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Since the identification of mouse dendritic cells (DC) in the early 70s, all attempts to con-
sistently classify the identified functional DC subpopulations according to their surface
molecule expression failed. In the absence of DC lineage markers, a great variety of non-
congruent surface molecules were used instead. Recent advances in the understanding of
the involvement of transcription factors in the differentiation of DC subpopulations, together
with the identification of a lineage marker for cross-presenting DC, have now allowed to
establish a consistent and unified DC classification in the mouse. We demonstrate in the
present article that all conventional DC in the mouse can be universally subdivided into
either XCR1+ (“cross-presenting”) DC or SIRPα+ DC, irrespective of their activation sta-
tus. This advancement will greatly facilitate future work on the biology of mouse DC. We
discuss this new classification in view of current DC classification systems in the mouse
and the human.

Keywords: dendritic cells, mouse, classification, XCR1, SIRPα, cross-presentation

OVERVIEW
Dendritic cells (DC) were discovered by Steinman et al. already
in the early 70s (1). Nevertheless, it was until recently difficult to
unequivocally distinguish them from other related cell types such
as monocytes or macrophages. As a result, a combination of sev-
eral markers had to be used to define DC in flow cytometry and
histology. For practical purposes, mouse conventional DC today
are identified in flow cytometry as cells, which express the inte-
grin CD11c and high levels of MHC II, but lack expression of
T-, B-, and plasmacytoid DC lineage markers, and also molecules
characteristic for monocytes and macrophages. In the absence of
(sub-) lineage markers, also DC subpopulations could not easily
be defined using surface molecules. This has led over time to the
use of a great variety of surface markers distinguishing supposedly
functionally distinct DC subpopulations and made it difficult to
directly compare results between laboratories. Further complexity
was brought about by the observation that DC with an apparently
similar function had different phenotypes in lymphoid tissues ver-
sus peripheral organs. As a consequence, the division of DC into
subpopulations remained somewhat arbitrary, making the experi-
mental results, including gene expression studies, less informative.
Being central to the understanding of DC biology, the ques-
tion how mouse conventional DC should be divided into subsets
remained a matter of intensive scientific debate to this very day.

Recently, we identified the first molecule restricted in its expres-
sion to mouse DC (2). Based on a variety of experimental systems,
we then could demonstrate that the chemokine receptor XCR1 is
a lineage marker for cross-presenting DC (3), a DC subpopulation

playing an important role in the induction of CD8+ T cell cyto-
toxicity (see below). The use of an antibody directed to XCR1
allowed for the first time the unequivocal identification and thus
a precise phenotyping of cross-presenting DC in various body
compartments of the mouse (3–6).

With the ability to define the cross-presenting DC population,
it became possible to ask the question whether the remaining DC
could also be defined by their surface characteristics. The use of
an extended panel of antibodies directed to DC surface molecules
indicated that all XCR1− DC were characterized by expression
of SIRPα/CD172a in the intestine (4). In view of these results,
together with the data presented here, we now propose a new clas-
sification based on the expression XCR1 and SIRPα, which can
be used to define DC subpopulations in all lymphoid and non-
lymphoid compartments of the mouse. We hope that this classifi-
cation will greatly facilitate the study of DC biology in the future.

This article describes the various steps, which have led to the
establishment of this new DC classification system, and discusses
the implications for the understanding of human DC subpop-
ulations. Gene expression profiles and functional aspects of DC
subsets [recently reviewed by Ref. (7–10)] are taken into account
only as far as they contribute to the classification of mouse DC.
Monocyte-derived inflammatory DC and plasmacytoid DC are
not considered here, since they represent different cell lineages.

HISTORICAL DC CLASSIFICATION SYSTEMS
Work of numerous groups has established that at least two major
conventional DC populations exist in the mouse. In the late
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90s, a subset of DC was identified in lymphoid tissues, which
expressed the CD8α homodimer on the cell surface (and lacked
CD8β and CD11b), and these DC were hence termed “CD8+ DC”
(11). A major step forward in the understanding of DC biology
was the demonstration that CD8+ DC excel in antigen “cross-
presentation”, a process in which antigen is shunted into the MHC
I pathway and presented to CD8+ T cells (12–14). Further studies
demonstrated that mouse CD8+ DC are specialized in the uptake
and proteolytic processing of stressed cells and the subsequent
presentation of the derived peptides to CD8+ T cells (15–17).
In general terms, antigen cross-presentation allows an efficient
induction of CD8 T cell cytotoxicity to antigens originating from
cell-invading pathogens or mutated (cancer) cells.

