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Hypoxic-ischemic encephalopathy (HIE) is a clinical condition in the neonate, resulting from
oxygen deprivation around the time of birth. HIE affects 1–5/1000 live births worldwide
and is associated with the development of neurological deficits, including cerebral palsy,
epilepsy, and cognitive disabilities. Even though the brain is considered as an immune-
privileged site, it has innate and adaptive immune response and can produce complement
(C) components and antimicrobial peptides (AMPs). Dysregulation of cerebral expres-
sion of AMPs and C can exacerbate or ameliorate the inflammatory response within
the brain. Brain ischemia triggers a prolonged inflammatory response affecting the pro-
gression of injury and secondary energy failure and involves both innate and adaptive
immune systems, including immune-competent and non-competent cells. Following injury
to the central nervous system (CNS), including neonatal hypoxia-ischemia (HI), resident
microglia, and astroglia are the main cells providing immune defense to the brain in a
stimulus-dependent manner. They can express and secrete pro-inflammatory cytokines
and therefore trigger prolonged inflammation, resulting in neurodegeneration. Microglial
cells express and release a wide range of inflammation-associated molecules including sev-
eral components of the complement system. Complement activation following neonatal HI
injury has been reported to contribute to neurodegeneration. Astrocytes can significantly
affect the immune response of the CNS under pathological conditions through produc-
tion and release of pro-inflammatory cytokines and immunomodulatory AMPs. Astrocytes
express β-defensins, which can chemoattract and promote maturation of dendritic cells
(DC), and can also limit inflammation by controlling the viability of these same DC. This
review will focus on the balance of complement components and AMPs within the CNS
following neonatal HI injury and the effect of that balance on the subsequent brain damage.

Keywords: antimicrobial peptides, complement, neonatal hypoxia-ischemia, microglia, astrocyte, hypoxic-ischemic
encephalopathy

INTRODUCTION
Neonatal brain injury resulting from oxygen deprivation around
the time of birth affects 1–3/1000 live term births in high-income
countries with rates 5–10 times higher in low-resource setting.
About 40% of the affected infants die in the neonatal period
and additional 30% sustain lifelong neurological deficits, includ-
ing cerebral palsy, epilepsy, and cognitive disabilities (1). Neonatal
hypoxia-ischemia induces a robust inflammatory response in the
immature brain, which is considered to play an important role
in the development of brain damage and subsequent hypoxic-
ischemic encephalopathy (HIE). Initial inflammation involves
activation and recruitment of various immune cells into the
injured brain. The initial pro-inflammatory response is followed
by hypoxic-ischemic (HI) secondary energy failure that may last
for days, followed by a switch to anti-inflammatory response
and resolution. However, the exact mechanisms involved in the
immune response following HIE still remain unknown. Several
mediators of the inflammatory cascade include components of
both innate and adaptive immune systems, such as cytokines,
chemokines, adhesion molecules, as well as antimicrobial peptides
(AMPs) and complement (C).

NEONATAL HI
Despite the neonatal period only constituting the first 28 days
of life, it accounts for 38% of death in children younger than
5 years of age. Direct causes leading to neonatal death include
infection (36%), prematurity (28%), and birth asphyxia (23%).
The latter two, combined with congenital defects (7%) account
for the majority of deaths occurring within the first week of life
(2). This morbidity is generally a result of multiple organ dys-
functions (3) or termination of care. Epidemiological studies have
shown that asphyxia is not the most common cause for develop-
mental disorders; however, it poses important clinical problems,
as infants who survive an asphyxia episode around the time of
birth are at high risk of developing lifelong devastating impair-
ments. Neonatal HIE and the ensuing clinical manifestation cause
significant global public health burden (4), with infant sufferers at
risk of subsequently developing cerebral palsy and/or other neu-
rological dysfunctions such as cognitive impairment, epilepsy, and
autism (4–6).

The pathophysiology of brain injury resulting from birth
asphyxia includes evidence of fetal stress in the hours leading to
birth, associated with depression at birth, need for resuscitation,
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Table 1 | Mechanisms of HI injury.

Primary energy failure

Decline in cerebral blood flow, O2 substrates, and high-energy phosphate

compounds

Initiation of neurotoxic cascade

Reduction of membrane homeostasis leading to calcium influx,

mitochondrial dysfunction, brain acidosis, apoptosis, and necrosis

Latent phase

Normalization of oxidative metabolism

Secondary energy failure

Continuation of neurotoxic cascade

Inflammatory response

Caspase activation

Decrease in levels of protein synthesis and growth factors

Continuation of apoptosis and necrosis

evidence of metabolic acidosis as well as clinical and imaging
signs of neurological anomalies (7). This phase is classified as
primary energy failure, where reduction in cerebral blood flow
and oxygen substrates leads to depletion in adenosine triphos-
phate ATP and phosphocreatine production and a switch from
aerobic to anaerobic metabolism, causing accumulation of brain
lactate and tissue acidosis (Table 1). Additionally, excitotoxic and
oxidative cascades cause excessive stimulation of neurotransmit-
ter receptors and cell membrane ionic transport failure, resulting
in accumulation of intracellular calcium (8, 9), and successive
cell swelling, activation of neuronal nitric oxide, and subsequent
release of reactive oxygen species leading to mitochondria dys-
function, apoptosis, and programed cell death (10). As soon as
the energy supplies are exhausted, cell necrosis occurs (11). Fol-
lowing successful reperfusion and resuscitation, there is a nor-
malization of cellular metabolism and intracellular pH leading
to neurotransmitter reuptake (12). However, in cases where the
hypoxic-ischemic episode is severe or prolonged, these cascading
events lead to a secondary energy metabolism failure in the mito-
chondria and subsequent persistence of excitotoxicity, oxidative
stress, induction of inflammatory response, activation of caspase
enzymes, and further apoptotic and necrotic cell death (12, 13).

