-specific
CTL cell responses (128) and have been extensively studied as a
promising candidate for therapeutic approaches. In 1994, Weber
et al. found that 40–50% of tissue samples obtained from patients
with advanced melanoma were positive for MAGE-1 from both
early and metastatic stages while a wide range of normal tis-
sue samples including tumor-infiltrating lymphocytes, peripheral
blood from patients with metastatic melanoma, melanocytes, and
benign nevus showed no expression of MAGE-1. Re-induction of
MAGE-1 expression in non-expressing cell lines led to HLA-A1
restricted antigen presentation and epitope-specific lysis by CTL
(129). HLA-A2-restricted T-cell receptors cloned from SSX-2-
seropositive melanoma patients showed epitope-specific reactivity,
tumor cell recognition, and tetramer binding when engineered
into peripheral blood leukocytes (130). In a DNA vaccine study,
improved SSX-2 immunogenicity was reported by introducing
peptide ligand modifications to increase binding affinity to HLA-
A2 molecules. This enhanced both the magnitude and efficiency of
the Th1-type antitumor CD8 T-cell responses and also resulted in a
more diverse T-cell-derived cytokine profile (124). Such improved
overall efficiency and quality of the epitope-specific responses
makes this a promising strategy to enhance tumor-targeting CTA
vaccination strategies.

A key regulatory mechanism of CTA expression in both nor-
mal and tumor tissue is epigenetic modification (131). Epigenetic
silencing is also one of the key changes associated with tumori-
genesis (132), and hypermethylation in CTA promoter regions
has been observed in various cancer types (133–136). Knockdown
models of DNMT1 and DNMT3b demonstrated the role of these
enzymes in mediating CG-X antigen gene repression and promoter
methylation (135). A considerable body of literature on multiple
tumor types has demonstrated that EMAs have the potential to
increase immunogenicity via the re-expression of numerous CTAs
(126, 129, 135, 137–139). In 1994,Weber et al. reported that 5AZA2
treatment induced MAGE-1 antigen expression in non-expressing
cell lines, but not in normal blood cells or melanocytes, and led
to HLA-A1-restricted, epitope-specific lysis by CTL (129). Simi-
larly, inducibility of SSX-2 gene in PC LNCap and DU145 cell lines
was found following 5AZA2 treatment but not in normal prostate
epithelium cell line RWPE1 (126). A subsequent study of the
same CTA family demonstrated that While SSX-2 was expressed
most frequently in PC cell lines, SSX1 and SSX5 expression was
also induced after 5AZA2 treatment (124). In a global screening
study of human epithelial cell lines, low-dose AZA treatment up-
regulated a wide selection of CTAs, including several members of
the MAGE, SSX, SPANX, PAGE families, which were induced in all
three tumor types analyzed (breast, colorectal, and ovarian) (140).
The inhibition of histone lysine methylation enhanced expression
of NY-ESO1, MAGE-A1, and MAGE-A3 expression in H841 lung
cancer cells and enhanced tumor cell targeting and lysis by MAGE-
A3 and NY-ESO1 epitope-specific T cells (136). HDIs Trichostatin
A and depsipeptide FR901228 were both shown to synergize with
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5AZA2 to activate CG-X antigen expression in various thoracic
and colorectal cancer cell lines (135, 141, 142).

Increased expression of CTAs following treatment with EMAs
has been identified in several clinical trials. In a Phase II study
for patients with multiple myeloma, sequential AZA and a
cytotoxicity-enhancer led to a significant increase of MAGEA4,
MAGEA6, SPA17, and AKAP4 in bone marrow compared to pre-
therapy samples. The treatment also resulted in enhanced CTAGB1
epitope-specific IFNγ response by patient PBMCs tested ex vivo
in response to monocyte-derived, CTAGB1-pulsed dendritic cells
(DCs) (143). NCT01483274 was proposed to test 5AZA2 effi-
ciency in up-regulating CTA expression followed by a donor
lymphocyte infusion and an autologous transfer of MAGE-A1,
MAGE-A3, and NY-ESO1 peptide-pulsed DCs in patients with
AML who had relapsed after an allogeneic stem cell transplant.
Study outcomes are specified as tolerance of study treatment,
clinical disease response, and assessment of immune responses
to vaccine peptides. The same center proposed a Phase I study
with the same treatment to treat relapsed high-risk neuroblas-
toma, Ewing’s sarcoma, osteogenic sarcoma, rhabdomyosarcoma,
or synovial sarcoma. Both of these studies are registered but not
yet recruiting.

CTAs have been identified as promising candidates for highly
selective tumor-targeting by enhancement of endogenous antitu-
mor responses. Conversely, a vaccine clinical trial with antigenic
targets from the same MAGE family, namely MAGE-A3/A9/A12
was just recently terminated due to adverse side effects including
substantial neurotoxicity with two vaccination induced fatalities
with necrotizing white matter tissue damage and CD8+CD3+ T-
cell neuro-infiltration. Follow-up studies revealed a previously
unrecognized expression of MAGE A12 in normal brain tissue,
which could be the potential target for the vaccine-mediated
neuroinflammatory response detected in this trial. This case has
alerted for the need of refining CTA characterization to help iden-
tify suitable and safe targets for systemic immunization against
cancer (144).

ANTIGEN PROCESSING AND ANTIGEN PRESENTATION
Beyond sufficient expression of TAAs, effector antitumor T-cell
responses also require the processing and loading of TAAs onto
major histocompatibility complex (MHC) I complexes in the con-
text of co-stimulatory molecules. The MHC I antigen-presenting
machinery samples designated ubiquitin-tagged endogenous pro-
teins and delivers them to the proteasome complex low molecular
mass polypeptide (LMP) 2, LMP7, LMP10 for preprocessing into
up to 25-meric peptides. This peptide-pool is then further cleaved
by cytosolic aminopeptidases and delivered to the ER via the trans-
porter associated with antigen processing (TAP) complex (TAP1,
TAP2) for subsequential trimming by ER aminopeptidase asso-
ciated with antigen processing (ERAAP) followed by chaperone
(calnexin, calreticulin, ERp57, and tapasin)-mediated assembly
and loading onto the antigen-MHC complex. After peptide load-
ing, the chaperones are released from the peptide-MHC complex,
which is then trafficked to the Golgi via vesicle transport and deliv-
ered for surface membrane display (145). Defects of the MHC I
antigen presentation system lead to impairment of immune sur-
veillance, which has been linked to both tumorigenesis and poor

clinical outcomes (146–150). A tissue microarray analysis on 71 PC
patient samples revealed a significant decrease in beta 2 microglob-
ulin (B2M) expression compared to normal surrounding tissue
(145). A study on diffuse large B cell lymphoma revealed aber-
rant B2M protein expression in 75% of the examined biopsies,
which was associated with the loss of HLA-I surface expression
(151–153).

Epigenetic alterations have been identified as one of the mech-
anisms underlying deficient antigen presentation in pre-clinical
tumor models. Histone acetylation of the TAP1 promoter was pro-
posed as a potential repressor mechanism accounting for TAP1
deficiency in various carcinoma cell lines. The level of acetyl-
histone H3 strongly correlated with the level of TAP1 expression
and with metastatic features in malignant carcinomas (154). The
reversal of tumor antigen presentation impairment and MHC-
complex deficiencies may promote tumor killing. EMA has been
shown as a potential approach to reverse such defect and enhance
tumor immune responses. Li et al. analyzed the global response
to low-dose AZA in 63 human epithelial cancer cell lines and
found that B2M, HLA-B, HLA-C, CTSS, NSF2, TAP1, and protea-
some proteins PMSB8 and PMSB9 were up-regulated in at least
three cell lines each (140). Using a high-throughput bioinformat-
ics approach, Kortenhorst et al. identified a comprehensive list of
genes and pathways affected by HDI treatment in PC cell lines
and showed a significant up-regulation of MHC genes including
HLA-Class I molecules and B2M (145). Antigen processing and
presentation is also enhanced by AZA treatment via up-regulation
of the interferon type I and type II families including interferon-
gamma receptor 1 and STAT1 as was shown in an in vivo mouse
model for HPV-16-associated tumors and in NSCLC tumor cell
lines (153, 155).

Dendritic cells play a pivotal role in TAA sampling, processing,
and presentation to T cells. Selective DC targeting makes antigen
delivery to the draining lymph nodes more efficient. Fusion pro-
teins with high-affinity DC-specific binding components facilitate
DC loading and shield antigens from biodegradation allowing for
lower vaccine doses. DC targeting has been shown to be a promis-
ing novel vaccination strategy that results in enhanced, durable,
and overall higher quality immune responses (156). A phase I trial
study has been registered (NCT01834248) and is currently recruit-
ing to test immune response to DEC-205/NY-ESO1 fusion protein
(CDX-1401) and 5AZA2 in patients with MDS or AML. CDX-1401
is a full length NY-ESO1 protein sequence fused to a monoclonal
antibody against DEC-205, a surface marker present on profes-
sional APCs to enhance targeted delivery of peptide antigen to
the antigen processing machinery and to enhance the efficacy of
DC-mediated T-cell induction. NY-ESO1-specific primed T cells
are expected to target tumor more efficiently due to an increase in
5AZA2-induced in situ NY-ESO1 expression by the cancer cells.
In addition to addressing safety, efficacy, tolerability, and vaccine
immune responses, the study also aims to assess the molecular
epigenetic response to 5AZA2.