After identification of CD8α as a relevant subset marker on
around 20% of DC in the spleen, the remaining splenic DC were
classified as CD4+ DC (60%) and double-negative DC (DN DC,
20%) in C57BL/6 mice (18). When Edwards et al. (19) performed
microarray gene expression profiling of splenic DC populations in
the mouse, they confirmed the differing nature of CD8+ DC, but
noticed only relatively minor differences in the gene expression
profiles of CD4+ and DN DC, and thus concluded that these two
populations are phylogenetically related. Later work based on tar-
geting of antigen directly to splenic DC subsets has confirmed the
superior capacity of CD8+ (DEC-205+/CD205+) DC for antigen
cross-presentation and at the same time demonstrated a higher
efficiency of CD8− (33D1+/DCIR2+) DC in the presentation of
antigen to CD4+ T cells (20).

While the phenotypical and functional classification of splenic
DC made substantial progress, the understanding of DC subpop-
ulations in peripheral lymphoid tissues and organs lagged behind.
CD8α was detectable on resident DC in all lymphoid organs, but
absent on DC in certain peripheral tissues and on DC migrating
from the periphery to lymph nodes (LN) (21, 22). Since CD8α

was less useful in the periphery, a different classification system
was established by subdividing DC into CD103+ and CD103−

populations (22–25). Antigen cross-presentation was shown to be
restricted to CD103+ DC residing in the lung, the intestine, and
skin-draining LN (22, 24, 25), suggesting a functional relationship
to the CD8+ splenic DC. However, it soon was recognized that
the CD103+ DC population is not homogenous and therefore the
exact relationship between peripheral DC and lymphoid-resident
DC remained unresolved.

INVOLVEMENT OF TRANSCRIPTION FACTORS IN THE
DIFFERENTIATION OF DC
A major step forward was brought about by work on the involve-
ment of transcription factors (TF) in the differentiation of DC.
A series of studies demonstrated that development of CD8+

splenic DC and their peripheral counterparts critically depend
on the TF IRF-8 (also designated ICSBP), Id2, and Batf3 (26–
31). The most informative turned out to be the Batf3-KO mouse,
where only the splenic CD8+ DC, the lung and dermal CD103+

DC, and the intestinal CD103+ CD11b− DC were absent and
thus could be identified as developmentally related (only later it
became apparent that other small DC populations with a dif-
fering phenotype were also Batf3-dependent, see below). At the
same time, this animal model showed clear deficits in antigen

cross-presentation (29, 31). Together, this work strongly indicated
that the Batf3-dependent DC were the cross-presenting DC lineage
in the mouse.

IDENTIFICATION OF A LINEAGE MARKER FOR
CROSS-PRESENTING DC
When searching for the function of XCL1, a chemokine secreted
by activated CD8+ T cells and NK cells (32, 33), we found that
the corresponding receptor XCR1 is exclusively expressed by a
subset of DC. This observation represented the first instance of
a surface molecule being restricted to conventional DC in the
mouse. Analyzing a XCR1-lacZ-reporter mouse (a system which
provides limited signal intensity and suffers from high back-
ground in some extra-splenic tissues when using fluorescein-di-
β-d-galactopyranoside as substrate in flow cytometry), we found
XCR1 to be expressed by 70–90% of CD8+ DC and by up to 8% of
DN DC in the spleen. Histological analyses further indicated that
other lymphoid tissues and peripheral organs contained XCR1+

DC (2). Using the same XCR1-reporter mice and extending the
flow cytometry studies to DC in LN and several organs, Crozat
et al. (34) found XCR1 signals essentially limited to CD103+

CD11b− DC, allowing them to postulate that expression of XCR1
defines mouse lymphoid-tissue resident and migratory DC of the
“CD8α-type.”

Further understanding of XCR1-expressing DC became pos-
sible with the development of a mAb specific for murine XCR1,
which offered high-resolution flow cytometry and also allowed
sorting of XCR1+ DC for functional assays. These studies (3) con-
firmed earlier findings with the lacZ-reporter system in the spleen
(2) that expression of XCR1 and CD8 overlap, but are not congru-
ent. In the lung, the intestine, in skin-draining, and mesenteric LN,
CD103+ CD11b− DC were found to be essentially XCR1+. How-
ever, additional XCR1+ DC populations could also be identified
there and these were negative for CD103 or positive for CD11b
(3, 4). Thus, the expression pattern of XCR1 differed from the
“CD8+” and “CD103+ CD11b−” DC phenotypes associated with
antigen cross-presentation in the past.

In experiments directly aimed to define the correlation between
XCR1 expression and Batf3-dependence of DC, it became apparent
that all XCR1+ DC (irrespective of their CD8, CD103, or CD11b
expression status), were absent in Batf3-KO mice (3, 4). Congru-
ent with this observation, the 20% of splenic CD8+ DC, which
are negative for XCR1, were preserved in Batf3-KO animals (3);
these particular CD8+ XCR1− DC apparently represent a dis-
tinct DC population with a very different gene expression profile
(35). Together, the studies demonstrated for DC in all tissues an
excellent and unique correlation between XCR1 surface expression
and dependence on Batf3 [for data and discussion on the correla-
tion between XCR1 and surface molecules preferentially expressed
on Batf3-dependent DC such as CD8, CD205, Clec9A/DNGR-1,
Itga8, and CADM1 see in Ref. (5)].

