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According to the NHS, it is estimated that over 50% of the adult population are, to some
extent, affected by gum disease and approximately 15% of UK population have been diag-
nosed with severe periodontitis. Periodontitis, a chronic polymicrobial disease of the gums,
causes inflammation in its milder form, whereas in its severe form affects the surround-
ing tissues and can result in tooth loss. During periodontitis, plague accumulates and sits
between the junctional epithelium and the tooth itself, resulting in inflammation and the
formation of a periodontal pocket. An interface is formed directly between the subgingi-
val bacteria and the junctional epithelial cells. Bacterial pathogens commonly associated
with periodontal disease are, among others, Porohyromonas gingivalis, Tannerella forsythia,
and Treponema denticola, together known as the “red complex.” This review will mostly
concentrate on the role of P gingivalis, a Gram-negative anaerobic bacterium and one of
the major and most studied contributors of this disease. Because periodontal disease is
associated with the development of atherosclerosis, it is important to understand the local
immune response to P gingivalis. Innate immune players, in particular, complement and
antimicrobial peptides and their effects with regard to P gingivalis during periodontitis and
in the development of atherosclerosis will be presented.
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MODE OF ACTION OF P. GINGIVALIS DURING PERIODONTITIS
Porphyromonas gingivalis is an anaerobic Gram-negative bac-
terium involved in the onset of inflammation and tissue destruc-
tion during periodontal disease. It can be found in small numbers
in the oral cavity of healthy individuals (1, 2). Pathology occurs
when P. gingivalis binds to and accumulates on the tooth surface,
leading to the development of a mixed biofilm, the expansion of
the bacteria into the gingival sulcus, and the formation of a peri-
odontal pocket (3). Inside this periodontal pocket lies the gingival
crevicular fluid, an inflammatory exudate — source of essential
nutrients for P. gingivalis growth — present in low abundance in
healthy individuals, but drastically increased during gum inflam-
mation. In this milieu, P. gingivalis invades gingival epithelial cells
via the binding of its fimbriae to 1 integrin on the host cell sur-
face followed by a rearrangement of the host actin cytoskeleton (4,
5). It then blocks apoptosis through the PI3K/Akt and JAK/Stat
pathways, allowing intracellular bacterial proliferation (6, 7). In
addition, it inhibits IL-8 expression by epithelial cells, creating
what is known as the “local chemokine paralysis” (8). This mech-
anism induces a delay in neutrophil recruitment, which allows the
proliferation of bacteria in this new niche, leading to an alteration
of the subgingival microbiome with respect to its composition
and total bacterial count (9, 10). The emergence of this dysbiotic
assembly of microorganisms is believed to be partly responsible for
the pathology observed. This is supported by findings in a murine
model of P. gingivalis-induced periodontitis, where P. gingivalis

was shown to contribute to periodontal bone loss by reshaping
the normal commensal microbiota, while it failed to induce bone
loss in germ-free animals (11). Its activity as a “keystone pathogen”
may well arise directly from its atypical LPS, which does not acti-
vate TLR4 — acting either as a weak TLR4 agonist or even a TLR4
antagonist according to the local inflammatory state — and render-
ing it immunologically silent, potentially facilitating the initiation
of the colonization (12).

MANIPULATION OF THE COMPLEMENT SYSTEM BY P.
GINGIVALIS

Early studies documented the activation and regulation of comple-
ment components in the gingival crevicular fluid where comple-
ment is believed to be present at 70% of its serum concentration
(13, 14). P. gingivalis has developed different strategies to evade
killing by the complement system. First, its surface anionic poly-
saccharide confers P. gingivalis serum resistance (15). Moreover,
two types of cysteine proteases — known as gingipains — are pro-
duced by P. gingivalis: the lysine specific Kgp and the arginine
specific RgpA and RgpB (16). While these proteases take part
in the destruction of the extracellular matrix, they are also able
to cleave the complement components Cl, C3, C4, and C5, as
well as to capture C4b-binding protein (17-20). This leads to the
inhibition of complement activation, but intermittently also to a
local accumulation of the anaphylatoxin C5a, the only bioactive
fragment present after the actions of gingipains (20). While the
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massive degradation of complement proteins does not directly
benefit complement resistant P. gingivalis, it could allow the colo-
nization and proliferation of other bacterial strains with a higher
sensitivity toward complement killing.