EPIGENETICS AND ADAPTIVE IMMUNE RESPONSES
Epigenetic silencing of immune-related genes is a striking fea-
ture of the global methylation pattern of the cancer genome.
The impact of epigenetic alterations in tumorigenesis can foster
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an immunosuppressive tumor microenvironment. These alter-
ations are potentially modifiable with EMAs. A large-scale study
on epithelial cancer cell lines treated with low-dose AZA have
identified 80 up-regulated gene sets similar across three cancer
types analyzed including ovarian, colorectal, and breast cancer
and among those there were 15 commonly up-regulated immune
gene sets including elements of the interferon signaling, antigen
presentation, influenza, and the chemokine and cytokine fami-
lies. A similar analysis of lung cancer cell lines then also showed
a 95% overlap of the gene sets up-regulated by AZA as well as
a relative dominance among those by immune-related pathways.
The same study also analyzed primary tumor data in public gene
expression data bases and found that the above identified AZA-
responder immunomodulatory genes showed clustering into a
“low” and “high” expression subgroup across all three epithelial
cancer types independent of clinical stage or of most tumor sub-
types. Similar findings were concluded when looking at NSCLC
and melanoma databases. Strikingly, 11 of the 15 AZA-responder
immunomodulatory gene clusters were up-regulated in patient
biopsies following an 8-week AZA and entinostat combination
therapy. These findings suggest that gene expression profiling
may help identify patients with immune evasion phenotype as
candidates potentially benefiting from epigenetic therapy (140).

Effective T-cell priming requires the antigen presented in
the MHC complex in the context of co-stimulatory molecules,
which define the phenotype of T-cell responses. Modifying co-
stimulatory patterns in the immune synapsis can effectively alter
the magnitude of both effector and regulatory T-cell responses
(157). Therapeutic targeting of negative or positive co-stimulatory
molecules to enhance antitumor immune responses has been
tested in both pre-clinical and clinical studies with promis-
ing outcomes. Low-dose in vitro 5AZA2 treatment of EL4 cells
increased co-stimulatory CD80 expression by the tumor cells,
which led to increased immunogenicity detected after engraftment
into C57BL/6 mice (158). The addition of AZA and entinostat
to treatment with checkpoint-inhibitor anti-PD-1/anti-CTLA-4
antibodies led to remarkable tumor regression in a syngeneic
mouse model with checkpoint-inhibitor-resistant metastatic can-
cer (159). A study in human leukemia cell lines demonstrated that
AZA treatment increased the expression of immune-checkpoint
molecules PD-1, PD-L1, PD-L2, and CTLA-4 (160). AZA increased
both transcript and surface expression levels of PD-L1 on a NSCLC
cell line (153).

Targeting regulatory immune responses to enhance antitumor
immune responses has been addressed in several recent clinical
trials. Clinical response and prolonged stabilization were reported
in a substantial proportion of patients with diverse tumor types
even with treatment-refractory, metastatic types otherwise consid-
ered as non-responsive to immunotherapy. Notably, patients with
PD-L1 negative tumors showed no response to therapy (161). A
follow-up study of three patients for more than 3 years after cessa-
tion of anti-PD-1 therapy showed durable, stabile, or re-inducible
complete remission (162). Patients showing no up-regulation of
checkpoint elements after treatment with combination therapy of
AZA and vorinostat had increased survival (160). The analysis of
PD-L1 and PD-1 expression patterns within the tumor microenvi-
ronment revealed a strong correlation between tumor cell PD-L1

expression and both the magnitude of intratumoral immune cell
infiltration and their PD-1 expression. These findings suggested a
strong correlation between tumor PD-L1 expression and clinical
response (163). Since EMA treatment has a potential to restore PD-
L1 expression on tumor cells, combinatorial EMA treatment may
expand the group of candidates for PD-L1 checkpoint-inhibitor
therapy. A Phase II study in NSCLC (NCT01928576) is currently
recruiting to analyze the efficacy of entinostat and/or azacitidine
prior to PD-1 blocker nivolumab treatment.

Enhancement of effector immune mechanisms can benefit
antitumor interventions and therapeutic approaches to improve
clinical outcomes. Combining EMAs provides a novel alterna-
tive to improve antitumor immune responses. Importantly, data
from immunodeficient animal models have demonstrated that the
tumor inhibitory effect of EMAs requires an intact immune sys-
tem. The antitumor effect of HDI vorinostat and panobinostat
treatment was diminished in RAG2γC-/- and IFNγR-/- immuno-
compromised animals (164, 165). Pre-clinical studies have demon-
strated that hypomethylating agents enhance the effector function
of both T cells and NK cells. 5AZA2-treated tumor cells induced
a higher yield of tumor-infiltrating CD4, CD8 T cells, and NK
cells and IFNγ production was also elevated in both T-cell com-
partments. Mechanistic experiments within the same study iden-
tified a CD8-dependent tumor rejection mechanism induced by
5AZA2 (158). 5AZA2 treatment had a biphasic effect on both
the phenotype and function of ex vivo expanded normal human
peripheral NK cells. After treatment, KIR and NKp44 expres-
sion were increased while NKG2D decreased. The 5AZA2-induced
hypomethylation followed a U-shaped dose-response curve simi-
lar to the effects on cytotoxicity (166). Human peripheral NK cells
showed increased cytotoxicity when exposed to exosomes isolated
from MS-275-treated HEPG2 cells compared to untreated cancer
cells. The TAA chaperone HSP70 and the MHC-related MICA,
MICB content of the exosomes was elevated by MS-275 treatment
suggesting a non-antigen-specific mechanism selective for NK cell
activation (167). Combinatorial panobinostat treatment signifi-
cantly reduced tumor burden and enhanced TH1 cytokine profile
and effector function of adoptively transferred tumor-specific T
cells in a melanoma model. This treatment also resulted in a dra-
matic increase in the tumor-infiltrating effector cell to regulatory
T-cell ratio (168).

Previous studies have suggested that EMAs can impact T-
cell proliferation, differentiation, and function (169–171). Animal
studies support the concept that HDIs can promote a cytotoxic
antitumor immune response (172) but numerous studies have
shown that patients with PRCA have a profound impairment in the
function of circulating and tumor-infiltrating T cells (173, 174).
Whether EMAs can promote antitumor responses in this immuno-
suppressive environment in patients with PRCA is unknown.
Another challenge to this hypothesis lies in the clinical findings
of myelosuppression due to EMA treatment when given at high
doses or intervals (175–177). However, low doses of EMAs may
promote T-cell-mediated cell lysis (169).

As with any systemic therapy, there are potential toxicities
from EMAs that could inhibit antitumor immune responses
or complicate patient outcomes. For example, dose-dependent
toxicities with EMAs include leukopenia, granulocytopenia, and
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thrombocytopenia. Altering dose and schedule of these agents can
ameliorate some of these toxicities but must be closely monitored.
In addition, reactivation of chronic viral infections, including
HIV type 1, was reported following treatment with SAHA in
an in vitro model for latent infection (178). Virus-related ill-
nesses were also observed in a multi-institutional phase II clinical
trial of romidepsin, including EBV, HBV, and VZV reactivation
(179). Finally, epigenetic modification has been also suggested
to regulate immune mechanisms involved in chronic inflamma-
tion and autoimmunity. The extent to which these toxicities may
impact patient outcomes is unclear and is the subject of ongoing
clinical studies.

BIOMARKERS FOR EPIGENETIC THERAPIES
Studies have identified a wide variety of impacts that EMAs can
have on both the tumor and immune compartments. However,
the toxicities associated with these agents when dosed at tradi-
tional MTDs will likely mitigate effective immune responses. Thus,
optimal biologic dosing strategies may be key to the success of
these therapeutic strategies. Integration of biomarkers for the pur-
pose of assessing methylation and histone modification status in
tumor and immune compartments as well as expression of rele-
vant immune-related genes, could identify patient-specific dosing
strategies targeting immune activation. State-of-the-art tools are
available to dissect and measure immune responses quickly and
efficiently using multi-parameter analysis platforms and high-
throughput technologies. Improving tumor analytics for these
purposes, whether through traditional tumor biopsies or alternate
assays for tumor cells in circulation, may further identify opti-
mal biologic dosing strategies to modify gene expression. Given
the potential of these agents to alter expression of a wide range
of genetic targets, incorporation of discovery biomarkers to iden-
tify novel targets would have further clinical and experimental
utility. For example, large clusters of genes involved in effector
immune mechanisms have been identified as loci accumulating
genetic aberrations in the cancer genome. Only a limited num-
ber of individual genes from these clusters have been tested so far
in either pre-clinical or clinical studies in cancer research. Thus,
careful integration of biomarkers into these therapeutic strategies
will be critical to advance these clinical hypotheses.

CONCLUSION
In recent years, the development of combination immunothera-
pies has branched out as a robust new approach to novel cancer
therapeutics. The interplay between tumor and host during tumor
pathogenesis is a complex process and epigenetic modifications
mark many components of the pathologic changes leading to
tumor evasion. Epigenetic therapies have the potential to reverse
this process at multiple levels. Immune therapies provide a signifi-
cant benefit compared to standard cancer therapies by allowing for
better accommodation of tumor heterogeneity and the patient’s
individual immune repertoire. Epigenetic agents can complement
immunotherapies by enhancing many underlying mechanisms of
the antitumor immune response (Figure 1). However, the poten-
tial benefits of these agents must be balanced by the potential
toxicities of these therapies. Biologic dosing strategies are likely
the best approach to maximize benefit while limiting toxicity.

Integrated biomarkers across tumor and immune compartments
may allow determination of biologic doses, though thoughtful
approaches to these assays must be considered.