NEONATAL HI AND INFLAMMATION
For a long period of time, the central nervous system (CNS) has
been regarded as an immune-privileged site. The blood–brain
barrier (BBB), formed by the endothelial lining of the cerebral
capillaries, the arachnoid multi-layered epithelium, and the CSF-
secreting choroid plexus epithelium, in conjunction with neigh-
boring cell types such as astrocytes and pericytes, prevents infil-
tration of circulating immune cells, including B- and T-cells, and
diminishes the influx of neurotoxic and neuroexcitatory agents
from the blood flow (14). However, the CNS has the capacity
to generate innate and adaptive immune response. In the CNS,
the immune roles of peripheral neutrophils, dendritic cells (DC),
macrophages, and natural killer cells are replaced by microglia,
astrocytes, and oligodendrocyte precursors (15).

HI brain injury induces a robust inflammatory response in the
immature brain (16). Furthermore, injury to neurons leads to a

rapid change in their gene expression with stimulation of astro-
cytes and microglial activation and aggregation for survival sup-
port (17). Neuroglial activation is a graded response accompanied
by secretion of pro-inflammatory cytokines, causing increased
production of nitric oxide, reactive oxygen species, activation of
the vascular endothelium, and recruitment of peripheral immune
cells into the injured brain (18).

CNS IMMUNE CELLS
Microglia
Microglia are considered as the resident macrophages of the CNS
and account for 10–20% of total glial population. Under normal
physiological conditions, microglia are present in a resting state
with highly ramified and motile processes. However, in the pres-
ence of environmental changes to the brain, microglia become
rapidly activated, undergoing morphological changes involving
retraction of processes and increase in cell body size. Depending
on the extent of damage, microglial cells will further activate,
become phagocytic and migrate to the site of injury (19). Microglia
play an important role in HIE. Retrospective post-mortem clinical
studies have shown substantial microglial activation and infil-
tration in the hippocampal dentate gyrus of HIE infants, which
was not observed in infants who had died from trauma or sep-
sis (20). Microglial contribution to secondary energy failure is
thought to occur via production of pro- and anti-inflammatory
cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factor-
alpha (TNF-α) (21, 22), as well as expression of toll like recep-
tors (TLRs) and antigen presentation (Figure 1). Microglial cells
are also able to release matrix metalloproteinases, thus lead-
ing to breakdown of the BBB, allowing influx of leukocytes
into the no longer immune-privileged CNS, thus exacerbating
inflammation and subsequent brain damage (23). However, there
are contradicting experimental mouse data on whether inhibi-
tion of microglial activation following neonatal HI is beneficial
(24, 25). The microglial innate immune response is character-
ized by classical or M1 activation with subsequent production
of associated pro-inflammatory molecules, followed by resolu-
tion and a switch to alternative or M2 phenotype leading to
anti-inflammatory signaling and clearance of reactive species and
wound healing (26).

Astrocytes
Astrocytes are the most abundant cell type in the CNS. They
are essential supporters of brain homeostasis and neuronal func-
tion and also regulate synaptogenesis (27). However, post-mortem
clinical studies have demonstrated a prevalence of astrogliosis
of 15–40% within the white matter of HI infants (28). Under
HI conditions, pro-inflammatory mediators, cytokines, and reac-
tive species produced by damaged neurons and oligodendrocytes
can lead to astrogliosis. Activated astroglia, despite not being
considered as a traditional inflammatory cell, secrete inflamma-
tory cytokines such as IL-1, IL-6, interferon-γ, and TNF-α (29).
Increased levels of these cytokines exacerbate nitric oxide toxicity,
and both apoptosis and necrosis, thus aggravating HI injury (30).
Astrocytes can also produce chemokines, which attract migra-
tion of immune cells into the CNS (31). Astrocytes have TLRs
and respond to TLR ligands. Following brain injury, astrocytes
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FIGURE 1 | Inflammatory response following HI injury. Neonatal asphyxia
leads to activation of microglia and astrocytes, which subsequently results in
increased synthesis and secretion of pro- and anti-inflammatory cytokines,

reactive oxygen species, and release of matrix metalloproteinases. This is
associated with BBB breakdown, as well as influx of leukocyte and
lymphocyte immune cells into the injured brain.

also express major histocompatibility complex (MHC) and co-
stimulatory molecules, develop Th2 immune response, and inhibit
expression of IL-12 (27).

PERIPHERAL IMMUNE CELLS
Neutrophils
It is well established that HI brain injury is associated with infil-
tration of inflammatory cells into the brain. Neutrophils are the
most abundant type of leukocytes and are an integral part of
the innate immune system. Although in adult rodent models of
ischemic insult, neutrophils are known to accumulate within the
brain as early as 4–6 h post injury, and lasting up to 48 h (32,
33), this does not appear to be the case in neonatal HI injury,
where infiltration of neutrophils into the injured brain is less
marked, with a lesser number present at 42 h post-insult. How-
ever, this same study demonstrated that neutropenic P7 rats had
70% reduction in brain swelling at 42 h post-HI when compared
to littermate controls (34). Therefore, despite the suggestion that
neutrophils do not accumulate in the immature brain following
HI, they still play a relevant role in exacerbation of neonatal brain
damage.

Lymphocytes
Lymphocytes are granulocyte blood cells crucial in the immune
response, and contribute to either adaptive (B- and T-cells) or to
innate (NK-cells) immunity. In experimental adult rodent studies,
lymphocytes are shown to infiltrate the CNS within a few hours
after cerebral ischemia, and to remain within the brain for several

days (35, 36). An adult mouse study using RAG1−/−mice deficient
in both B- and T-cells has shown a substantial reduction in cere-
bral infarction in the mutants following cerebral arterial occlusion.
Furthermore, the same study demonstrated that mature B-cell
negative animals did not show an altered response to ischemic
injury (37). Interestingly, in the neonatal mouse model of middle
cerebral arterial occlusion (MCAO), T-cell infiltration appears to
occur only after 24 h post-insult and persists for up to 96 after
injury (38). This could be due to immaturity of lymphoid progen-
itors at this stage of brain developmental. A clinical study assessing
peripheral blood if infants with HIE showed that blood mononu-
clear cells are still relatively undifferentiated in newborns, with
reduced expression of surface markers (39). However, in chronic
inflammatory response to HI injury, CD4 lymphocytes are present
within the infarcted brain regions 7 days after injury, and persist
within the area of damage for a long period of time (40).