These correlation studies were very striking, but did not deliver
direct information on the functional role of XCR1+ versus XCR1−

DC. Only when functional assays using soluble and cell-associated
antigen were performed with splenic (3) and intestinal DC (4, 6), it
became apparent that antigen cross-presentation is the domain of
XCR1+ DC, in particular with cell-associated antigen. Conversely,
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the CD8+ DC negative for XCR1 were found to be incapable of
antigen cross-presentation (3).

The perfect correlation between expression of XCR1, Batf3-
dependence, and the ability to cross-present (cell-associated) anti-
gen in various organ systems (3, 4, 6) allow to conclude that
XCR1 expression generally demarcates the Batf3-dependent cross-
presenting DC, as postulated (3). Thus, XCR1 can be regarded as
the lineage marker for cross-presenting DC in the mouse.

ALL DC CAN BE CLASSIFIED INTO XCR1+ VERSUS SIRPα+ DC
IRRESPECTIVE OF THEIR ACTIVATION STATE
Is there a surface molecule which would define the remaining, the
XCR1− DC population? To examine this question, we re-analyzed
all of our correlation studies, which were based on the use of a
panel of antibodies directed to DC surface molecules (among oth-
ers CD11b, CD171a/SIRPα, DCIR2), and the use of two reporter
mice (CD207, CX3CR1). In all of our analyses, the only molecule,

which showed a consistent and full anti-correlation with XCR1
was CD172a/SIRPα, indicating that this surface molecule could
be used to positively demarcate XCR1− DC (3, 4). Based on these
studies, we have proposed that XCR1 and SIRPα can be used to
classify intestinal DC and possibly all DC in the mouse (4, 36).

In order to test the general applicability of this new classifi-
cation system and to make the XCR1 expression studies directly
comparable, we have now isolated DC from a greater variety of
lymphoid and non-lymphoid organs and analyzed them in par-
allel. As can be seen in Figure 1, XCR1 and SIRPα were found to
be clearly anti-correlated in all organs tested. At the same time, all
DC present in these organs could be assigned to either population.
Thus, the anti-correlation between XCR1 and SIRPα can now be
demonstrated in a great variety of tissues.

All published data on the anti-correlation of XCR1 and SIRPα

have been obtained in steady-state animals only. It was there-
fore important to test DC also under inflammatory conditions,

FIGURE 1 | Expression of XCR1 and SIRPα on DC in various tissues at
steady state and in inflammation. Cells from different tissues of C57BL/6
mice (either untreated or 14 h after injection of 10 µg LPS i.v.) were isolated
after enzymatic digestion (except for the spleen), and DC from lamina
propria (LP), Peyer’s patches, and mesenteric LN were additionally enriched
by density gradient centrifugation as described before (3, 4). Cells from
brachial, axillary, and inguinal LN were pooled for the study of peripheral LN

DC. For flow cytometric analysis of XCR1 and SIRPα expression on DC,
gates were set on live CD90− CD19− CD317− CD11c+ MHC II+ cells for
thymus, spleen, peripheral and mediastinal LN, and on live CD45+ CD3−

B220− F4/80− CD11c+ MHC II+ cells for lung, Peyer’s patches, LP, and
mesenteric LN. DC from steady-state LN were separated based on their
MHC II expression levels into resident (MHC IIint) and migratory (MHC IIhigh)
populations.
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when many DC surface molecules are up or down regulated.
To this end, animals were injected with 10 µg LPS i.v. and DC
examined 14 h later. Under these conditions, SIRPα expression
remained rather stable, while XCR1 was slightly down regulated in
some organs, however without compromising the discrimination
of XCR1+ DC from SIRPα+ DC (Figure 1). Thus, the subdivi-
sion of conventional DC based on the expression of XCR1 and
SIRPα appears to be universally applicable. With the commer-
cial availability of an antibody directed to mouse (and rat) XCR1
(clone ZET) this classification can now be generally tested under
all possible conditions.