REFERENCES
1. Wang X, Gao H, Ren L, Gu J, Zhang Y, Zhang Y. Demethylation of the

miR-146a promoter by 5-Aza-2′-deoxycytidine correlates with delayed pro-
gression of castration-resistant prostate cancer. BMC Cancer (2014) 14:308.
doi:10.1186/1471-2407-14-308

2. Cheng X, Blumenthal RM. Mammalian DNA methyltransferases: a structural
perspective. Structure (2008) 16:341–50. doi:10.1016/j.str.2008.01.004

3. Cross SH, Bird AP. CpG islands and genes. Curr Opin Genet Dev (1995)
5:309–14. doi:10.1016/0959-437X(95)80044-1

4. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics
joins genetics. Trends Genet (2000) 16:168–74. doi:10.1016/S0168-9525(99)
01971-X

5. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer (2004)
4:143–53. doi:10.1038/nrc1279

6. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting.
Nature (1993) 366:362–5. doi:10.1038/366362a0

7. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG.
Aberrant patterns of DNA methylation, chromatin formation and gene expres-
sion in cancer. Hum Mol Genet (2001) 10:687–92. doi:10.1093/hmg/10.7.687

8. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from
epigenomics. Nat Rev Genet (2008) 9:465–76. doi:10.1038/nrg2341

9. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methy-
lation. Cell (1980) 20:85–93. doi:10.1016/0092-8674(80)90237-8

10. Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA
methylation: mechanistic studies and their implications for cancer therapy.
Oncogene (2002) 21:5483–95. doi:10.1038/sj.onc.1205699

11. Yoo CB, Jeong S, Egger G, Liang G, Phiasivongsa P, Tang C, et al. Delivery of
5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res (2007)
67:6400–8. doi:10.1158/0008-5472.CAN-07-0251

12. Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP. Zebularine:
a novel DNA methylation inhibitor that forms a covalent complex with DNA
methyltransferases. J Mol Biol (2002) 321:591–9. doi:10.1016/S0022-2836(02)
00676-9

13. Brueckner B, Rius M, Markelova MR, Fichtner I, Hals PA, Sandvold ML, et al.
Delivery of 5-azacytidine to human cancer cells by elaidic acid esterifica-
tion increases therapeutic drug efficacy. Mol Cancer Ther (2010) 9:1256–64.
doi:10.1158/1535-7163.MCT-09-1202

14. Pettitt AR. Mechanism of action of purine analogues in chronic lymphocytic
leukaemia. Br J Haematol (2003) 121:692–702. doi:10.1046/j.1365-2141.2003.
04336.x

15. Jeha S, Gandhi V, Chan KW, Mcdonald L, Ramirez I, Madden R, et al. Clofara-
bine, a novel nucleoside analog, is active in pediatric patients with advanced
leukemia. Blood (2004) 103:784–9. doi:10.1182/blood-2003-06-2122

16. Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S, Richardson B.
Hydralazine and procainamide inhibit T cell DNA methylation and induce
autoreactivity. J Immunol (1988) 140:2197–200.

17. Villar-Garea A, Fraga MF, Espada J, Esteller M. Procaine is a DNA-
demethylating agent with growth-inhibitory effects in human cancer cells.
Cancer Res (2003) 63:4984–9.

18. Iljin K, Ketola K, Vainio P, Halonen P, Kohonen P, Fey V, et al. High-throughput
cell-based screening of 4910 known drugs and drug-like small molecules iden-
tifies disulfiram as an inhibitor of prostate cancer cell growth. Clin Cancer Res
(2009) 15:6070–8. doi:10.1158/1078-0432.CCR-09-1035

19. Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz
P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-
molecule inhibitor of human DNA methyltransferases. Cancer Res (2005)
65:6305–11. doi:10.1158/0008-5472.CAN-04-2957

20. Lin YS, Shaw AY, Wang SG, Hsu CC, Teng IW, Tseng MJ, et al. Identification of
novel DNA methylation inhibitors via a two-component reporter gene system.
J Biomed Sci (2011) 18:3. doi:10.1186/1423-0127-18-3

21. Kuck D, Caulfield T, Lyko F, Medina-Franco JL. Nanaomycin A selectively
inhibits DNMT3B and reactivates silenced tumor suppressor genes in human
cancer cells. Mol Cancer Ther (2010) 9:3015–23. doi:10.1158/1535-7163.MCT-
10-0609

www.frontiersin.org February 2015 | Volume 6 | Article 29 | 9

http://dx.doi.org/10.1186/1471-2407-14-308
http://dx.doi.org/10.1016/j.str.2008.01.004
http://dx.doi.org/10.1016/0959-437X(95)80044-1
http://dx.doi.org/10.1016/S0168-9525(99)01971-X
http://dx.doi.org/10.1016/S0168-9525(99)01971-X
http://dx.doi.org/10.1038/nrc1279
http://dx.doi.org/10.1038/366362a0
http://dx.doi.org/10.1093/hmg/10.7.687
http://dx.doi.org/10.1038/nrg2341
http://dx.doi.org/10.1016/0092-8674(80)90237-8
http://dx.doi.org/10.1038/sj.onc.1205699
http://dx.doi.org/10.1158/0008-5472.CAN-07-0251
http://dx.doi.org/10.1016/S0022-2836(02)00676-9
http://dx.doi.org/10.1016/S0022-2836(02)00676-9
http://dx.doi.org/10.1158/1535-7163.MCT-09-1202
http://dx.doi.org/10.1046/j.1365-2141.2003.04336.x
http://dx.doi.org/10.1046/j.1365-2141.2003.04336.x
http://dx.doi.org/10.1182/blood-2003-06-2122
http://dx.doi.org/10.1158/1078-0432.CCR-09-1035
http://dx.doi.org/10.1158/0008-5472.CAN-04-2957
http://dx.doi.org/10.1186/1423-0127-18-3
http://dx.doi.org/10.1158/1535-7163.MCT-10-0609
http://dx.doi.org/10.1158/1535-7163.MCT-10-0609
http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Héninger et al. Epigenetic mechanisms and immunotherapy

22. Majid S, Dar AA, Shahryari V, Hirata H, Ahmad A, Saini S, et al. Genistein
reverses hypermethylation and induces active histone modifications in tumor
suppressor gene B-cell translocation gene 3 in prostate cancer. Cancer (2010)
116:66–76. doi:10.1002/cncr.24662

23. Bosviel R, Durif J, Dechelotte P, Bignon YJ, Bernard-Gallon D. Epigenetic mod-
ulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell
lines. Br J Nutr (2012) 108:1187–93. doi:10.1017/S000711451100657X

24. Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, et al. Curcumin is a
potent DNA hypomethylation agent. Bioorg Med Chem Lett (2009) 19:706–9.
doi:10.1016/j.bmcl.2008.12.041

25. Lee WJ, Shim JY, Zhu BT. Mechanisms for the inhibition of DNA methyltrans-
ferases by tea catechins and bioflavonoids. Mol Pharmacol (2005) 68:1018–30.
doi:10.1124/mol.104.008367

26. Lee H, Zhang P, Herrmann A, Yang C, Xin H, Wang Z, et al. Acetylated STAT3
is crucial for methylation of tumor-suppressor gene promoters and inhibi-
tion by resveratrol results in demethylation. Proc Natl Acad Sci U S A (2012)
109:7765–9. doi:10.1073/pnas.1205132109

27. Liu Z, Liu S, Xie Z, Pavlovicz RE, Wu J, Chen P, et al. Modulation of DNA
methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther
(2009) 329:505–14. doi:10.1124/jpet.108.147934

28. Sorm F, Piskala A, Cihak A, Vesely J. 5-Azacytidine, a new, highly effective
cancerostatic. Experientia (1964) 20:202–3. doi:10.1007/BF02135399

29. Sorm F, Vesely J. Effect of 5-aza-2′-deoxycytidine against leukemic and hemo-
poietic tissues in AKR mice. Neoplasma (1968) 15:339–43.

30. Momparler RL, Onetto-Pothier N, Momparler LF. Comparison of antineo-
plastic activity of cytosine arabinoside and 5-aza-2′-deoxycytidine against
human leukemic cells of different phenotype. Leuk Res (1990) 14:755–60.
doi:10.1016/0145-2126(90)90068-K

31. Fialova B, Smesny Trtkova K, Paskova L, Langova K, Kolar Z. Effect of histone
deacetylase and DNA methyltransferase inhibitors on the expression of the
androgen receptor gene in androgen-independent prostate cancer cell lines.
Oncol Rep (2013) 29:2039–45. doi:10.3892/or.2013.2344

32. Gravina GL, Marampon F, Di Staso M, Bonfili P, Vitturini A, Jannini EA, et al.
5-Azacitidine restores and amplifies the bicalutamide response on preclinical
models of androgen receptor expressing or deficient prostate tumors. Prostate
(2010) 70:1166–78. doi:10.1002/pros.21151

33. Chuang JC, Warner SL, Vollmer D, Vankayalapati H, Redkar S, Bearss DJ, et al.
S110, a 5-Aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA
methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther
(2010) 9:1443–50. doi:10.1158/1535-7163.MCT-09-1048

34. Marquez VE, Barchi JJ Jr, Kelley JA, Rao KV, Agbaria R, Ben-Kasus T, et al.
Zebularine: a unique molecule for an epigenetically based strategy in cancer
chemotherapy. The magic of its chemistry and biology. Nucleosides Nucleotides
Nucleic Acids (2005) 24:305–18. doi:10.1081/NCN-200059765

35. Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltrans-
ferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res
Treat (2010) 120:581–92. doi:10.1007/s10549-009-0420-3

36. Yang PM, Lin YT, Shun CT, Lin SH, Wei TT, Chuang SH, et al.
Zebularine inhibits tumorigenesis and stemness of colorectal cancer via
p53-dependent endoplasmic reticulum stress. Sci Rep (2013) 3:3219. doi:10.
1038/srep03219

37. Candelaria M, De La Cruz-Hernandez E, Taja-Chayeb L, Perez-Cardenas
E, Trejo-Becerril C, Gonzalez-Fierro A, et al. DNA methylation-independent
reversion of gemcitabine resistance by hydralazine in cervical cancer cells. PLoS
One (2012) 7:e29181. doi:10.1371/journal.pone.0029181

38. Yamanegi K, Yamane J, Kobayashi K, Kato-Kogoe N, Ohyama H, Nakasho K,
et al. Valproic acid cooperates with hydralazine to augment the susceptibility of
human osteosarcoma cells to Fas- and NK cell-mediated cell death. Int J Oncol
(2012) 41:83–91. doi:10.3892/ijo.2012.1438

39. Graca I, Sousa EJ, Costa-Pinheiro P, Vieira FQ, Torres-Ferreira J, Martins MG,
et al. Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget
(2014) 5:5950–64.