Dendritic cells
Dendritic cells are antigen-presenting cells recognized by T-cells
and acting as messengers between adaptive and innate immune
system. Initial IL-1β and TNF-α response, as well as TLR acti-
vation cause translocation of NF-κB inflammation transcription
factor into the nucleus of preferentially DC, and also macrophages
and endothelial cells, inducing transcription of pentraxin-related
protein (PTX3), a soluble pattern recognition receptor from the
lectin family (41, 42). Pentraxin not only assists the recogni-
tion of microbes and amplification of innate immunity but is
also involved in the clearing of self-components and decreased
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DC recognition of apoptotic cells (43). A study looking at global
pattern of gene expression following neonatal HI has shown acti-
vation of PTX3, suggesting a possible role for DC involvement in
the subsequent immuno-inflammatory response (16).

INFLAMMATORY MEDIATORS
Cytokines
Both pro- and anti-inflammatory cytokines and their receptors are
present in the brain and cerebrospinal fluid, and act as an integral
part of the CNS inflammatory response to adverse stimuli (44). In
fact, it is widely accepted that cytokines work as a final common
pathway to injury from a number of varying insults, including
HI. The most widely study cytokines in ischemic models of brain
injury are IL-1, IL-6, IL-10, TNF-α, and transforming growth
factor-β (TGF-β). From these, IL-1, IL-6, and TNF-α appear to
exacerbate brain injury (45), whereas IL-10 and TGF-β may have
neuroprotective function following ischemic injury (46). The early
response IL-1, IL-6, and TNF-α cytokines are believed to be influ-
ential in the progression of injury in the immature brain via
stimulation of synthesis of other cytokines and adhesion mole-
cules, and prompting leukocyte infiltration, which in turn will
lead to further recruitment of immune cells, as well as induction
of neuronal injury mediators such as nitric oxide. This continual
and progressive stimulus has influencing modulatory effects on
glial gene expression and activation. Depending on the extent of
cytokine-mediated cytotoxic inflammatory cellular activation, cell
damage and subsequent death occurs (47, 48). Prospective clini-
cal studies have shown an association between high levels of IL-1,
IL-6, and TNF-α and infants who are deceased at 1 year of age
or diagnosed with cerebral palsy (49). Subsequent clinical studies
have also demonstrated a correlation between IL-1 CSF levels and
HIE (50). Serum IL-1β, IL-6, IL-8, and TNF-α have demonstra-
ble correlation with the MRS biomarker of anaerobic respiration
lactate/choline (51). Additionally, CSF IL-6 levels after neonatal
asphyxia are also associated with both early and late neurological
outcomes and severity in HIE (52).

Chemokines
Chemokines are chemotactic cytokines thought to act together
with different adhesion molecules such as selectins, integrins, and
immunoglobulins in order to control immune cell trafficking.
These proteins play a detrimental role in various neurodegenera-
tion models, including HI, ischemic stroke, and excitotoxic brain
injury (53). A neonatal mouse study of HI injury has demon-
strated that mRNA expression of chemokines precedes infiltra-
tion of immune cells into the brain, thus proving its relevance
in the inflammatory response following insult to the immature
brain (31, 40).

Adhesion molecules
Adhesion molecules, including selectins, integrins, and
immunoglobulins, play an essential role in leukocyte infiltration
to the brain. Initially, adhesion molecules have low affinity binding
consisting of rolling of cells, resulting then in high affinity bind-
ing and firm adhesion (54). Targeting these molecules in stroke
experimental models has demonstrated their importance in brain
injury, as inhibition of leukocyte adhesion resulted in improved

neurological and histological outcome, whereas over-expression
increased tissue infarction (55–57). However, the role of adhesion
molecules in HIE still remains largely unknown.

ANTIMICROBIAL PEPTIDES
Antimicrobial peptides are a diverse group of cationic polypep-
tides containing less than 100 amino acid residues. AMPs were
discovered through studies of the insect antimicrobial defense
mechanisms and the pathways involved in intracellular phagocyto-
sis of bacteria in different mammalian species (58). For a long time,
AMPs were associated with antimicrobial and antifungal activities
through opsonization, agglutination, neutralization, or destruc-
tion of pathogens (59). Emerging evidence suggests chemotactic
and immunomodulatory characteristics of AMPs through chemo-
taxis, phagocytosis, cytokine production, production of reactive
oxygen species, and maturation of DC (59–61). Most AMPs have
a positive charge and are divided into several categories based on
primary structure and topologies (62), although the most well
studied AMPs are cathelicidins and defensins.

Defensins contain six conserved Cys residues forming three
disulfide bridges. Depending on the spacing between the Cys
residues and the topology of the disulfide bonds defensins are
classified in α-,β-, or θ- (61, 62). Defensins are present in many ani-
mal species and their expression is associated with cells and tissues
involved in host defense against microbial infections (Table 2).
Depending on the cell type expressing them, defensins act either
intracellularly through oxygen-independent destruction of phago-
cytosed microorganisms or are secreted in the extracellular milieu
where they directly attack the microbial membrane. Therefore,
defensins are either stored as granules of neutrophils and Paneth
cells of the small intestine or secreted by monocytes, macrophages,
natural killer cells, keratinocytes, and epithelial cells (61).

α-defensins were first characterized as antimicrobial proteins
purified from extracts of cytoplasmic granules of polymorphonu-
clear leukocytes (PMNs) (63). Human α-defensins are produced
by leukocytes, Paneth cells, and epithelial cells of the female uro-
genital tract. There are six α-defensins, called human neutrophil
peptide (HNP) 1–4 and human defensins 5–6 (64). In addi-
tion to their antimicrobial activity, some α-defensins (HNP-1)
possess also antiviral characteristics. HNP-1 inhibits HIV and
influenza virus replication, and inactivates herpes simplex virus,
cytomegalovirus, vesicular stomatitis virus, and adenovirus (61).