SIRPα, also abundantly expressed on macrophages, neutrophils
and some non-lymphoid tissues, has been implicated in the con-
trol of cell phagocytosis (37, 38). Cells expressing CD47, the ligand
for SIRPα, appear to be protected from engulfment by phago-
cytic cells (37). It is thus intriguing to note that both CD205 and
Clec9A/DNGR-1 on XCR1+ DC may regulate cell phagocytosis
(and antigen processing) in a positive way (39, 40), and SIRPα

on XCR1− DC in a negative fashion. This functional feature may
possibly contribute to the division of labor between the XCR1+

and SIRPα+ DC populations.
All available data (gene expression profile, toll-like receptor

expression pattern in particular), indicate that XCR1+ DC are
a homogenous DC lineage. Does this mean that all XCR1+ DC
function in the same way? This may not be the case. It is of interest
in this context that only CD8+ (i.e., XCR1+) splenic DC expressing
CD103 were capable to take up cells and to cross-present their anti-
gen to CD8+ T cells in a previous study (41). Only approximately
50–60% of splenic CD8+/XCR1+DC express CD103 under non-
inflammatory conditions (3, 41), and the situation appears similar
in resident mesenteric LN (4, 42). It is therefore quite possible
that XCR1+ DC are functionally heterogenous in terms of cross-
presentation, depending on their activation state, their anatomical
positioning, and the upregulation of other molecules in reaction
to environmental cues.

ARE SIRPα+ DC HOMOGENOUS IN THEIR ONTOGENY AND
FUNCTION?
This question is largely unresolved at present. Edwards et al. (19)
showed that CD4+ DC and DN DC, which now would be grouped
together as SIRPα+ DC, have a highly similar gene expression pro-
file, suggesting one uniform population. Nevertheless, the authors
found some genes to be quite specifically expressed in either
population. Other reports also point to a possible ontogenic or
functional subdivision of SIRPα+ DC. For example, only a small
fraction of SIRPα+ DC in the spleen express CD8 and differ in
their expression profile from the remaining DC populations (3,
35). Mice with a CD11c-cre driven deletion of the TF Notch2
showed a rather specific ablation of CD103+ CD11b+ DC in the
intestinal system (representing an ablation of approximately 50%
of SIRPα+ DC), and these DC were identified as an obligate source
of IL-23 in the defense to C. rodentium (43). In another study,
depletion of only CD301b+ DC in the CD103− (and thus most
likely SIRPα+) fraction of dermal DC resulted in a severe impair-
ment of skin Th2 immunity (44). More studies will be required
to make the results comparable and to answer the question on the
heterogeneity of SIRPα+ DC.

CAN THE SUBDIVISION OF DC INTO XCR1+ AND SIRPα+ DC
BE ALSO APPLIED IN THE HUMAN?
In the human, in vivo experiments on the function of DC subsets
are not possible, access to DC in various compartments is limited,
and the frequency of DC in the blood is very low. As a result,
data on human DC are rather scarce. At the gene expression level,
it was established that mouse CD8+ DC correspond to human
CD141+ (BDCA3+) DC, and mouse CD11b+ DC to human
CD1c+ (BDCA1+) DC (45), the two identified human DC pop-
ulations (46). Support for this correlation came from functional
studies, which demonstrated a superior capacity of CD141+ DC
for cross-presentation (47–49). Gene expression studies rely on
previous sorting of DC populations and thus depend on the use of
“correct” surface markers. Regarding these surface markers, how-
ever, human DC somewhat differ from mouse DC. XCR1 is exclu-
sively expressed on CD141+DC,but not on all of them. Analyses of
DC obtained from peripheral blood, thymus, and spleen demon-
strated that an average of 80% of CD141+ DC express XCR1 (own
unpublished data). At the same time, all of the CD141+DC express
Clec9A/DNGR-1, which in the human appears to be restricted to
conventional DC, as it is not found on plasmacytoid DC (40, 50,
51). Thus, in the human, expression of XCR1 and Clec9A/DNGR-
1 is not fully correlated (own unpublished data), as is the case with
conventional DC in the mouse. CADM1, another surface mole-
cule tightly associated with Batf3-dependent cross-presenting DC
in the mouse, gives a bright signal in the human and is perfectly
correlated with CD141 [(52), and own unpublished data]. Thus, it
is possible that cross-presenting DC in the human can be demar-
cated by the co-expression of CD141, Clec9A, and CADM1. This
assumption is further supported by the observation that SIRPα on
DC in various human organs is correlated with CD1c and fully
anti-correlated with CD141 (own unpublished data). Thus, on a
broad scale, it is quite clear that the human CD141+ DC con-
tain the cross-presenting DC population. Whether all of CD141+

DC can cross-present or whether this function is restricted to the
XCR1+ CD141+ DC remains to be determined. Further detailed
insight into this question will require gene expression and func-
tional studies comparing the majority of CD141+ DC expressing
XCR1 and the 20% fraction of CD141+ DC negative for XCR1.