The local gingipain-induced accumulation of C5a at the site
of infection then activates C5aR. C5aR~/~ mice have been shown
to be resistant to age dependent as well as P. gingivalis-induced
experimental periodontitis (11, 21). Similarly, periodontal inflam-
mation and subsequent bone loss could nearly be abrogated by
treating conventional wild-type animals with a C5aR antago-
nist, underlining the important role played by this anaphylatoxin
during periodontitis (22). In neutrophils, P. gingivalis has been
shown to inhibit bacterial killing in a Mal/PI3K, C5aR-,and TLR2-
dependent manner (23). This could explain the increase in anaer-
obic oral bacteria and the change in microbiota observed after
infection with P. gingivalis in conventional, but not C5aR~/~ mice
(11). In macrophages, a C5aR-TLR2 crosstalk has been demon-
strated to activate the cAMP-dependent PKA pathway, leading to a
reduction of intracellular nitric oxide, which permits intracellular
bacterial survival (19). The presence of CXCR4 activation further
accentuated this synergism (19, 24). This C5aR-TLR2 crosstalk
seems particularly important in understanding how P. gingivalis
can directly dampen the immune response in an already immuno-
logically tolerant tissue such as the mucosa. In addition, C5aR
activation in macrophages inhibits the TLR2-induced IL-12p70
production (21).

The interaction of P. gingivalis fimbriae with TLR2 leads to
the inside-out activation of the 2 integrin CR3 (CD11b/CD18)
via PI3K (25). Direct interaction of P. gingivalis fimbriae with
the chemokine receptor CXCR4 similarly results in CR3 activa-
tion (26). In macrophages, P. gingivalis uses this TLR2-activated
CR3 as a port of entry as well as to survive intracellularly (25).
In fact, inside-out activation of CR3 has been shown to sup-
press IL-12p70 production in macrophages (21, 25, 26). Also,
the pro-inflammatory cytokines IL-1f, IL-6, and TNFa, known
to induce bone resorption, are up-regulated in a C5aR/TLR2-
and CR3-dependent manner by P. gingivalis (21, 23, 27). The
resulting inflammatory breakdown products may then further
strengthen the dysbiosis as recently suggested by a study underlin-
ing the inflammophilic character of the periodontitis-associated
microbiota (28). Taken together, these results highlight the role
played by the complement system during periodontitis: P. gin-
givalis manipulates the host complement components to escape
immune clearance, colonize its new niche, and reshape the local
microbiota.

ANTIMICROBIAL PEPTIDES OF THE ORAL CAVITY

The oral cavity is home to various peptides with antimicro-
bial activity, secreted by epithelial cells, neutrophils, and sali-
vary glands. Their expression often increases during periodontitis
[reviewed in Ref. (29)]. One of these molecules, the cathelicidin
LL-37, plays a major role in oral health, as illustrated by the severe
periodontitis observed in patients suffering from either Kostmann
or Papillon-Lefevre syndromes, two rare conditions characterized
by the absence of mature bioactive forms of LL-37 (30, 31). Various
studies have nevertheless suggested that cathelicidins only pos-
sess a very limited direct microbicidal activity in vivo and instead

exert a plethora of immunomodulatory effects [reviewed in Ref.
(32)]. More recently, LL-37 has been shown to promote phagocytic
uptake by macrophages, which could be used at its advantage by
P. gingivalis (33). Alpha (HNP1-3) and beta (hBD1-3) defensins
are another class of antimicrobial peptides present in the gin-
gival crevicular fluid (29). During periodontitis, the expression
of cathelicidins, o, and B defensins is increased in the gingival
crevicular fluid, most particularly in the presence of P. gingivalis
(34-36). However, P. gingivalis has been shown to be highly resis-
tant to killing by LL-37 in vitro. Similar observations were made
for defensins, suggesting that the higher antimicrobial activity
observed during periodontitis may have very little direct effect on
P. gingivalis, but most probably has a major impact on other more
susceptible bacteria (36—38). This could represent another way by
which P. gingivalis shapes the local microbiota thereby selecting
for periodontopathic strains, non-periodontopathic strains having
been shown to be more susceptible to the activity of antimi-
crobial peptides (36, 38). Importantly, LL-37 can act as a pro-
inflammatory trigger during periodontitis. In fact, as well as being
a chemoattractant for neutrophils expressing FPRLI receptor, LL-
37 was demonstrated to induce the production of leukotriene B4
(LTB4), a potent chemotactic agent, in human neutrophils via
binding to the cathelicidin receptor FPR2/ALX (39, 40). LTB4 can
then trigger LL-37 release by neutrophils in an autocrine man-
ner, thus creating a pro-inflammatory loop eventually leading to
bone tissue destruction. This inflammatory response is eventually
dampened by lipoxin A4 — a ligand for the FPR2/ALX receptor
produced during the resolution phase of inflammation (39, 41,
42). Determining copy number variation in antimicrobial pep-
tides and screening for relevant SNP may help to stratify those
at risk of developing aggressive periodontitis who would benefit
from early periodontal management (43-45).