There are four β-defensins known as human beta defensins
(HBDs) 1–4 and possessing structural similarity to the α-
defensins. HBD-1 was first isolated from human plasma and is
constitutively synthesized by epithelial cells of the urinary and
respiratory tracts (62),as well as keratinocytes (65). HBD-1 expres-
sion can be up-regulated through treatment with lipopolysaccha-
ride (LPS), peptidoglycan, and interferon-γ (62). HBD-2 was first
purified from psoriatic scales and its expression overlaps with that
of HBD-1, but HBD-2 is also present in skin, pancreas, leuko-
cytes, and bone marrow. HBD-3 was identified simultaneously
in psoriatic scales and through bioinformatics, and apart from
epithelia is also expressed at lower levels in non-epithelial cells
of the heart, liver, fetal thymus, and placenta. HBD-4 was identi-
fied by genomics (66) and its expression has been assessed through
detection of mRNA and considered to occur primarily in testis and
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Table 2 | Cell sources and expression of defensins and cathelicidin.

Name Defensin type Cell source Tissue Production Activity

HNP 1–4 α PMNs Abundant Constitutive Antimicrobial

Inducible Antiviral

HBD 5–6 α Paneth cells Abundant Constitutive Antimicrobial

Epithelial cells Chemotactic for PMNs and

T-cells

HBD-1 β Epithelial cells Urinary and respiratory

tracts

Constitutive and inducible

(LPS, peptidoglycan,

interferon-γ)

Antimicrobial

Keratinocytes Chemotactic for monocytes,

dendritic cells, and CD4 T-cells

HBD 2–4 β Epithelial cells Psoriatic scales Inducible (IL-1, TNF-α, LPS) Antimicrobial

Keratinocytes

LL-37 Cathelicidin Epithelial cells, neutrophils,

T- and B-lymphocytes,

NK-cells, keratinocytes

Thymus, spleen, skin, liver,

bone marrow, stomach,

intestine and testis

Constitutive and inducible

(insulin-like growth factor

1, TNF-α, IL-1 α, IL-6)

Chemotactic for granulocytes

and CD4 T-cells

HNP, human neutrophil peptide; HBD, human beta defensin; PMN, polymorphonuclear leukocytes.

epididymis (62). HBD2–4 are inducible and can be up-regulated
in response to pro-inflammatory stimuli such as IL-1, TNF-α,
and LPS. Multiple defensin genes have been discovered suggesting
more HBDs on peptide level (67).

The third family of defensins, the θ-defensins, generate from
precursor peptides of α-defensins (68) and have been identified
in rhesus macaque monkey leukocytes. The θ-defensins are not
expressed in humans due to mutations encoding premature stop
codons (69).

Cathelicidins are another major group of structurally and evo-
lutionary distinctive mammalian AMPs constitutively expressed
in thymus, spleen, skin, liver, bone marrow, stomach, intestine,
and testis, and therefore similar in abundance of expression to
the defensins (61, 66, 68). There is only one human catheli-
cidin gene encoding the amphipathic alpha-helical peptide LL-37
(64). Cathelicidins are constitutively expressed in epithelial cells,
neutrophils, T- and B-lymphocytes, NK-cells, and in mouse and
human mast cells, and their synthesis can be enhanced by LPS
and lipoteichoic acid (66, 70). Cathelicidins have direct antimi-
crobial effect on Gram+ and Gram− bacteria and their syn-
thesis in keratinocytes can be induced by Staphylococcus aureus.
Some cytokines (insulin-like growth factor 1, TNF-α, IL-1α, and
IL-6) can also induce the synthesis of LL-37 in keratinocytes
(61). There are other AMPs, i.e., lysozyme, azurocidin, and
bactericidal/permeability-increasing protein, which also possess
antimicrobial activities and enhance phagocytosis (64).

Although AMPs are mostly known for their anti-bacterial prop-
erties, a great number of them also possess chemotactic features.
α-defensins are chemotactic for PMNs and T-cells, HBDs for
monocytes, DC, and CD4 T-cells, while LL-37 are chemotac-
tic for granulocytes, as well as CD4 T-cells. All this suggests an
essential role of AMPs as a link between innate and adaptive
immunity. Generally, AMPs have antimicrobial properties, but
are also an essential part of the inflammatory response (71), and
different environmental stimuli involving multiple signaling path-
ways promote their synthesis. Pro-inflammatory molecules (IL-1,

TNF-α, IL-6) and bacterial products augment the expression of
cathelicidins and defensins through activation of AP-1, JAK2, and
STAT3 signaling pathways (61). Altogether AMPs appear to be a
crucial component of the antimicrobial host defense, directly inac-
tivating the pathogens and contributing to the immune response
associated with the pathogen removal.

COMPLEMENT
The complement system is a crucial component of innate immu-
nity and is responsible for the recognition and elimination of
pathogens. Its activation is associated with inflammatory media-
tion (72, 73) and induction of pro-inflammatory cytokines secre-
tion (72). Activation of the complement system also facilitates
clearance of toxic cell debris and apoptotic cells (74–76), as well as
immune complexes (72, 76, 77).

The complement system plays an important role in various
inflammatory disorders. Its activation can significantly contribute
to inflammation-mediated tissue damage following ischemic-
reperfusion injury (78), whereas complement deficiencies highly
favor the development of autoimmunity (79). The accumula-
tion or unsuccessful removal of cellular debris may contribute
to autoimmune disorders like systemic lupus erythematosus
(75), as well as various chronic inflammatory diseases like age-
related macular degeneration (76), rheumatoid arthritis (80), and
asthma (81).

The complement system consists of more than 30 soluble and
cell-associated factors and can be activated through three pathways
(classical, alternative, and lectin) (Figure 2). The components of
the complement system are synthesized to a great extent not only
by hepatocytes but also by tissue macrophages, blood monocytes,
and epithelial cells of the gastrointestinal and genitourinary tracts.