CONCLUSION AND PERSPECTIVES
In summary, recent developments in the field allowed major
progress in the classification of mouse and human DC. Partic-
ularly in the mouse, where the subdivision of DC was notoriously
difficult, the use of a general DC classification scheme based on
the expression of XCR1 and SIRPα will make experimental results
more precise and also more comparable. Without any doubt, the
use of additional surface molecules will continue to be necessary
in order to better understand the functional states of DC of a
given lineage. Thus the old “markers” such as CD4, CD8, CD11b,
or CD103 will not become obsolete, but they will obtain a new
role in the functional analyses of XCR1+ versus SIRPα+ mouse
DC subpopulations.

ACKNOWLEDGMENTS
The work was supported by grants of the Wilhelm Sander Foun-
dation, the Fritz Thyssen Foundation, the VIP program of the

Frontiers in Immunology | Antigen Presenting Cell Biology February 2015 | Volume 6 | Article 35 | 4

http://www.frontiersin.org/Antigen_Presenting_Cell_Biology
http://www.frontiersin.org/Antigen_Presenting_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gurka et al. Universal classification of conventional DC

Bundesministerium für Bildung und Forschung, and in part
by the Deutsche Forschungsgemeinschaft (Kr 827/16-1 and Kr
827/18-1).

REFERENCES
1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lym-

phoid organs of mice. I morphology, quantitation, tissue distribution. J Exp Med
(1973) 137:1142–62. doi:10.1084/jem.137.5.1142

2. Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Güttler S, et al. Selec-
tive expression of the chemokine receptor XCR1 on cross-presenting dendritic
cells determines cooperation with CD8+ T cells. Immunity (2009) 31:823–33.
doi:10.1016/j.immuni.2009.08.027

3. Bachem A, Hartung E, Güttler S, Mora A, Zhou X, Hegemann A, et al. Expression
of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of
antigen cross-presentation. Front Immunol (2012) 3:214. doi:10.3389/fimmu.
2012.00214

4. Becker M, Güttler S, Bachem A, Hartung E, Mora A, Jäkel A, et al. Ontogenic,
phenotypic, and functional characterization of XCR1+ dendritic cells leads to a
consistent classification of intestinal dendritic cells based on the expression of
XCR1 and SIRPα. Front Immunol (2014) 5:326. doi:10.3389/fimmu.2014.00326

5. Gurka S, Hartung E, Becker M, Kroczek RA. Mouse conventional dendritic cells
can be universally classified based on the mutually exclusive expression of XCR1
and SIRPα. bioRxiv (2014). doi:10.1101/012567

6. Cerovic V, Houston SA, Westlund J, Utriainen L, Davison ES, Scott CL, et al.
Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+

T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol
(2015) 8:38–48. doi:10.1038/mi.2014.40

7. Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity
in vivo. Immunity (2011) 35:323–35. doi:10.1016/j.immuni.2011.09.007

8. Haniffa M, Collin M, Ginhoux F. Ontogeny and functional specialization
of dendritic cells in human and mouse. Adv Immunol (2013) 120:1–49.
doi:10.1016/B978-0-12-417028-5.00001-6

9. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny
and function of dendritic cells and their subsets in the steady state and the
inflamed setting. Annu Rev Immunol (2013) 31:563–604. doi:10.1146/annurev-
immunol-020711-074950

10. Mildner A, Jung S. Development and function of dendritic cell subsets. Immu-
nity (2014) 40:642–56. doi:10.1016/j.immuni.2014.04.016

11. Shortman K, Heath WR. The CD8+ dendritic cell subset. Immunol Rev (2010)
234:18–31. doi:10.1111/j.0105-2896.2009.00870.x

12. Kurts C, Heath WR, Carbone FR, Allison J, Miller JFAP, Kosaka H. Constitu-
tive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med
(1996) 184:923–30. doi:10.1084/jem.184.3.923

13. den Haan JM, Lehar SM, Bevan MJ. CD8+ but not CD8- dendritic cells cross-
prime cytotoxic T cells in vivo. J Exp Med (2000) 192:1685–96. doi:10.1084/jem.
192.12.1685

14. Pooley JL, Heath WR, Shortman K. Cutting edge: intravenous soluble anti-
gen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented
to CD8 T cells by CD8+ dendritic cells. J Immunol (2001) 166:5327–30.
doi:10.4049/jimmunol.166.9.5327

15. Iyoda T, Shimoyama S, Liu K, Omatsu Y, Akiyama Y, Maeda Y, et al. The CD8+

dendritic cell subset selectively endocytoses dying cells in culture and in vivo.
J Exp Med (2002) 195:1289–302. doi:10.1084/jem.20020161

16. Schulz O, Reis E, Sousa C. Cross-presentation of cell-associated antigens by
CD8α+ dendritic cells is attributable to their ability to internalize dead cells.
Immunology (2002) 107:183–9. doi:10.1046/j.1365-2567.2002.01513.x