40. Lee BH, Yegnasubramanian S, Lin X, Nelson WG. Procainamide is a spe-
cific inhibitor of DNA methyltransferase 1. J Biol Chem (2005) 280:40749–56.
doi:10.1074/jbc.M505593200

41. Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal
I, Chavez A, et al. Reactivation of tumor suppressor genes by the cardiovascular
drugs hydralazine and procainamide and their potential use in cancer therapy.
Clin Cancer Res (2003) 9:1596–603.

42. Halby L, Champion C, Senamaud-Beaufort C, Ajjan S, Drujon T, Rajavelu A,
et al. Rapid synthesis of new DNMT inhibitors derivatives of procainamide.
Chembiochem (2012) 13:157–65. doi:10.1002/cbic.201100522

43. Herbst A, Rahmig K, Stieber P, Philipp A, Jung A, Ofner A, et al. Methylation of
NEUROG1 in serum is a sensitive marker for the detection of early colorectal
cancer. Am J Gastroenterol (2011) 106:1110–8. doi:10.1038/ajg.2011.6

44. Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, et al.
Genistein mediated histone acetylation and demethylation activates tumor
suppressor genes in prostate cancer cells. Int J Cancer (2008) 123:552–60.
doi:10.1002/ijc.23590

45. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P, et al.
Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute
myeloid leukemia cells. Nat Med (2005) 11:77–84. doi:10.1038/nm1161

46. Chen S, Zhao Y, Gou WF, Zhao S, Takano Y, Zheng HC. The anti-tumor effects
and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) on the
aggressive phenotypes of ovarian carcinoma cells. PLoS One (2013) 8:e79781.
doi:10.1371/journal.pone.0079781

47. Chen MY, Liao WS, Lu Z, Bornmann WG, Hennessey V, Washington MN, et al.
Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of
ovarian cancer cell lines and xenografts while inducing expression of imprinted
tumor suppressor genes, apoptosis, G2/M arrest, and autophagy. Cancer (2011)
117:4424–38. doi:10.1002/cncr.26073

48. Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL. Suberoylanilide hydrox-
amic acid (SAHA) causes tumor growth slowdown and triggers autophagy in
glioblastoma stem cells. Autophagy (2013) 9:1509–26. doi:10.4161/auto.25664

49. Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T. Histone
deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize
apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Onco-
gene (2004) 23:6261–71. doi:10.1038/sj.onc.1207830

50. Lakshmikanthan V, Kaddour-Djebbar I, Lewis RW, Kumar MV. SAHA-
sensitized prostate cancer cells to TNFalpha-related apoptosis-inducing ligand
(TRAIL): mechanisms leading to synergistic apoptosis. Int J Cancer (2006)
119:221–8. doi:10.1002/ijc.21824

51. Lillehammer T, Engesaeter BO, Prasmickaite L, Maelandsmo GM, Fodstad O,
Engebraaten O. Combined treatment with Ad-hTRAIL and DTIC or SAHA
is associated with increased mitochondrial-mediated apoptosis in human
melanoma cell lines. J Gene Med (2007) 9:440–51. doi:10.1002/jgm.1036

52. Carlisi D, Lauricella M, D’anneo A, Emanuele S, Angileri L, Di Fazio P, et al. The
histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human
hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC
activation. Eur J Cancer (2009) 45:2425–38. doi:10.1016/j.ejca.2009.06.024

53. Lauricella M, Ciraolo A, Carlisi D, Vento R, Tesoriere G. SAHA/TRAIL com-
bination induces detachment and anoikis of MDA-MB231 and MCF-7 breast
cancer cells. Biochimie (2012) 94:287–99. doi:10.1016/j.biochi.2011.06.031

54. Jazirehi AR, Arle D. Epigenetic regulation of the TRAIL/Apo2L apoptotic
pathway by histone deacetylase inhibitors: an attractive approach to bypass
melanoma immunotherapy resistance. Am J Clin Exp Immunol (2013) 2:55–74.

55. Ellis L, Bots M, Lindemann RK, Bolden JE, Newbold A, Cluse LA, et al. The his-
tone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor
signaling or a functional apoptosome to mediate tumor cell death or therapeu-
tic efficacy. Blood (2009) 114:380–93. doi:10.1182/blood-2008-10-182758

56. Woods DM, Woan K, Cheng F, Wang H, Perez-Villarroel P, Lee C, et al.
The antimelanoma activity of the histone deacetylase inhibitor panobi-
nostat (LBH589) is mediated by direct tumor cytotoxicity and increased
tumor immunogenicity. Melanoma Res (2013) 23(5):341–8. doi:10.1097/CMR.
0b013e328364c0ed

57. Belinsky SA, Grimes MJ, Picchi MA, Mitchell HD, Stidley CA, Tesfaigzi Y, et al.
Combination therapy with vidaza and entinostat suppresses tumor growth
and reprograms the epigenome in an orthotopic lung cancer model. Cancer
Res (2011) 71:454–62. doi:10.1158/0008-5472.CAN-10-3184

58. Tellez CS, Grimes MJ, Picchi MA, Liu Y, March TH, Reed MD, et al. SGI-110 and
entinostat therapy reduces lung tumor burden and reprograms the epigenome.
Int J Cancer (2014) 135:2223–31. doi:10.1002/ijc.28865

59. Bradley D, Rathkopf D, Dunn R, Stadler WM, Liu G, Smith DC, et al. Vorino-
stat in advanced prostate cancer patients progressing on prior chemotherapy
(National Cancer Institute Trial 6862): trial results and interleukin-6 analysis:
a study by the department of defense prostate cancer clinical trial consortium
and University of Chicago phase 2 consortium. Cancer (2009) 115:5541–9.
doi:10.1002/cncr.24597

Frontiers in Immunology | Tumor Immunity February 2015 | Volume 6 | Article 29 | 10

http://dx.doi.org/10.1002/cncr.24662
http://dx.doi.org/10.1017/S000711451100657X
http://dx.doi.org/10.1016/j.bmcl.2008.12.041
http://dx.doi.org/10.1124/mol.104.008367
http://dx.doi.org/10.1073/pnas.1205132109
http://dx.doi.org/10.1124/jpet.108.147934
http://dx.doi.org/10.1007/BF02135399
http://dx.doi.org/10.1016/0145-2126(90)90068-K
http://dx.doi.org/10.3892/or.2013.2344
http://dx.doi.org/10.1002/pros.21151
http://dx.doi.org/10.1158/1535-7163.MCT-09-1048
http://dx.doi.org/10.1081/NCN-200059765
http://dx.doi.org/10.1007/s10549-009-0420-3
http://dx.doi.org/10.1038/srep03219
http://dx.doi.org/10.1038/srep03219
http://dx.doi.org/10.1371/journal.pone.0029181
http://dx.doi.org/10.3892/ijo.2012.1438
http://dx.doi.org/10.1074/jbc.M505593200
http://dx.doi.org/10.1002/cbic.201100522
http://dx.doi.org/10.1038/ajg.2011.6
http://dx.doi.org/10.1002/ijc.23590
http://dx.doi.org/10.1038/nm1161
http://dx.doi.org/10.1371/journal.pone.0079781
http://dx.doi.org/10.1002/cncr.26073
http://dx.doi.org/10.4161/auto.25664
http://dx.doi.org/10.1038/sj.onc.1207830
http://dx.doi.org/10.1002/ijc.21824
http://dx.doi.org/10.1002/jgm.1036
http://dx.doi.org/10.1016/j.ejca.2009.06.024
http://dx.doi.org/10.1016/j.biochi.2011.06.031
http://dx.doi.org/10.1182/blood-2008-10-182758
http://dx.doi.org/10.1097/CMR.0b013e328364c0ed
http://dx.doi.org/10.1097/CMR.0b013e328364c0ed
http://dx.doi.org/10.1158/0008-5472.CAN-10-3184
http://dx.doi.org/10.1002/ijc.28865
http://dx.doi.org/10.1002/cncr.24597
http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Héninger et al. Epigenetic mechanisms and immunotherapy

60. Atadja P. Development of the pan-DAC inhibitor panobinostat (LBH589):
successes and challenges. Cancer Lett (2009) 280:233–41. doi:10.1016/j.canlet.
2009.02.019

61. Plumb JA, Finn PW, Williams RJ, Bandara MJ, Romero MR, Watkins CJ,
et al. Pharmacodynamic response and inhibition of growth of human tumor
xenografts by the novel histone deacetylase inhibitor PXD101. Mol Cancer Ther
(2003) 2:721–8.

62. Buggy JJ, Cao ZA, Bass KE, Verner E, Balasubramanian S, Liu L, et al. CRA-
024781: a novel synthetic inhibitor of histone deacetylase enzymes with anti-
tumor activity in vitro and in vivo. Mol Cancer Ther (2006) 5:1309–17.
doi:10.1158/1535-7163.MCT-05-0442

63. Leoni F, Fossati G, Lewis EC, Lee JK, Porro G, Pagani P, et al. The his-
tone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory
cytokines in vitro and systemic inflammation in vivo. Mol Med (2005) 11:1–15.
doi:10.2119/2006-00005.Dinarello

64. Mandl-Weber S, Meinel FG, Jankowsky R, Oduncu F, Schmidmaier R, Bau-
mann P. The novel inhibitor of histone deacetylase resminostat (RAS2410)
inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells.
Br J Haematol (2010) 149:518–28. doi:10.1111/j.1365-2141.2010.08124.x

65. Arts J, King P, Marien A, Floren W, Belien A, Janssen L, et al. JNJ-26481585,
a novel “second-generation” oral histone deacetylase inhibitor, shows broad-
spectrum preclinical antitumoral activity. Clin Cancer Res (2009) 15:6841–51.
doi:10.1158/1078-0432.CCR-09-0547

66. Novotny-Diermayr V, Sangthongpitag K, Hu CY, Wu X, Sausgruber N, Yeo P,
et al. SB939, a novel potent and orally active histone deacetylase inhibitor with
high tumor exposure and efficacy in mouse models of colorectal cancer. Mol
Cancer Ther (2010) 9:642–52. doi:10.1158/1535-7163.MCT-09-0689

67. Catley L, Weisberg E, Tai YT, Atadja P, Remiszewski S, Hideshima T, et al. NVP-
LAQ824 is a potent novel histone deacetylase inhibitor with significant activ-
ity against multiple myeloma. Blood (2003) 102:2615–22. doi:10.1182/blood-
2003-01-0233

68. Butler LM, Webb Y, Agus DB, Higgins B, Tolentino TR, Kutko MC, et al. Inhi-
bition of transformed cell growth and induction of cellular differentiation
by pyroxamide, an inhibitor of histone deacetylase. Clin Cancer Res (2001)
7:962–70.