INNATE IMMUNITY OF THE BRAIN
Both AMPs and C components are important factors of the
innate immune system. Besides the fact that AMPs and C com-
ponents are mostly produced in the periphery and that the
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FIGURE 2 | Activation of the complement cascade. Activation of all three C
pathways generates homologous variants of C3-convertase cleaving C3 into
C3a and C3b, whereas C3a stimulates mast cell degranulation and has
chemotactic properties, and C3b acts as an opsonin and binds to the surface
of pathogens. Increasing C3b deposition leads to the formation of
C5-convertases cleaving C5 into the chemotactic C5a, and the fragment C5b,
which together with C6, C7, C8, and the polymeric C9 forms the membrane
attack complex (MAC) leading to the formation of transmembrane channel
and osmotic lysis of the targeted pathogen. The classical pathway (CP) is
initiated by binding of the C1-complex, consisting of a C1q molecule and a
tetramer of 2 C1r and 2 C1s molecules, to antigen-bound IgM or IgG. The
C1-complex cleaves C2 and C4 into C2a and C2b, and C4a and C4b,
respectively. The C2a and C4b fragments form the CP C3-convertase. The
lectin pathway activation is due to binding of mannose-binding lectin (MBL)
and ficolins (Ficolin-1, -2, and -3) to carbohydrate pattern on microorganisms

and dying cells, thus activating the MBL-associated serine proteases MASP-1
and MASP-2, which would in turn cleave C2 and C4. The alternative pathway
(AP) is continuously activated through spontaneous C3-hydrolysis, resulting in
formation of C3 convertases, which cleave C3 to a C3b-like C3, i.e., C3(H2O).
Complement regulators are typically present on host cells and absent on
pathogens, thus allowing C3(H2O) to bind factor B on the surface of the latter,
and form additional C3 convertases after activation by factor D. In the
presence of Factor D, C3(H2O)B is cleaved to Ba and Bb and forms
C3(H2O)Bb, which in turn cleaves C3 to C3a and C3b forming C3bBb, which is
stabilized by properdin. Properdin bound to microbial surfaces and apoptotic
and/or necrotic cells can recruit C3 and also activate the AP (82). The final
C3bBbP complex enzymatically cleaves more C3 and amplifies C activation.
The C3-convertase of the AP can bind another C3b fragment and the resulting
complex C3bBbP(C3b)n acts as a C5-convertase and triggers the formation of
MAC and pathogen elimination.

BBB permeability is not absolute, there is evidence suggest-
ing that both groups of proteins can be also produced in the
brain (15, 83, 84).

GLIAL CELLS IN INNATE IMMUNITY OF THE BRAIN
As previously mentioned, both microglia and astroglia are impor-
tant participants in the innate immune response of the brain and
both cell types can produce complement components and AMPs,
as well as cytokines (Table 3).

NEURONS IN INNATE IMMUNITY OF THE BRAIN
In the brain, immune function and modulatory activity are not
features attributed only to immune competent cells, i.e., microglia
and astrocytes, but also to non-immune cells. Neurons were

originally considered to be just effector cells of C activation
and neurodegeneration resulting from glial activation or cytokine
influx through the BBB. However, neuronal expression of mRNA
for C1q, C2, C3, C4, C5, C6, C7, C8, and C9 has been observed in
post-mortem tissue from patients with Alzheimer’s disease (AD)
(15, 73). Neuronal expression of C1-inhibitor has also been reg-
istered in AD cerebral tissue, suggesting expression of C regulator
proteins and protection from full C activation associated with
membrane attack complex (MAC) formation and cell lysis. Clus-
terin, C3aR, Factor H, and S protein have also been detected in
neurons (73). Therefore, through its capacity of de novo synthesis
of C components and regulators, the neuronal population appears
to be an active player in the innate response of the CNS. So far,
there is no data suggesting neuronal AMP production.
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Table 3 | Expression ofTLRs, complement components, and antimicrobial peptides by microglia and astrocytes.

Cell type TLRs C components C regulators C receptors AMPs

Microglia TLR1, TLR3, TLR5-9 (158) C1q, C1r, C1s, C2, C3, C4 (73) C1-inhibitor (73) C1qR, CR3, C3aR,

CR4, C5aR (73)

HBD-1(109)

TLR2 (159) CD59, CR1 (15) LL-37 (91)

TLR4 (160)

Astrocytes TLR2 (161, 162) C1q, C1r, C1s, C2, C3, C4,

Factor B, Factor D, C5–C9 (73)

C1-inhibitor, Factor H, Factor I,

S protein, clusterin (73)

CD59, DAF, MCP, CR1 (15)

C1qR, CR2, C3aR,

C5aR (73)

HBD-1, HBD-2 (83),

LL-37 (91)TLR3 (163)

TLR4 (162, 164)

TLR5 (162, 164)

TLR9 (162, 164)

OLIGODENDROCYTES IN INNATE IMMUNITY OF THE BRAIN
Oligodendrocytes have also been shown to express C components
like C3, as well as C regulator proteins, in particular C1-inhibitor,
Factor H, S protein, and clusterin (73).

ENDOTHELIAL CELLS IN INNATE IMMUNITY OF THE BRAIN
Although the data suggesting expression of C components by cere-
bral epithelium is quite limited and points only toward production
of C3 (85) peripheral endothelium has been proven to synthesize
C1, Factor B, Factor H, and C5aR. Therefore, there is a possibility
that brain epithelium might be also producing these C compo-
nents. In respect to production of AMPs, synthesis and expression
of HBD-2 mRNA and protein have been observed in human brain
capillary endothelial cells following exposure to Chlamydophila
pneumoniae (86). Overall, this data suggest a potential role of
brain epithelium in innate immune response and modulation.

COMPLEMENT COMPONENTS AND AMP EXPRESSION IN
THE BRAIN UNDER NORMAL CONDITIONS
Some immune proteins such as pro-inflammatory cytokines
(TNF-α, IL-6), MHC 1, and MHC receptors, apart from their
capacity to trigger and participate in an immune response, also
possess non-immune characteristics. Since C components are
shown to similarly demonstrate non-immune features, for exam-
ple, promote proliferation and regeneration in peripheral tissues
(76), it is possible that they also execute analogous functions in the
CNS. This hypothesis is supported by the observation that C3aR
can regulate in vitro differentiation and migration of neural prog-
enitor cells (87). In a study looking at the capacity of the classical
C pathway to mediate CNS synapse elimination, Stevens and col-
leagues observed association of C1q and C3 with remodeling of
synaptic connections in the visual system of the developing mouse
brain (88). Chu and colleagues observed enhanced synaptic con-
nectivity and epilepsy as a result of global deletion of C1q in mice
(89). C1q also augments microglial clearance of apoptotic neurons
and neuronal blebs and modulates the subsequent inflammatory
cytokine production (90).