17. Schnorrer P, Behrens GM, Wilson NS, Pooley JL, Smith CM, El-Sukkari D,
et al. The dominant role of CD8+ dendritic cells in cross-presentation is not
dictated by antigen capture. Proc Natl Acad Sci USA (2006) 103:10729–34.
doi:10.1073/pnas.0601956103

18. Vremec D, Pooley J, Hochrein H, Wu L, Shortman K. CD4 and CD8 expres-
sion by dendritic cell subtypes in mouse thymus and spleen. J Immunol (2000)
164:2978–86. doi:10.4049/jimmunol.164.6.2978

19. Edwards AD, Chaussabel D, Tomlinson S, Schulz O, Sher A, Reis E, et al. Rela-
tionships among murine CD11chigh dendritic cell subsets as revealed by baseline
gene expression patterns. J Immunol (2003) 171:47–60. doi:10.4049/jimmunol.
171.1.47

20. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C,
Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo.
Science (2007) 315:107–11. doi:10.1126/science.1136080

21. Sung SS, Fu SM, Rose CE Jr, Gaskin F, Ju ST, Beaty SR. A major lung
CD103 (αE)-β7 integrin-positive epithelial dendritic cell population express-
ing Langerin and tight junction proteins. J Immunol (2006) 176:2161–72.
doi:10.4049/jimmunol.176.9.5683

22. del Rio ML, Rodriguez-Barbosa JI, Kremmer E, Förster R. CD103- and CD103+

bronchial lymph node dendritic cells are specialized in presenting and cross-
presenting innocuous antigen to CD4+ and CD8+ T cells. J Immunol (2007)
178:6861–6. doi:10.4049/jimmunol.178.11.6861

23. Annacker O, Coombes JL, Malmstrom V, Uhlig HH, Bourne T, Johansson-
Lindbom B, et al. Essential role for CD103 in the T cell-mediated regulation of
experimental colitis. J Exp Med (2005) 202:1051–61. doi:10.1084/jem.20040662

24. Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, et al.
Small intestinal CD103+ dendritic cells display unique functional properties
that are conserved between mice and humans. J Exp Med (2008) 205:2139–49.
doi:10.1084/jem.20080414

25. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, et al.
Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic
cells. Nat Immunol (2009) 10:488–95. doi:10.1038/ni.1724

26. Schiavoni G, Mattei F, Sestili P, Borghi P, Venditti M, Morse HC III, et al. ICSBP
is essential for the development of mouse type I interferon-producing cells and
for the generation and activation of CD8α+ dendritic cells. J Exp Med (2002)
196:1415–25. doi:10.1084/jem.20021263

27. Aliberti J, Schulz O, Pennington DJ, Tsujimura H, Reis E, Sousa C, et al. Essential
role for ICSBP in the in vivo development of murine CD8α+ dendritic cells.
Blood (2003) 101:305–10. doi:10.1182/blood-2002-04-1088

28. Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C, et al. Tran-
scriptional profiling identifies Id2 function in dendritic cell development. Nat
Immunol (2003) 4:380–6. doi:10.1038/ni903

29. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama
M, et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in
cytotoxic T cell immunity. Science (2008) 322:1097–100. doi:10.1126/science.
1164206

30. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, et al. The
origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med (2009)
206:3115–30. doi:10.1084/jem.20091756

31. Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA, Klekotka PA, et al.
Peripheral CD103+ dendritic cells form a unified subset developmentally
related to CD8α+ conventional dendritic cells. J Exp Med (2010) 207:823–36.
doi:10.1084/jem.20091627

32. Müller S, Dorner B, Korthäuer U, Mages HW, D’apuzzo M, Senger G, et al.
Cloning of ATAC, an activation-induced, chemokine-related molecule exclu-
sively expressed in CD8+ T lymphocytes. Eur J Immunol (1995) 25:1744–8.
doi:10.1002/eji.1830250638

33. Dorner BG, Scheffold A, Rolph MS, Hüser MB, Kaufmann SH, Radbruch A,
et al. MIP-1α, MIP-1β, RANTES, and ATAC/lymphotactin function together
with IFN-γ as type 1 cytokines. Proc Natl Acad Sci USA (2002) 99:6181–6.
doi:10.1073/pnas.092141999

34. Crozat K, Tamoutounour S, Vu Manh TP, Fossum E, Luche H, Ardouin L, et al.
Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and
migratory dendritic cells of the CD8α+ type. J Immunol (2011) 187:4411–5.
doi:10.4049/jimmunol.1101717

35. Bar-On L, Birnberg T, Lewis KL, Edelson BT, Bruder D, Hildner K, et al.
CX3CR1+ CD8α+ dendritic cells are a steady-state population related to
plasmacytoid dendritic cells. Proc Natl Acad Sci USA (2010) 107:14745–50.
doi:10.1073/pnas.1001562107