69. Moffat D, Patel S, Day F, Belfield A, Donald A, Rowlands M, et al. Discov-
ery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicyclo[3.1.0]hex-3-yl)-
N-hydroxypyrim idine-5-carboxamide (CHR-3996), a class I selective orally
active histone deacetylase inhibitor. J Med Chem (2010) 53:8663–78. doi:10.
1021/jm101177s

70. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase
inhibitors. Nat Rev Drug Discov (2006) 5:769–84. doi:10.1038/nrd2133

71. Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical
probes for the role of histone acetylation in chromatin structure and function.
Bioessays (1995) 17:423–30. doi:10.1002/bies.950170510

72. Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S. Oxamflatin is a novel
antitumor compound that inhibits mammalian histone deacetylase. Oncogene
(1999) 18:2461–70. doi:10.1038/sj.onc.1202564

73. Duong V, Bret C, Altucci L, Mai A, Duraffourd C, Loubersac J, et al. Specific
activity of class II histone deacetylases in human breast cancer cells. Mol Cancer
Res (2008) 6:1908–19. doi:10.1158/1541-7786.MCR-08-0299

74. Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone
deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed
cells to anticancer agents. Proc Natl Acad Sci U S A (2010) 107:20003–8.
doi:10.1073/pnas.1013754107

75. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel
histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis
in T-cell lymphomas. Leukemia (2008) 22:1026–34. doi:10.1038/leu.2008.9

76. Takai N, Ueda T, Nishida M, Nasu K, Narahara H. Anticancer activity of MS-
275, a novel histone deacetylase inhibitor, against human endometrial cancer
cells. Anticancer Res (2006) 26:939–45.

77. Kraker AJ, Mizzen CA, Hartl BG, Miin J, Allis CD, Merriman RL. Modulation
of histone acetylation by [4-(acetylamino)-N-(2-amino-phenyl) benzamide]
in HCT-8 colon carcinoma. Mol Cancer Ther (2003) 2:401–8.

78. Fournel M, Bonfils C, Hou Y, Yan PT, Trachy-Bourget MC, Kalita A, et al.
MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad
spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther (2008)
7:759–68. doi:10.1158/1535-7163.MCT-07-2026

79. Ning ZQ, Li ZB, Newman MJ, Shan S, Wang XH, Pan DS, et al. Chi-
damide (CS055/HBI-8000): a new histone deacetylase inhibitor of the ben-
zamide class with antitumor activity and the ability to enhance immune
cell-mediated tumor cell cytotoxicity. Cancer Chemother Pharmacol (2012)
69:901–9. doi:10.1007/s00280-011-1766-x

80. Savickiene J, Borutinskaite VV, Treigyte G, Magnusson KE, Navakauskiene R.
The novel histone deacetylase inhibitor BML-210 exerts growth inhibitory,
proapoptotic and differentiation stimulating effects on the human leukemia
cell lines. Eur J Pharmacol (2006) 549:9–18. doi:10.1016/j.ejphar.2006.08.010

81. Yeung A, Bhargava RK, Ahn R, Bahna S, Kang NH, Lacoul A, et al. HDAC
inhibitor M344 suppresses MCF-7 breast cancer cell proliferation. Biomed
Pharmacother (2012) 66:232–6. doi:10.1016/j.biopha.2011.06.007

82. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, et al. Val-
proic acid defines a novel class of HDAC inhibitors inducing differentiation of
transformed cells. EMBO J (2001) 20:6969–78. doi:10.1093/emboj/20.24.6969

83. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr (2003)
133:2485S–93S.

84. Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation
in cultured cells. Cell (1978) 14:105–13. doi:10.1016/0092-8674(78)90305-7

85. Ueda H, Nakajima H, Hori Y, Fujita T, Nishimura M, Goto T, et al. FR901228,
a novel antitumor bicyclic depsipeptide produced by Chromobacterium vio-
laceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical
and biological properties, and antitumor activity. J Antibiot (Tokyo) (1994)
47:301–10. doi:10.7164/antibiotics.47.301

86. Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an anti-
tumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone
deacetylase. J Biol Chem (1993) 268:22429–35.

87. Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, et al. Apicidin, a his-
tone deacetylase inhibitor, inhibits proliferation of tumor cells via induction
of p21WAF1/Cip1 and gelsolin. Cancer Res (2000) 60:6068–74.

88. Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer GN,
et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates
expansion of hematopoietic progenitor cells with enhanced bone marrow hom-
ing and engraftment. Exp Hematol (2012) 40(342–355):e341. doi:10.1016/j.
exphem.2011.12.005

89. Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identifica-
tion of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A (2001)
98:15113–8. doi:10.1073/pnas.261574398

90. Napper AD, Hixon J, Mcdonagh T, Keavey K, Pons JF, Barker J, et al. Discovery
of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med
Chem (2005) 48:8045–54. doi:10.1021/jm050522v

91. Olaharski AJ, Rine J, Marshall BL, Babiarz J, Zhang L, Verdin E, et al. The fla-
voring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin
deacetylases. PLoS Genet (2005) 1:e77. doi:10.1371/journal.pgen.0010077

92. McCarthy AR, Sachweh MC, Higgins M, Campbell J, Drummond CJ, Van
Leeuwen IM, et al. Tenovin-D3, a novel small-molecule inhibitor of sir-
tuin SirT2, increases p21 (CDKN1A) expression in a p53-independent
manner. Mol Cancer Ther (2013) 12:352–60. doi:10.1158/1535-7163.MCT-12-
0900

93. Rotili D, Tarantino D, Nebbioso A, Paolini C, Huidobro C, Lara E, et al. Discov-
ery of salermide-related sirtuin inhibitors: binding mode studies and antipro-
liferative effects in cancer cells including cancer stem cells. J Med Chem (2012)
55:10937–47. doi:10.1021/jm3011614

94. Hoffmann G, Breitenbucher F, Schuler M, Ehrenhofer-Murray AE. A novel
sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-
small cell lung cancer. J Biol Chem (2014) 289:5208–16. doi:10.1074/jbc.M113.
487736

95. Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, et al. Antitu-
mor activity of a small-molecule inhibitor of human silent information regu-
lator 2 enzymes. Cancer Res (2006) 66:4368–77. doi:10.1158/0008-5472.CAN-
05-3617

96. Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification
of a class of small molecule inhibitors of the sirtuin family of NAD-dependent
deacetylases by phenotypic screening. J Biol Chem (2001) 276:38837–43.
doi:10.1074/jbc.M106779200

97. Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML,
et al. Salermide, a sirtuin inhibitor with a strong cancer-specific proapoptotic
effect. Oncogene (2009) 28:781–91. doi:10.1038/onc.2008.436

www.frontiersin.org February 2015 | Volume 6 | Article 29 | 11

http://dx.doi.org/10.1016/j.canlet.2009.02.019
http://dx.doi.org/10.1016/j.canlet.2009.02.019
http://dx.doi.org/10.1158/1535-7163.MCT-05-0442
http://dx.doi.org/10.2119/2006-00005.Dinarello
http://dx.doi.org/10.1111/j.1365-2141.2010.08124.x
http://dx.doi.org/10.1158/1078-0432.CCR-09-0547
http://dx.doi.org/10.1158/1535-7163.MCT-09-0689
http://dx.doi.org/10.1182/blood-2003-01-0233
http://dx.doi.org/10.1182/blood-2003-01-0233
http://dx.doi.org/10.1021/jm101177s
http://dx.doi.org/10.1021/jm101177s
http://dx.doi.org/10.1038/nrd2133
http://dx.doi.org/10.1002/bies.950170510
http://dx.doi.org/10.1038/sj.onc.1202564
http://dx.doi.org/10.1158/1541-7786.MCR-08-0299
http://dx.doi.org/10.1073/pnas.1013754107
http://dx.doi.org/10.1038/leu.2008.9
http://dx.doi.org/10.1158/1535-7163.MCT-07-2026
http://dx.doi.org/10.1007/s00280-011-1766-x
http://dx.doi.org/10.1016/j.ejphar.2006.08.010
http://dx.doi.org/10.1016/j.biopha.2011.06.007
http://dx.doi.org/10.1093/emboj/20.24.6969
http://dx.doi.org/10.1016/0092-8674(78)90305-7
http://dx.doi.org/10.7164/antibiotics.47.301
http://dx.doi.org/10.1016/j.exphem.2011.12.005
http://dx.doi.org/10.1016/j.exphem.2011.12.005
http://dx.doi.org/10.1073/pnas.261574398
http://dx.doi.org/10.1021/jm050522v
http://dx.doi.org/10.1371/journal.pgen.0010077
http://dx.doi.org/10.1158/1535-7163.MCT-12-0900
http://dx.doi.org/10.1158/1535-7163.MCT-12-0900
http://dx.doi.org/10.1021/jm3011614
http://dx.doi.org/10.1074/jbc.M113.487736
http://dx.doi.org/10.1074/jbc.M113.487736
http://dx.doi.org/10.1158/0008-5472.CAN-05-3617
http://dx.doi.org/10.1158/0008-5472.CAN-05-3617
http://dx.doi.org/10.1074/jbc.M106779200
http://dx.doi.org/10.1038/onc.2008.436
http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Héninger et al. Epigenetic mechanisms and immunotherapy

98. Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, et al. Discov-
ery, in vivo activity, and mechanism of action of a small-molecule p53 activator.
Cancer Cell (2008) 13:454–63. doi:10.1016/j.ccr.2008.03.004

99. Lobera M, Madauss KP, Pohlhaus DT, Wright QG, Trocha M, Schmidt DR,
et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-
binding group. Nat Chem Biol (2013) 9:319–25. doi:10.1038/nchembio.1223

100. Kim DH, Shin J, Kwon HJ. Psammaplin A is a natural prodrug that inhibits class
I histone deacetylase. Exp Mol Med (2007) 39:47–55. doi:10.1038/emm.2007.6

101. Bergman JA,Woan K, Perez-Villarroel P,Villagra A, Sotomayor EM, Kozikowski
AP. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers
inhibit melanoma cell growth. J Med Chem (2012) 55:9891–9. doi:10.1021/
jm301098e

102. Wells CE, Bhaskara S, Stengel KR, Zhao Y, Sirbu B, Chagot B, et al. Inhibition of
histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma.
PLoS One (2013) 8:e68915. doi:10.1371/journal.pone.0068915

103. Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-
275 promotes differentiation or apoptosis in human leukemia cells through
a process regulated by generation of reactive oxygen species and induction of
p21CIP1/WAF1 1. Cancer Res (2003) 63:3637–45.

104. Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagosklonny MV,
et al. P21-dependent g(1)arrest with downregulation of cyclin D1 and upreg-
ulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer
(2000) 83:817–25. doi:10.1054/bjoc.2000.1327

105. Wang J, Kim TH, Ahn MY, Lee J, Jung JH, Choi WS, et al. Sirtinol, a class III
HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human
breast cancer cells. Int J Oncol (2012) 41:1101–9. doi:10.3892/ijo.2012.1534

106. Quagliana JM, O’bryan RM, Baker L, Gottlieb J, Morrison FS, Eyre HJ, et al.
Phase II study of 5-azacytidine in solid tumors. Cancer Treat Rep (1977)
61:51–4.

107. Reed MD, Tellez CS, Grimes MJ, Picchi MA, Tessema M, Cheng YS, et al.
Aerosolised 5-azacytidine suppresses tumour growth and reprogrammes
the epigenome in an orthotopic lung cancer model. Br J Cancer (2013)
109:1775–81. doi:10.1038/bjc.2013.575

108. Naldi I, Taranta M, Gherardini L, Pelosi G, Viglione F, Grimaldi S, et al. Novel
epigenetic target therapy for prostate cancer: a preclinical study. PLoS One
(2014) 9:e98101. doi:10.1371/journal.pone.0098101

109. Scandura JM, Roboz GJ, Moh M, Morawa E, Brenet F, Bose JR, et al. Phase
1 study of epigenetic priming with decitabine prior to standard induction
chemotherapy for patients with AML. Blood (2011) 118:1472–80. doi:10.1182/
blood-2010-11-320093

110. Singal R, Ramachandran K, Gordian E, Quintero C, Zhao W, Reis IM. Phase
I/II study of azacitidine, docetaxel, and prednisone in patients with metasta-
tic castration-resistant prostate cancer previously treated with docetaxel-based
therapy. Clin Genitourin Cancer (2015) 13(1):22–31. doi:10.1016/j.clgc.2014.
07.008

111. Candelaria M, Gallardo-Rincon D, Arce C, Cetina L, Aguilar-Ponce JL, Arrieta
O, et al. A phase II study of epigenetic therapy with hydralazine and magnesium
valproate to overcome chemotherapy resistance in refractory solid tumors. Ann
Oncol (2007) 18:1529–38. doi:10.1093/annonc/mdm204

112. Xia C, Leon-Ferre R, Laux D, Deutsch J, Smith BJ, Frees M, et al. Treatment of
resistant metastatic melanoma using sequential epigenetic therapy (decitabine
and panobinostat) combined with chemotherapy (temozolomide). Cancer
Chemother Pharmacol (2014) 74:691–7. doi:10.1007/s00280-014-2501-1

113. Arce C, Perez-Plasencia C, Gonzalez-Fierro A, De La Cruz-Hernandez E,
Revilla-Vazquez A, Chavez-Blanco A, et al. A proof-of-principle study of epige-
netic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally
advanced breast cancer. PLoS One (2006) 1:e98. doi:10.1371/journal.pone.
0000098

114. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and
cancer. Nat Rev Cancer (2012) 12:465–77. doi:10.1038/nrc3256

115. Gross L. The importance of dosage in the intradermal immunization against
transplantable neoplasms. Cancer Res (1943) 3:770–8.

116. Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells
of the human thymus express a highly diverse selection of tissue-specific
genes colocalized in chromosomal clusters. J Exp Med (2004) 199:155–66.
doi:10.1084/jem.20031677

117. Huijbers IJ, Soudja SM, Uyttenhove C, Buferne M, Inderberg-Suso EM, Colau
D, et al. Minimal tolerance to a tumor antigen encoded by a cancer-germline
gene. J Immunol (2012) 188:111–21. doi:10.4049/jimmunol.1002612

118. Hofmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, Chua R, et al.
Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci U S
A (2008) 105:20422–7. doi:10.1073/pnas.0810777105

119. Woloszynska-Read A, Mhawech-Fauceglia P, Yu J, Odunsi K, Karpf AR.
Intertumor and intratumor NY-ESO-1 expression heterogeneity is associ-
ated with promoter-specific and global DNA methylation status in ovarian
cancer. Clin Cancer Res (2008) 14:3283–90. doi:10.1158/1078-0432.CCR-07-
5279

120. Kalejs M, Erenpreisa J. Cancer/testis antigens and gametogenesis: a review and
“brain-storming” session. Cancer Cell Int (2005) 5:4. doi:10.1186/1475-2867-
5-4

121. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis anti-
gens, gametogenesis and cancer. Nat Rev Cancer (2005) 5:615–25. doi:10.1038/
nrc1669

122. Whitehurst AW. Cause and consequence of cancer/testis antigen activation in
cancer. Annu Rev Pharmacol Toxicol (2014) 54:251–72. doi:10.1146/annurev-
pharmtox-011112-140326

123. Suyama T, Shiraishi T, Zeng Y, Yu W, Parekh N, Vessella RL, et al. Expression of
cancer/testis antigens in prostate cancer is associated with disease progression.
Prostate (2010) 70:1778–87. doi:10.1002/pros.21214

124. Smith HA, Cronk RJ, Lang JM, Mcneel DG. Expression and immunothera-
peutic targeting of the SSX family of cancer-testis antigens in prostate cancer.
Cancer Res (2011) 71:6785–95. doi:10.1158/0008-5472.CAN-11-2127

125. Freitas M, Malheiros S, Stavale JN, Biassi TP, Zamuner FT, De Souza Begnami
M, et al. Expression of cancer/testis antigens is correlated with improved sur-
vival in glioblastoma. Oncotarget (2013) 4:636–46.

126. Dubovsky JA, McNeel DG. Inducible expression of a prostate cancer-testis anti-
gen, SSX-2, following treatment with a DNA methylation inhibitor. Prostate
(2007) 67:1781–90. doi:10.1002/pros.20665

127. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van Den
Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lympho-
cytes on a human melanoma. Science (1991) 254:1643–7. doi:10.1126/science.
1840703

128. Boon T, Cerottini JC, Van Den Eynde B, Van Der Bruggen P, Van Pel A. Tumor
antigens recognized by T lymphocytes. Annu Rev Immunol (1994) 12:337–65.
doi:10.1146/annurev.iy.12.040194.002005

129. Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N, et al. Expres-
sion of the MAGE-1 tumor antigen is up-regulated by the demethylating agent
5-aza-2′-deoxycytidine. Cancer Res (1994) 54:1766–71.

130. Abate-Daga D, Speiser DE, Chinnasamy N, Zheng Z, Xu H, Feldman SA, et al.
Development of a T cell receptor targeting an HLA-A*0201 restricted epitope
from the cancer-testis antigen SSX2 for adoptive immunotherapy of cancer.
PLoS One (2014) 9:e93321. doi:10.1371/journal.pone.0093321

131. Karpf AR, Jones DA. Reactivating the expression of methylation silenced
genes in human cancer. Oncogene (2002) 21:5496–503. doi:10.1038/sj.onc.
1205602

132. De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T. The acti-
vation of human gene MAGE-1 in tumor cells is correlated with genome-wide
demethylation. Proc Natl Acad Sci U S A (1996) 93:7149–53. doi:10.1073/pnas.
93.14.7149

133. Yu J, Ni M, Xu J, Zhang H, Gao B, Gu J, et al. Methylation profiling of twenty
promoter-CpG islands of genes which may contribute to hepatocellular car-
cinogenesis. BMC Cancer (2002) 2:29. doi:10.1186/1471-2407-2-29

134. Yu J, Zhang H, Gu J, Lin S, Li J, Lu W, et al. Methylation profiles of thirty
four promoter-CpG islands and concordant methylation behaviours of six-
teen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer
(2004) 4:65. doi:10.1186/1471-2407-4-65

135. James SR, Link PA, Karpf AR. Epigenetic regulation of X-linked can-
cer/germline antigen genes by DNMT1 and DNMT3b. Oncogene (2006)
25:6975–85. doi:10.1038/sj.onc.1209678

136. Rao M, Chinnasamy N, Hong JA, Zhang Y, Zhang M, Xi S, et al.
Inhibition of histone lysine methylation enhances cancer-testis antigen
expression in lung cancer cells: implications for adoptive immunotherapy
of cancer. Cancer Res (2011) 71:4192–204. doi:10.1158/0008-5472.CAN-10-
2442