EVASION FROM THE ORAL CAVITY: LINK TO
CARDIOVASCULAR DISEASES

Numerous studies have associated chronic periodontitis with vari-
ous diseases, such as rheumatoid arthritis, diabetes, and cardiovas-
cular diseases (46—48). Similarly, P. gingivalis has been observed
at other sites than the oral cavity (49-51). While the exact mech-
anism used by P. gingivalis to reach distant anatomical locations
has not yet been defined, P. gingivalis has been shown to sur-
vive intracellularly in macrophages, epithelial, endothelial, and
smooth muscle cells and to be able to spread from one cell to
another (4, 19, 25, 52). P. gingivalis could therefore potentially
use these cells as means of transportation to travel to peripheral
tissues.

Atherosclerotic disease has long been viewed as a manifesta-
tion within disease complexes such as metabolic syndrome, renal
failure, and other chronic inflammatory conditions. The ather-
osclerotic plaque is a site of inflammation within the arterial
intima, where inflammatory cells and lipids accumulate. Viable
periodontic pathogens, including P. gingivalis, have been found in
atherosclerotic plaques in mice and in humans (49-51). Antimi-
crobial peptides and complement activation products are both
constituents of the plaques (53-55). The abilities of P. gingivalis
to manipulate the complement and the antimicrobial systems in
remote location could putatively contribute to the progression of
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FIGURE 1 | Pathomechanistic sequence of events leading to periodontitis following Porphyromonas gingivalis infection (light blue arrow) as well as

er evasion of the bacteria from the oral cavity (black arrow).

atherosclerosis. In fact, P. gingivalis has been shown to accelerate
plaque formation in an apolipoprotein E~/~ mouse model (56).
C5ais presentin atherosclerotic plaques and acts as a proathero-
genic molecule (57). While it does not seem to play a role in the
initial development of the pathology, C5a has been shown to pro-
mote apoptosis in endothelial and smooth muscle cells as well
as to induce the expression of the metalloproteases MMP1 and
MMP9 in macrophages in atherosclerotic plaques. This leads to
the degradation of the extracellular matrix and to the rupture of
the plaque (57-59). Similarly, reduced plaque size was observed
after treatment of ApoE™/~ mice with a C5aR antagonist (60).
Elevated expression level of LL-37 has been reported in ath-
erosclerotic lesions, where it is thought to modulate the local
immune response and induce apoptosis in vascular smooth mus-
cle cells (54, 61). The presence of LL-37-resistant P. gingivalis in
the lipid plaque could lead to an increase of the local concentration
of antimicrobial peptides. Together with the gingipain-dependent
local accumulation of C5a in the vicinity of P. gingivalis, this could
be responsible, at least in part, for the exacerbated pathophysiology
observed in the mouse model as well as in human disease.

POTENTIAL THERAPEUTICS

The molecular actions involving complement and antimicrobial
peptides (and others) in the oral cavity are now well known
but the systems are not easily amenable to therapeutic targeting.
Treatments against periodontitis consist mainly on reducing the
formation of bacterial plaque in the oral cavity using physical
and chemical forces. Antibiotics may be given as a short course
but they usually only accompany periodontal treatment, as they
have difficulties to penetrate periodontal biofilms. Various isolates
of oral bacteria such as Lactobacilli have been shown to reduce
in vitro the growth of different periodontopathogens including
P. gingivalis (62, 63). Clinical trials confirmed the potential of
these probiotic agents to be used as a complement to periodontal
treatments (63—65). Vitamin D supplementation with its beneficial

effect on bone mineralization and its anti-inflammatory potential
(inhibition of IL-6, IL-8, and TNFa) may as well be an additional
therapy to consider (66, 67). Another option consists on the use of
proresolving mediators; in fact, topical applications of the resolvin
RvE1 molecule were able to reduce and even to some extent
restore periodontitis-associated bone loss in a rabbit model of
experimental periodontitis (68, 69). However, the most promising
therapy, to date, remains the periodontal vaccines as immuniza-
tion has been shown to protect against experimental periodontitis
in different animal models and could potentially prevent the overt
inflammation observed in associated diseases (56, 70).

CONCLUSION

Porphyromonas gingivalis is a good example of a bacterium able to
shape the composition of its microbial environment and to subvert
the immune system toward chronic inflammation (Figure 1). Evi-
dence of periodontopathogens in atherosclerotic plaques implies
a direct role — which might have justified the recent broad popula-
tion health advice of increasing oral hygiene — but the concomitant
presence of oral and gut commensals in biopsies of atheroscle-
rotic arteries begs as well the question of how leaky our mucosal
tolerance barrier is.
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