36. Becker M, Güttler S, Bachem A, Hartung E, Mora A, Jäkel A, et al. Ontogenic,
phenotypic, and functional characterization of XCR1+ dendritic cells leads to a
consistent classification of intestinal dendritic cells based on the expression of
XCR1 and SIRPα. bioRxiv (2014). doi:10.1101/004648

37. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular mecha-
nisms of the CD47-SIRPα signalling pathway. Trends Cell Biol (2009) 19:72–80.
doi:10.1016/j.tcb.2008.12.001

38. Nuvolone M, Kana V, Hutter G, Sakata D, Mortin-Toth SM, Russo G, et al. SIRPα

polymorphisms, but not the prion protein, control phagocytosis of apoptotic
cells. J Exp Med (2013) 210:2539–52. doi:10.1084/jem.20131274

www.frontiersin.org February 2015 | Volume 6 | Article 35 | 5

http://dx.doi.org/10.1084/jem.137.5.1142
http://dx.doi.org/10.1016/j.immuni.2009.08.027
http://dx.doi.org/10.3389/fimmu.2012.00214
http://dx.doi.org/10.3389/fimmu.2012.00214
http://dx.doi.org/10.3389/fimmu.2014.00326
http://dx.doi.org/10.1101/012567
http://dx.doi.org/10.1038/mi.2014.40
http://dx.doi.org/10.1016/j.immuni.2011.09.007
http://dx.doi.org/10.1016/B978-0-12-417028-5.00001-6
http://dx.doi.org/10.1146/annurev-immunol-020711-074950
http://dx.doi.org/10.1146/annurev-immunol-020711-074950
http://dx.doi.org/10.1016/j.immuni.2014.04.016
http://dx.doi.org/10.1111/j.0105-2896.2009.00870.x
http://dx.doi.org/10.1084/jem.184.3.923
http://dx.doi.org/10.1084/jem.192.12.1685
http://dx.doi.org/10.1084/jem.192.12.1685
http://dx.doi.org/10.4049/jimmunol.166.9.5327
http://dx.doi.org/10.1084/jem.20020161
http://dx.doi.org/10.1046/j.1365-2567.2002.01513.x
http://dx.doi.org/10.1073/pnas.0601956103
http://dx.doi.org/10.4049/jimmunol.164.6.2978
http://dx.doi.org/10.4049/jimmunol.171.1.47
http://dx.doi.org/10.4049/jimmunol.171.1.47
http://dx.doi.org/10.1126/science.1136080
http://dx.doi.org/10.4049/jimmunol.176.9.5683
http://dx.doi.org/10.4049/jimmunol.178.11.6861
http://dx.doi.org/10.1084/jem.20040662
http://dx.doi.org/10.1084/jem.20080414
http://dx.doi.org/10.1038/ni.1724
http://dx.doi.org/10.1084/jem.20021263
http://dx.doi.org/10.1182/blood-2002-04-1088
http://dx.doi.org/10.1038/ni903
http://dx.doi.org/10.1126/science.1164206
http://dx.doi.org/10.1126/science.1164206
http://dx.doi.org/10.1084/jem.20091756
http://dx.doi.org/10.1084/jem.20091627
http://dx.doi.org/10.1002/eji.1830250638
http://dx.doi.org/10.1073/pnas.092141999
http://dx.doi.org/10.4049/jimmunol.1101717
http://dx.doi.org/10.1073/pnas.1001562107
http://dx.doi.org/10.1101/004648
http://dx.doi.org/10.1016/j.tcb.2008.12.001
http://dx.doi.org/10.1084/jem.20131274
http://www.frontiersin.org
http://www.frontiersin.org/Antigen_Presenting_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gurka et al. Universal classification of conventional DC

39. Shrimpton RE, Butler M, Morel AS, Eren E, Hue SS, Ritter MA. CD205 (DEC-
205): a recognition receptor for apoptotic and necrotic self. Mol Immunol (2009)
46:1229–39. doi:10.1016/j.molimm.2008.11.016

40. Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al.
Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type
lectin. J Clin Invest (2008) 118:2098–110. doi:10.1172/JCI34584

41. Qiu CH, Miyake Y, Kaise H, Kitamura H, Ohara O, Tanaka M. Novel sub-
set of CD8α+ dendritic cells localized in the marginal zone is responsi-
ble for tolerance to cell-associated antigens. J Immunol (2009) 182:4127–36.
doi:10.4049/jimmunol.0803364

42. Pribila JT, Itano AA, Mueller KL, Shimizu Y. The α1β1 and αEβ7 integrins
define a subset of dendritic cells in peripheral lymph nodes with unique adhe-
sive and antigen uptake properties. J Immunol (2004) 172:282–91. doi:10.4049/
jimmunol.172.1.282