In the CNS, only HBD-1 is proven to be constitutively
expressed. Hao and colleagues detected mRNA for HBD-1 in cul-
tured microglia, astrocytes, and meningeal fibroblasts, but not in
neurons (83). Conversely, HBD-2 expression is not constitutive
but inducible and can be detected following exposure to LPS
and/or pro-inflammatory cytokines (LT-1β, TNF-α) (83). The

expression of cathelicidin LL-37 is also inducible and reported
in cerebrospinal fluid and serum from patients with bacterial
meningitis (91).

COMPLEMENT COMPONENTS AND AMP EXPRESSION IN
THE BRAIN UNDER PATHOLOGICAL CONDITIONS
Most of our knowledge of the expression and function of C com-
ponents and AMPs in the brain is derived from studies of different
brain diseases. Both C and AMPs have been registered in bac-
terial meningitis and cerebral infections, in trauma, stroke, and
reperfusion injuries, as well as chronic conditions of brain injury
such as AD, multiple sclerosis (MS), Parkinson’s, and Huntington’s
diseases.

COMPLEMENT AND AMPs IN ALZHEIMER’S DISEASE
Cribbs and colleagues observed up-regulation of innate immune
system pathways in post-mortem hippocampus from aged and
AD patients (92). The C system is associated with the inflamma-
tory response, occurring around the neurofibrillary tangles and
amyloid-β (Aβ) plaques in AD. Interestingly, different expression
of C components is associated with the different neuropathological
progression stages of AD (15). In the early stages of AD, C1q, C4d,
and C3d are found, but MAC is absent, while in later stages the
levels of C1q, C4d, and C3d are more prominent and MAC is regis-
tered in neurofibrillary plaques and neurite tangles (93–98). Yaso-
jima and colleagues observed increased level of C1q in entorhinal
cortex, hippocampus, and mid-temporal gyrus, characterized with
high density of Aβ-plaques and neurite tangles (99). Additionally,
Tooyama and colleagues demonstrated that C1q in the Aβ plaques
is endogenously produced in the AD brain (100) suggesting C1q
as an important mediator of AD inflammation. Genome wide
association studies have allowed considerable progress in under-
standing AD genetics, identifying loci, including CR1, which are
significantly associated with AD susceptibility (101–103).

The Aβ-plaques and the neurofibrillary tangles in AD have been
mostly associated with classical C pathway activation, whereas
alternative pathway (AP) has been documented only in the Aβ-
plaques in human AD patients (104), and in murine AD models
(94). The participation of the AP in AD inflammation has been
confirmed through AD mouse model using C1q−/− mice, where
products resulting from C3 cleavage and properdin were registered
in the Aβ-plaques (94, 105). Fonseca and colleagues demonstrated
that treatment with PMX205, a C5aR antagonist, significantly
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reduces neuropathology in a mouse model of AD (106). How-
ever, the data retrieved from mouse models of AD and associated
with complement activation should be cautiously considered due
to the differences between the mouse models. Fonseca and col-
leagues observed a much slower progression of the disease in 3xTg
mice compared to other transgenic strains and suggested AP acti-
vation or a C3-independent cleavage of C5 accounting for the
detrimental outcome in these mice (107).

Conversely, the C system might as well play a protective role in
AD (93). Osaka and colleagues have demonstrated that C5a may
protect against excitotoxicity and activate neuroprotective mitogen
activated protein kinase (108).

The data referring to the role of AMPs in AD are relatively
limited, although the inflammatory process occurring in AD is
associated with increased levels of HBD-1 mRNA in choroid
plexus epithelium and HBD-1 protein in hippocampal neurons
(109). Therefore, the nature of the AD inflammatory response is
complicated and involves both C system and AMPs.

COMPLEMENT AND AMPs IN MULTIPLE SCLEROSIS
C activation in MS is lesion and location dependent. In white mat-
ter lesions, C3d and C4d are detected and most likely covalently
bound to myelin sheaths, while C3d, C1q, and C5 are associate
with disrupted myelin, micro- and astroglia, and vessel walls (15,
110, 111). It is possible that some C factors in the white matter
lesions are rapidly turned over as detection of C1q and MAC on
myelin sheaths so far has not been successful (15). In gray matter
lesions, C activation is very low (110), while in mixed white and
gray matter C3d and C4d are detected on the myelin sheaths on the
border of the lesions and C3d is only registered in the blood vessels
(15). The production of C factors in MS is most likely endogenous,
with macrophages considered as a main source of C1q and C3 and
astroglia testing positive for C components in all lesions.

Direct link between AMPs and MS has not been yet established.
Ultraviolet-B irradiation and vitamin D are important factors
explaining the geographic variation and the increased prevalence
of MS in areas with lower amount of sunshine (112). Once MS has
developed, ultraviolet-B irradiation and vitamin D can reduce the
severity of the disease through vitamin D-induced apoptosis of
CD4 T lymphocytes (113). Vitamin D enhances innate immunity
and the transcription of cathelicidin (114) and different defensins
(115). Therefore, the balance of AMPs might be an important
factor associated with the control of the inflammatory process
in MS.

COMPLEMENT AND AMPs IN STROKE AND REPERFUSION INJURIES
The pathobiology of stroke involves an inflammatory response
associated with all stages of the ischemic cascade, starting from
the early damaging events triggered by arterial occlusion to the late
regenerative processes underlying post-ischemic tissue repair (23).
Increased immunoreactivity for C1q, C3c, C4d, and C9, and vir-
tually absent C regulators were registered in ischemic lesions from
patients with acute brain ischemia or ischemic stroke, suggesting
activation of the classical C pathway (116). Therefore, the com-
bination of increased deposition of C components and decreased
expression of C regulators is a possible mechanism of tissue dam-
age during ischemia in human brain. Supporting evidence for this

hypothesis is provided by the study of Van Beek and colleagues who
characterized the expression of different C components following
permanent MCAO in the mouse (117). Their data demonstrate
increased levels of C1q and C4 mRNA in ischemic cortex and
increased expression of C4 in perifocal neurons suggesting local
expression of C components, which (i) may contribute to the
inflammatory process and represent a key component in secondary
injury and (ii) may result in the formation of MAC and contribute
to host cell lysis (117). The role of the AP in ischemic stroke has
not yet been fully investigated, although a study by Elvington and
colleagues in a murine model of MCAO suggests that the AP prop-
agates cerebral inflammation and injury through amplification of
the complement cascade (118).