137. Loriot A, De Plaen E, Boon T, De Smet C. Transient down-regulation
of DNMT1 methyltransferase leads to activation and stable hypomethyla-
tion of MAGE-A1 in melanoma cells. J Biol Chem (2006) 281:10118–26.
doi:10.1074/jbc.M510469200

Frontiers in Immunology | Tumor Immunity February 2015 | Volume 6 | Article 29 | 12

http://dx.doi.org/10.1016/j.ccr.2008.03.004
http://dx.doi.org/10.1038/nchembio.1223
http://dx.doi.org/10.1038/emm.2007.6
http://dx.doi.org/10.1021/jm301098e
http://dx.doi.org/10.1021/jm301098e
http://dx.doi.org/10.1371/journal.pone.0068915
http://dx.doi.org/10.1054/bjoc.2000.1327
http://dx.doi.org/10.3892/ijo.2012.1534
http://dx.doi.org/10.1038/bjc.2013.575
http://dx.doi.org/10.1371/journal.pone.0098101
http://dx.doi.org/10.1182/blood-2010-11-320093
http://dx.doi.org/10.1182/blood-2010-11-320093
http://dx.doi.org/10.1016/j.clgc.2014.07.008
http://dx.doi.org/10.1016/j.clgc.2014.07.008
http://dx.doi.org/10.1093/annonc/mdm204
http://dx.doi.org/10.1007/s00280-014-2501-1
http://dx.doi.org/10.1371/journal.pone.0000098
http://dx.doi.org/10.1371/journal.pone.0000098
http://dx.doi.org/10.1038/nrc3256
http://dx.doi.org/10.1084/jem.20031677
http://dx.doi.org/10.4049/jimmunol.1002612
http://dx.doi.org/10.1073/pnas.0810777105
http://dx.doi.org/10.1158/1078-0432.CCR-07-5279
http://dx.doi.org/10.1158/1078-0432.CCR-07-5279
http://dx.doi.org/10.1186/1475-2867-5-4
http://dx.doi.org/10.1186/1475-2867-5-4
http://dx.doi.org/10.1038/nrc1669
http://dx.doi.org/10.1038/nrc1669
http://dx.doi.org/10.1146/annurev-pharmtox-011112-140326
http://dx.doi.org/10.1146/annurev-pharmtox-011112-140326
http://dx.doi.org/10.1002/pros.21214
http://dx.doi.org/10.1158/0008-5472.CAN-11-2127
http://dx.doi.org/10.1002/pros.20665
http://dx.doi.org/10.1126/science.1840703
http://dx.doi.org/10.1126/science.1840703
http://dx.doi.org/10.1146/annurev.iy.12.040194.002005
http://dx.doi.org/10.1371/journal.pone.0093321
http://dx.doi.org/10.1038/sj.onc.1205602
http://dx.doi.org/10.1038/sj.onc.1205602
http://dx.doi.org/10.1073/pnas.93.14.7149
http://dx.doi.org/10.1073/pnas.93.14.7149
http://dx.doi.org/10.1186/1471-2407-2-29
http://dx.doi.org/10.1186/1471-2407-4-65
http://dx.doi.org/10.1038/sj.onc.1209678
http://dx.doi.org/10.1158/0008-5472.CAN-10-2442
http://dx.doi.org/10.1158/0008-5472.CAN-10-2442
http://dx.doi.org/10.1074/jbc.M510469200
http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Héninger et al. Epigenetic mechanisms and immunotherapy

138. Natsume A, Wakabayashi T, Tsujimura K, Shimato S, Ito M, Kuzushima K,
et al. The DNA demethylating agent 5-aza-2′-deoxycytidine activates NY-ESO-
1 antigenicity in orthotopic human glioma. Int J Cancer (2008) 122:2542–53.
doi:10.1002/ijc.23407

139. Almstedt M, Blagitko-Dorfs N, Duque-Afonso J, Karbach J, Pfeifer D, Jager E,
et al. The DNA demethylating agent 5-aza-2′-deoxycytidine induces expression
of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leuk
Res (2010) 34:899–905. doi:10.1016/j.leukres.2010.02.004

140. Li H, Chiappinelli KB, Guzzetta AA, Easwaran H, Yen RW, Vatapalli R, et al.
Immune regulation by low doses of the DNA methyltransferase inhibitor 5-
azacitidine in common human epithelial cancers. Oncotarget (2014) 5:587–98.

141. Weiser TS, Guo ZS, Ohnmacht GA, Parkhurst ML, Tong-On P, Marincola
FM, et al. Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment
induces apoptosis preferentially in cancer cells and facilitates their recogni-
tion by cytolytic T lymphocytes specific for NY-ESO-1. J Immunother (2001)
24:151–61. doi:10.1097/00002371-200103000-00010

142. Weiser TS, Ohnmacht GA, Guo ZS, Fischette MR, Chen GA, Hong JA, et al.
Induction of MAGE-3 expression in lung and esophageal cancer cells. Ann
Thorac Surg (2001) 71:295–301. doi:10.1016/S0003-4975(00)02421-8

143. Toor AA, Payne KK, Chung HM, Sabo RT, Hazlett AF, Kmieciak M, et al. Epige-
netic induction of adaptive immune response in multiple myeloma: sequential
azacitidine and lenalidomide generate cancer testis antigen-specific cellular
immunity. Br J Haematol (2012) 158:700–11. doi:10.1111/j.1365-2141.2012.
09225.x

144. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng
Z, et al. Cancer regression and neurological toxicity following anti-MAGE-
A3 TCR gene therapy. J Immunother (2013) 36:133–51. doi:10.1097/CJI.
0b013e3182829903

145. Kortenhorst MS,Wissing MD, Rodriguez R, Kachhap SK, Jans JJ,Van Der Groep
P, et al. Analysis of the genomic response of human prostate cancer cells to his-
tone deacetylase inhibitors. Epigenetics (2013) 8:907–20. doi:10.4161/epi.25574

146. Watson NF, Ramage JM, Madjd Z, Spendlove I, Ellis IO, Scholefield JH, et al.
Immunosurveillance is active in colorectal cancer as downregulation but not
complete loss of MHC class I expression correlates with a poor prognosis. Int
J Cancer (2006) 118:6–10. doi:10.1002/ijc.21303

147. Cathro HP, Smolkin ME, Theodorescu D, Jo VY, Ferrone S, Frierson HF Jr. Rela-
tionship between HLA class I antigen processing machinery component expres-
sion and the clinicopathologic characteristics of bladder carcinomas. Cancer
Immunol Immunother (2010) 59:465–72. doi:10.1007/s00262-009-0765-9

148. Seliger B, Stoehr R, Handke D, Mueller A, Ferrone S, Wullich B, et al. Associ-
ation of HLA class I antigen abnormalities with disease progression and early
recurrence in prostate cancer. Cancer Immunol Immunother (2010) 59:529–40.
doi:10.1007/s00262-009-0769-5

149. Ayshamgul H, Ma H, Ilyar S, Zhang LW, Abulizi A. Association of defective
HLA-I expression with antigen processing machinery and their association
with clinicopathological characteristics in Kazak patients with esophageal can-
cer. Chin Med J (Engl) (2011) 124:341–6.

150. Leone P, Shin EC, Perosa F,Vacca A, Dammacco F, Racanelli V. MHC class I anti-
gen processing and presenting machinery: organization, function, and defects
in tumor cells. J Natl Cancer Inst (2013) 105:1172–87. doi:10.1093/jnci/djt184

151. Procko E, Gaudet R. Antigen processing and presentation: TAPping into ABC
transporters. Curr Opin Immunol (2009) 21:84–91. doi:10.1016/j.coi.2009.02.
003

152. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV,
et al. Combined genetic inactivation of beta2-microglobulin and CD58 reveals
frequent escape from immune recognition in diffuse large B cell lymphoma.
Cancer Cell (2011) 20:728–40. doi:10.1016/j.ccr.2011.11.006

153. Wrangle J, Wang W, Koch A, Easwaran H, Mohammad HP, Vendetti F, et al.
Alterations of immune response of non-small cell lung cancer with azacytidine.
Oncotarget (2013) 4:2067–79.

154. Setiadi AF, David MD, Seipp RP, Hartikainen JA, Gopaul R, Jefferies WA. Epi-
genetic control of the immune escape mechanisms in malignant carcinomas.
Mol Cell Biol (2007) 27:7886–94. doi:10.1128/MCB.01547-07

155. Simova J, Pollakova V, Indrova M, Mikyskova R, Bieblova J, Stepanek I, et al.
Immunotherapy augments the effect of 5-azacytidine on HPV16-associated
tumours with different MHC class I-expression status. Br J Cancer (2011)
105:1533–41. doi:10.1038/bjc.2011.428

156. Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, et al.
Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell

immunity. J Intern Med (2012) 271:183–92. doi:10.1111/j.1365-2796.2011.
02496.x

157. Dilek N, Poirier N, Hulin P, Coulon F, Mary C, Ville S, et al. Targeting CD28,
CTLA-4 and PD-L1 costimulation differentially controls immune synapses
and function of human regulatory and conventional T-cells. PLoS One (2013)
8:e83139. doi:10.1371/journal.pone.0083139

158. Wang LX, Mei ZY, Zhou JH, Yao YS, Li YH, Xu YH, et al. Low dose
decitabine treatment induces CD80 expression in cancer cells and stimulates
tumor specific cytotoxic T lymphocyte responses. PLoS One (2013) 8:e62924.
doi:10.1371/journal.pone.0062924

159. Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, et al. Eradication of
metastatic mouse cancers resistant to immune checkpoint blockade by sup-
pression of myeloid-derived cells. Proc Natl Acad Sci U S A (2014) 111:11774–9.
doi:10.1073/pnas.1410626111