43. Satpathy AT, Briseno CG, Lee JS, Ng D, Manieri NA, Kc W, et al. Notch2-
dependent classical dendritic cells orchestrate intestinal immunity to attaching-
and-effacing bacterial pathogens. Nat Immunol (2013) 14:937–48. doi:10.1038/
ni.2679

44. Kumamoto Y, Linehan M,Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. CD301b+

dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity
(2013) 39:733–43. doi:10.1016/j.immuni.2013.08.029

45. Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, et al.
Novel insights into the relationships between dendritic cell subsets in human
and mouse revealed by genome-wide expression profiling. Genome Biol (2008)
9:R17. doi:10.1186/gb-2008-9-1-r17

46. Ju X, Clark G, Hart DN. Review of human DC subtypes. Methods Mol Biol (2010)
595:3–20. doi:10.1007/978-1-60761-421-0_1

47. Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, et al. Superior
antigen cross-presentation and XCR1 expression define human CD11c+CD141+

cells as homologues of mouse CD8+ dendritic cells. J Exp Med (2010)
207:1273–81. doi:10.1084/jem.20100348

48. Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, et al.
Comparative genomics as a tool to reveal functional equivalences between
human and mouse dendritic cell subsets. Immunol Rev (2010) 234:177–98.
doi:10.1111/j.0105-2896.2009.00868.x

49. Jongbloed SL, Kassianos AJ, Mcdonald KJ, Clark GJ, Ju X,Angel CE, et al. Human
CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC sub-
set that cross-presents necrotic cell antigens. J Exp Med (2010) 207:1247–60.
doi:10.1084/jem.20092140

50. Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin TJ, Lo JC, et al. The dendritic
cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement.
Blood (2008) 112:3264–73. doi:10.1182/blood-2008-05-155176

51. Huysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel acti-
vation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and
a subset of monocytes. J Biol Chem (2008) 283:16693–701. doi:10.1074/jbc.
M709923200

52. Galibert L, Diemer GS, Liu Z, Johnson RS, Smith JL, Walzer T, et al. Nectin-
like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for
class-I-restricted T-cell-associated molecule. J Biol Chem (2005) 280:21955–64.
doi:10.1074/jbc.M502095200

Conflict of Interest Statement: The Associate Editor, Dr. Christian Kurts, declares
that despite having collaborated with author Richard A. Kroczek in the past 2 years,
there has been no conflict of interest during the handling of this manuscript. The
authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

Received: 05 December 2014; accepted: 19 January 2015; published online: 04 February
2015.
Citation: Gurka S, Hartung E, Becker M and Kroczek RA (2015) Mouse conventional
dendritic cells can be universally classified based on the mutually exclusive expression
of XCR1 and SIRPα. Front. Immunol. 6:35. doi: 10.3389/fimmu.2015.00035
This article was submitted to Antigen Presenting Cell Biology, a section of the journal
Frontiers in Immunology.
Copyright © 2015 Gurka, Hartung , Becker and Kroczek. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Immunology | Antigen Presenting Cell Biology February 2015 | Volume 6 | Article 35 | 6

http://dx.doi.org/10.1016/j.molimm.2008.11.016
http://dx.doi.org/10.1172/JCI34584
http://dx.doi.org/10.4049/jimmunol.0803364
http://dx.doi.org/10.4049/jimmunol.172.1.282
http://dx.doi.org/10.4049/jimmunol.172.1.282
http://dx.doi.org/10.1038/ni.2679
http://dx.doi.org/10.1038/ni.2679
http://dx.doi.org/10.1016/j.immuni.2013.08.029
http://dx.doi.org/10.1186/gb-2008-9-1-r17
http://dx.doi.org/10.1007/978-1-60761-421-0_1
http://dx.doi.org/10.1084/jem.20100348
http://dx.doi.org/10.1111/j.0105-2896.2009.00868.x
http://dx.doi.org/10.1084/jem.20092140
http://dx.doi.org/10.1182/blood-2008-05-155176
http://dx.doi.org/10.1074/jbc.M709923200
http://dx.doi.org/10.1074/jbc.M709923200
http://dx.doi.org/10.1074/jbc.M502095200
http://dx.doi.org/10.3389/fimmu.2015.00035
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Antigen_Presenting_Cell_Biology
http://www.frontiersin.org/Antigen_Presenting_Cell_Biology/archive

	Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRPα
	Overview
	Historical DC classification systems
	Involvement of transcription factors in the differentiation of DC
	Identification of a lineage marker for Cross-Presenting DC
	All DC can be classified into XCR1+ Versus SIRPα+ DC irrespective of their activation state
	Are SIRPα+ DC homogenous in their ontogeny and function?
	Can the subdivision of DC into XCR1+ and SIRPα+ DC be also applied in the human?
	Conclusion and perspectives
	Acknowledgments
	References 