Conversely, some data suggest protective role of the C sys-
tem following ischemic injury, proposing that C activation does
not appear to be a primary contributor to brain injury in a
rabbit model of acute thromboembolic stroke (119) and also
that C activation contributes to remodeling during repair in the
CNS (73).

There is no data directly connecting AMP expression and
stroke, although the inflammatory response resulting from
ischemic injury can be associated with AMP production. Williams
and colleagues proposed that central to the innate and adap-
tive immune response, and the prolongation of inflammation
within the brain, is a dysregulation of constitutively expressed
and inducible AMPs (84). In vitro exposure of human primary
epithelial cells to high levels of glucose or low insulin results in
decreased expression of HBD-2 and HBD-3 (84). Ischemic events
in the adult brain are associated with the occurrence of chronic
hyperglycemia, which can contribute to glycation of specific amino
acid residues on AMPs, resulting in conformational changes and
inhibition or prolongation of AMP function (84, 120). Therefore,
the balance of AMP expression in the brain might be crucial for
the inflammatory processes and subsequent occurrence of brain
damage in the CNS.

COMPLEMENT AND NEONATAL HI
Complement is an essential aspect of innate immunity, and plays
a role not only in normal brain physiology but also during pathol-
ogy, including ischemia. Experimental research using rodent mod-
els of HI are now starting to clarify its role in hypoxic-ischemic
brain injury.

A hallmark of hypoxia-ischemia primary energy failure is aci-
dosis. A study by Sonntag and colleagues looking at umbilical
arterial pH 22–28 h after birth has shown that serum C3a and C5a
are increased after fetal acidosis (121). Another clinical study has
demonstrated that circulating C3 is reduced following neonatal
asphyxia (122). Initial experimental rodent studies have shown
that C9 administration appeared to be detrimental (123), and that
cobra venom factor (CVF) treatment did not affect HI induced
brain injury in a study by Lassiter et al. (124). However, this
same treatment approach was performed subsequently by Cow-
ell and colleagues, and shown that CVF pretreatment decreases
brain infarction following neonatal HI (125). Precise studies using
C1q knockout mice were used to investigate the classical C path-
way role in neonatal HI. A study by Ten and colleagues revealed
that C1q−/− mice had substantial reduction in brain infarction,
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as well as neurofunctional impairment when compared to wild
type controls. Furthermore, wild type mice demonstrated greater
deposits of C1q and C3 deposits within the brain as well as the
presence of granulocytes in the area of infarction (126). This study
strongly suggests that classical complement activation and subse-
quent brain deposition of C1q and C3 is not only associated with
infiltration of granulocytes but also with HI brain injury. This
hypothesis was further strengthened when the same group looked
at brain mitochondria, and demonstrated that neurons of C1q−/−

mice were resistant to hypoxia-ischemia, with preserved brain
mitochondria respiration, and reduced production of reactive
oxygen species. Additionally, this study demonstrated that clas-
sical complement activation detrimental role in hypoxic-ischemic
injury does not involve activation of MAC (127).

C3 is expressed in the brain by both neurons and glial cells
(Table 3). Its activation and subsequent generation of C3a is
known to have pro-inflammatory properties, and its expression
appears to be detrimental in several models of CNS injury.
However, C3a also has anti-inflammatory properties following
LPS administration, by decreasing LPS-mediated cytokine release
(128). Additionally, in vitro studies have shown its neuropro-
tective effects by acting on both microglia (129) and astrocytes
(130). C3a can bind to its canonical receptor C3aR, and accord-
ing to some controversial data to the alternative receptor C5L2
(131–133), which is expressed in both neurons and glia cells
and has anti-inflammatory properties (134). However, in a study
by Järlestedt and colleagues, it was demonstrated that canonical
over-expression of C3a in astrocytes resulted in reduction of HI-
induction of hippocampal tissue loss, as well as reduced numbers
of astrocytes and microglia/macrophages in the ipsilateral stria-
tum, suggesting that C3a protective role following HI is a result of
its binding to C3aR (135).

Overall, experimental studies have shown that C1q is highly
present in the brain following ischemia (136), and that classical
complement pathway activation via C1q generates C3a and C5a
pro-inflammatory mediators, which are associated with HI brain
injury (137, 138), as well as complement-associated genes (16).
Additionally, deletion of C1q not only reduces brain infarction
and neurofunctional deficit but also results in protection of mito-
chondria respiration, indicating a role for classical complement
activation and brain oxidative stress (127), and demonstrating a
link between innate immunity and oxidative stress. Conversely,
C3aR-mediated activation of C3a has also revealed a degree of
protection following HI insult.

AMPs AND NEONATAL HI
Currently, there is no direct evidence for the involvement of AMPs
in neonatal HI brain damage. In respect of the capability of the
CNS to locally produce AMPs and the evidence for their partic-
ipation in inflammation-associated diseases such as AD and MS,
AMP involvement in neonatal HI inflammation and subsequent
brain damage is quite possible.