160. Yang H, Bueso-Ramos C, Dinardo C, Estecio MR, Davanlou M, Geng QR,
et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syn-
dromes is enhanced by treatment with hypomethylating agents. Leukemia
(2014) 28:1280–8. doi:10.1038/leu.2013.355

161. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, Mcdermott DF,
et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
N Engl J Med (2012) 366:2443–54. doi:10.1056/NEJMoa1200690

162. Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, et al.
Durable cancer regression off-treatment and effective reinduction therapy with
an anti-PD-1 antibody. Clin Cancer Res (2013) 19:462–8. doi:10.1158/1078-
0432.CCR-12-2625

163. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of
PD-1, PD-1 ligands, and other features of the tumor immune microenviron-
ment with response to anti-PD-1 therapy. Clin Cancer Res (2014) 20:5064–74.
doi:10.1158/1078-0432.CCR-13-3271

164. West AC, Mattarollo SR, Shortt J, Cluse LA, Christiansen AJ, Smyth MJ, et al.
An intact immune system is required for the anticancer activities of histone
deacetylase inhibitors. Cancer Res (2013) 73:7265–76. doi:10.1158/0008-5472.
CAN-13-0890

165. West AC, Smyth MJ, Johnstone RW. The anticancer effects of HDAC inhibitors
require the immune system. Oncoimmunology (2014) 3:e27414. doi:10.4161/
onci.27414

166. Kopp LM, Ray A, Denman CJ, Senyukov VS, Somanchi SS, Zhu S, et al.
Decitabine has a biphasic effect on natural killer cell viability, phenotype,
and function under proliferative conditions. Mol Immunol (2013) 54:296–301.
doi:10.1016/j.molimm.2012.12.012

167. Xiao W, Dong W, Zhang C, Saren G, Geng P, Zhao H, et al. Effects of the epi-
genetic drug MS-275 on the release and function of exosome-related immune
molecules in hepatocellular carcinoma cells. Eur J Med Res (2013) 18:61.
doi:10.1186/2047-783X-18-61

168. Lisiero DN, Soto H, Everson RG, Liau LM, Prins RM. The histone deacety-
lase inhibitor, LBH589, promotes the systemic cytokine and effector responses
of adoptively transferred CD8+ T cells. J Immunother Cancer (2014) 2:8.
doi:10.1186/2051-1426-2-8

169. Araki Y, Fann M, Wersto R, Weng NP. Histone acetylation facilitates
rapid and robust memory CD8 T cell response through differential
expression of effector molecules (eomesodermin and its targets: perforin and
granzyme B). J Immunol (2008) 180:8102–8. doi:10.4049/jimmunol.180.12.
8102

170. Agarwal P, Raghavan A, Nandiwada SL, Curtsinger JM, Bohjanen PR, Mueller
DL, et al. Gene regulation and chromatin remodeling by IL-12 and type I IFN
in programming for CD8 T cell effector function and memory. J Immunol
(2009) 183:1695–704. doi:10.4049/jimmunol.0900592

171. Lal G, Zhang N, Van Der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epige-
netic regulation of Foxp3 expression in regulatory T cells by DNA methylation.
J Immunol (2009) 182:259–73. doi:10.4049/jimmunol.182.1.259

172. Vo DD, Prins RM, Begley JL, Donahue TR, Morris LF, Bruhn KW, et al.
Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive
use of the histone deacetylase inhibitor LAQ824. Cancer Res (2009) 69:8693–9.
doi:10.1158/0008-5472.CAN-09-1456

173. Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM, et al. CD8+
Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin
Cancer Res (2007) 13:6947–58. doi:10.1158/1078-0432.CCR-07-0842

174. Yokokawa J, Cereda V, Remondo C, Gulley JL, Arlen PM, Schlom J, et al.
Enhanced functionality of CD4+CD25(high)FoxP3+ regulatory T cells in the

www.frontiersin.org February 2015 | Volume 6 | Article 29 | 13

http://dx.doi.org/10.1002/ijc.23407
http://dx.doi.org/10.1016/j.leukres.2010.02.004
http://dx.doi.org/10.1097/00002371-200103000-00010
http://dx.doi.org/10.1016/S0003-4975(00)02421-8
http://dx.doi.org/10.1111/j.1365-2141.2012.09225.x
http://dx.doi.org/10.1111/j.1365-2141.2012.09225.x
http://dx.doi.org/10.1097/CJI.0b013e3182829903
http://dx.doi.org/10.1097/CJI.0b013e3182829903
http://dx.doi.org/10.4161/epi.25574
http://dx.doi.org/10.1002/ijc.21303
http://dx.doi.org/10.1007/s00262-009-0765-9
http://dx.doi.org/10.1007/s00262-009-0769-5
http://dx.doi.org/10.1093/jnci/djt184
http://dx.doi.org/10.1016/j.coi.2009.02.003
http://dx.doi.org/10.1016/j.coi.2009.02.003
http://dx.doi.org/10.1016/j.ccr.2011.11.006
http://dx.doi.org/10.1128/MCB.01547-07
http://dx.doi.org/10.1038/bjc.2011.428
http://dx.doi.org/10.1111/j.1365-2796.2011.02496.x
http://dx.doi.org/10.1111/j.1365-2796.2011.02496.x
http://dx.doi.org/10.1371/journal.pone.0083139
http://dx.doi.org/10.1371/journal.pone.0062924
http://dx.doi.org/10.1073/pnas.1410626111
http://dx.doi.org/10.1038/leu.2013.355
http://dx.doi.org/10.1056/NEJMoa1200690
http://dx.doi.org/10.1158/1078-0432.CCR-12-2625
http://dx.doi.org/10.1158/1078-0432.CCR-12-2625
http://dx.doi.org/10.1158/1078-0432.CCR-13-3271
http://dx.doi.org/10.1158/0008-5472.CAN-13-0890
http://dx.doi.org/10.1158/0008-5472.CAN-13-0890
http://dx.doi.org/10.4161/onci.27414
http://dx.doi.org/10.4161/onci.27414
http://dx.doi.org/10.1016/j.molimm.2012.12.012
http://dx.doi.org/10.1186/2047-783X-18-61
http://dx.doi.org/10.1186/2051-1426-2-8
http://dx.doi.org/10.4049/jimmunol.180.12.8102
http://dx.doi.org/10.4049/jimmunol.180.12.8102
http://dx.doi.org/10.4049/jimmunol.0900592
http://dx.doi.org/10.4049/jimmunol.182.1.259
http://dx.doi.org/10.1158/0008-5472.CAN-09-1456
http://dx.doi.org/10.1158/1078-0432.CCR-07-0842
http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Héninger et al. Epigenetic mechanisms and immunotherapy

peripheral blood of patients with prostate cancer. Clin Cancer Res (2008)
14:1032–40. doi:10.1158/1078-0432.CCR-07-2056

175. Sonpavde G, Aparicio AM, Zhan F, North B, Delaune R, Garbo LE, et al. Azaci-
tidine favorably modulates PSA kinetics correlating with plasma DNA LINE-1
hypomethylation in men with chemonaïve castration-resistant prostate cancer.
Urol Oncol (2011) 29(6):682–9. doi:10.1016/j.urolonc.2009.09.015

176. Thibault A, Figg WD, Bergan RC, Lush RM, Myers CE, Tompkins A, et al. A
phase II study of 5-aza-2′-deoxycytidine (decitabine) in hormone independent
metastatic (D2) prostate cancer. Tumori (1998) 84:87–9.

177. Deborah B, Dana R, Rodney D, Walter MS, Glenn L, David CS, et al. Vorino-
stat in advanced prostate cancer patients progressing on prior chemotherapy
(National Cancer Institute Trial 6862). Cancer (2009) 115:5541–9. doi:10.1002/
cncr.24597

178. Edelstein LC, Micheva-Viteva S, Phelan BD, Dougherty JP. Short communi-
cation: activation of latent HIV type 1 gene expression by suberoylanilide
hydroxamic acid (SAHA), an HDAC inhibitor approved for use to treat
cutaneous T cell lymphoma. AIDS Res Hum Retroviruses (2009) 25:883–7.
doi:10.1089/aid.2008.0294

179. Ritchie D, Piekarz RL, Blombery P, Karai LJ, Pittaluga S, Jaffe ES, et al. Reactiva-
tion of DNA viruses in association with histone deacetylase inhibitor therapy

a case series report. Haematologica (2009) 94:1618–22. doi:10.3324/haematol.
2009.008607

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 02 December 2014; accepted: 14 January 2015; published online: 04 February
2015.
Citation: Héninger E, Krueger TEG and Lang JM (2015) Augmenting antitumor
immune responses with epigenetic modifying agents. Front. Immunol. 6:29. doi:
10.3389/fimmu.2015.00029
This article was submitted to Tumor Immunity, a section of the journal Frontiers in
Immunology.
Copyright © 2015 Héninger, Krueger and Lang . This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Immunology | Tumor Immunity February 2015 | Volume 6 | Article 29 | 14

http://dx.doi.org/10.1158/1078-0432.CCR-07-2056
http://dx.doi.org/10.1016/j.urolonc.2009.09.015
http://dx.doi.org/10.1002/cncr.24597
http://dx.doi.org/10.1002/cncr.24597
http://dx.doi.org/10.1089/aid.2008.0294
http://dx.doi.org/10.3324/haematol.2009.008607
http://dx.doi.org/10.3324/haematol.2009.008607
http://dx.doi.org/10.3389/fimmu.2015.00029
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive

	Augmenting antitumor immune responses with epigenetic modifying agents
	Introduction
	Introduction to Epigenetics
	Methylation and hypomethylating agents
	Histone acetylation and histone deacetylase inhibitors

	Epigenetic modifying agents in cancer therapy
	Epigenetics and antitumor immune responses
	Novel Tumor-Associated antigens
	Antigen processing and antigen presentation
	Epigenetics and adaptive immune responses
	Biomarkers for epigenetic therapies
	Conclusion
	References 