As previously described neonatal HI triggers an inflammatory
response including activation of microglia, astroglia, DC, and is
associated with release of pro- and anti-inflammatory cytokines,
chemokines, and adhesion molecules. According to Bain and col-
leagues one of the reasons for the occurrence of HI brain damage

is the misbalance in the release of pro- (IL-1, IL-6, IL-8, TNF-α)
and anti-inflammatory (IL-10) cytokines promoting differentia-
tion of oligodendrocyte precursor cells into astrocytes, but not
oligodendroglia thus impairing subsequent myelination (139). In a
mouse model of neonatal HI, Shrivastava and colleagues observed
up-regulation of pro-inflammatory IL-1β, IL-6, and TNF-α and
modulation of anti-inflammatory cytokines IL-1 receptor antag-
onist, IL-4, IL-13, and IL-10 (140). The up-regulation of IL-1β is
to a great extent due to microglial activation in response to the
HI injury and subsequently affects astrogliosis. Both IL-1 and IL-6
have been implicated in the induction and modulation of reac-
tive astrogliosis (141). Microglial IL-1β might be directly affecting
astroglial activation (142), while the effects of IL-6 on astroglio-
sis might be either direct or through the JAK2/STAT3 pathway as
STAT3 is a critical transcription factor regulating astroglial mat-
uration and GFAP expression (143, 144). Activated astroglia can
subsequently produce HBD-2 (83) and alter the innate immune
response in the brain following neonatal HI injury.

Neonatal HI might be directly affecting astrocytes promot-
ing IL-1β (142) production, which can amplify astroglial and
microglial activation and stimulate both cell types to produce
AMPs. Conversely, activated astrocytes can also down regulate
microglial activation through production of anti-inflammatory
cytokines such as transforming growth factor β and prostaglandin
E2 (145, 146) thus limiting inflammation and subsequent neu-
rodegeneration (142). This can potentially affect microglial pro-
duction of AMPs.

Post-HI hyperglycemia is harmful for the HIE (147). Although
results obtained from adult experiments cannot be directly trans-
ferred and used as explanation for neonatal data due to differences
in the level of maturation and enzyme development (5, 140), some
pathways might be valid in adult as well as neonatal set-up. There-
fore, observations of low AMP levels due to hyperglycemia and/or
increased insulin resistance associated with many neuropatholo-
gies such as AD (84) might be also valid following neonatal HI.
Reduction of mRNA for HBD-2 and HBD-3 has been observed
after in vitro exposure of human epithelial cells to high glu-
cose and/or low insulin (84). Therefore, the detrimental effects
of hyperglycemia following neonatal HI might be attributed to
alteration of AMP production.

Toll like receptors are important for antigen recognition in
the CNS. TLR-regulated responses can control elimination of cell
debris and promote repair in the brain (148) and are suggested to
play an important part in CNS inflammatory conditions, includ-
ing ischemia (141, 149). Microglial cells express TLRs and respond
to TLR ligands (Figure 1) (148). TLR-4 is expressed by astrocytes,
endothelial cells, and neurons (150, 151). Hao and colleagues sug-
gested that astrocytic production of HBD-2 depends on cytokine
stimulation of TLR, IL-1β, and TNF-α receptors (83). The precise
mechanism through which astrocytes produce defensins is unclear,
but TLRs induce NF-κB activation in response to cytokines and
bacterial toxins, thus stimulating astrocytes to produce AMPs (64)
(Figure 1). This hypothesis might be also valid in respect to
astrocytic AMP production following neonatal HI.

Another mechanism through which AMPs might be affecting
the inflammatory response following neonatal HI is through their
ability to recruit immature DC to the site of inflammation and
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promote DC maturation through TLR-4, thus modulating the
adaptive immune response of the brain (152).

All these suggest that misbalance of constitutively expressed
(HBD-1) and inducible (HBD-2, HBD-3) AMPs, as well as catheli-
cidin (LL-37) is likely to occur in cases of inflammation-associated
neurodegeneration in the adult brain, as well as following neona-
tal HI.

So far, there is no evidence suggesting direct damaging effects
of AMPs on mammalian cells (83). Supportive evidence for the
role of AMPs in the innate immune response following neonatal
HI is the use of novel innate defense regulator peptides (IDRs)
in animal models of neonatal cerebral inflammation and injury.
IDRs are synthetic derivatives of endogenous cationic host defense
peptides such as cathelicidin, selectively suppressing inflammation
and augmenting protective immunity to pathogens (153–155).
Recently, Bolouri and colleagues demonstrated that IDR-1018 sup-
pressed pro-inflammatory gene regulation in a neonatal mouse
model of LPS-sensitized HI damage (156). The same group also
suggested that post-HI treatment with IDR-1018 reduces LPS-
induced HI brain damage. Therefore, IDRs might be promising
neuroprotective agents for neonatal HI.

CONCLUSION
Many neurodegenerative disorders have similar pathogenic mech-
anisms and data obtained from one disease may prove valid for
another. There is a considerable amount of information in respect
to the role of the C system, but there is no direct evidence for the
involvement of AMPs in neonatal HI brain injury. Neonatal HI is
associated with a robust inflammatory response, involving rapid
change in neuronal gene expression associated with stimulation
and aggregation of astrocytes and microglia for survival support
(17). Activated microglia and astrocytes produce immunomodu-
latory proteins such as C components (73) and AMPs. We propose
that misbalance of those proteins affects the equilibrium between
pro- and anti-inflammatory cytokines in the CNS, resulting in
prolonged inflammatory response and subsequent brain injury
following neonatal HI. The regulation of the innate immune
response simultaneously with cellular repair in the CNS is very
complex, but the capability of both microglial and astroglial cells
to produce C components and AMPs under cytokine stimulation
suggests a role for both types of proteins in the brain. Whether this
role is associated with the initiation or prolongation of the inflam-
matory response and subsequent damage following neonatal HI
is unclear and needs further investigation. Deletion of some com-
plement components such as C1q, as well as over-expression of
others (C3a) has proven protective in neonatal HI brain damage.
Application of CVF, C1-inhibitor, C3-inhibition through solu-
ble CR1 or C3-deletion, as well as immunoglobulin treatment,
have all shown protective effects in adult stroke animal models
(157), suggesting that complement-targeted therapy could prove
effective in neonatal HI and needs further investigation. The pro-
tective effects of IDRs in neonatal mouse models of HI suggest
a potential key role for AMPs in the inflammatory response fol-
lowing neonatal HI brain injury. In conclusion, both C and AMPs
appear to be key modulators of the innate and to some extent
adaptive immune response following neonatal HI, which makes
them potential candidates for neuroprotective strategy.
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