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Regulatory T cells (Tregs) are suppressive T cells that have an essential role in maintaining
the balance between immune activation and tolerance. Their development, either in the
thymus, periphery, or experimentally in vitro, and stability and function all depend on the
right mix of environmental stimuli.This review focuses on the effects of cytokines, metabo-
lites, and the microbiome on both human and mouse Treg biology. The role of cytokines
secreted by innate and adaptive immune cells in directing Treg development and shaping
their function is well established. New and emerging data suggest that metabolites, such as
retinoic acid, and microbial products, such as short-chain fatty acids, also have a critical role
in guiding the functional specialization of Tregs. Overall, the complex interaction between
distinct environmental stimuli results in unique, and in some cases tissue-specific, tolero-
genic environments. Understanding the conditions that favorTreg induction, accumulation,
and function is critical to defining the pathophysiology of many immune-mediated diseases
and to developing new therapeutic interventions.

Keywords: regulatory T cells, FOXP3, cytokines, metabolites, microbiome, plasticity, environment, immune
regulation

INTRODUCTION
Regulatory T cells (Tregs) are a suppressive subset of CD4+

T helper (Th) cells important for the regulation of immune
responses. The best-characterized Tregs are defined by expression
of the transcription factor forkhead box protein 3 (FOXP3) and
demethylation of the Treg-specific demethylated region (TSDR)
in the FOXP3 locus. Demethylation of this element is thought to
be crucial to maintain the stable, high expression of FOXP3 neces-
sary for lineage stability and suppressive function (1, 2). Additional
Treg markers include constitutive expression of the high-affinity
IL-2Rα chain (CD25) and cytotoxic T lymphocyte-associated anti-
gen 4 (CTLA-4) (3), along with low expression of the IL-7Rα chain
(CD127) (4, 5). CD4+CD25+FOXP3+ Tregs can be divided into
two main types: thymically derived Tregs (tTregs) and peripherally
derived Tregs (pTregs) (6). Although it is difficult to distinguish
between tTregs and pTregs phenotypically, both are thought to
have an essential role in immune regulation (7).

Because of their immunoregulatory function, Tregs are an
attractive therapeutic target in many different immune-mediated
diseases, including transplantation, autoimmunity, and autoin-
flammation (8). An emerging concept is that Tregs are functionally
specialized to their local environments (9), with the local milieu
of cytokines, metabolites, and catabolites having major effects on
the phenotype and function of these cells. In this review, we dis-
cuss current knowledge on how environmental factors affect Treg
development, maintenance, and function, focusing on key recent
findings in the area of cytokines, metabolites, and the microbiome.

CYTOKINES
THE ROLE OF CYTOKINES IN tTreg DEVELOPMENT IN THE THYMUS
Development of tTregs in the thymus is critically dependent on
signals from the T cell receptor (TCR), CD28, and cytokines. Of

particular importance are cytokines that signal via the common
γ chain (γc), (10, 11), a topic that has been extensively reviewed
(12, 13) (Table 1). Although most data suggest that IL-2 pro-
vides the essential signal to CD25+FOXP3− single positive tTreg
precursors to differentiate into FOXP3+ cells, in the absence of
IL-2, IL-15 provides a compensatory mechanism (14). In addi-
tion, a recent report found that CD25−FOXP3+ precursors have
a specific requirement for IL-15 signaling to develop into tTregs
in vitro and in vivo (15). Notably, while a complete absence of
signaling from γc cytokines leads to a total lack of Tregs (16), in
IL-2/IL-15-deficient mice a few Tregs remain (17). These find-
ings suggest there other cytokines that signal through γc that can
partially substitute for IL-2 and IL-15 in instructing tTreg develop-
ment. An unanswered question is what cells in the thymus make
IL-2, and/or other γc cytokines, and under what conditions? As
dendritic cells (DCs) have been shown to make IL-2 (18) and are
present in the human thymic medulla in close proximity to devel-
oping tTregs (19) they are an obvious candidate, but this has yet
to be experimentally investigated.

In addition to γc cytokines,TGF-β also has a critical role in tTreg
development. In mice, thymocyte apoptosis leads to production of
TGF-β by thymic macrophages, DCs, and epithelial cells, leading to
TGF-β-induced FOXP3 expression and tTreg differentiation (20).
Interestingly, in mice, this apoptosis in the thymus only occurs after
birth, providing an explanation for the long-standing finding that
murine tTregs only begin to develop 3 days after birth (21). How
this finding relates to tTreg development in humans is unknown,
but neonatal humans clearly have tTregs (22), so presumably this
process occurs long before birth. Although the relative impor-
tance of IL-2 versus TGF-β in tTreg differentiation versus survival
is a subject of much debate, both of these cytokines are clearly
important for this lineage and understanding the biology of this
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Table 1 | Summary of cytokines that influenceTregs.

Treg stage Cytokine Species Cytokine function Reference

Thymic

development

IL-2,IL-15 Mouse Drives development of tTregs by inducing FOXP3 via STAT5 (14, 16, 210)

IL-7 Mouse Promotes development of Tregs in absence of IL-2/IL-15 (17)

TGF-β Mouse Induces FOXP3 expression (20, 211)

Peripheral

development

IL-2 Mouse Critical for TGF-β-induced pTreg development (23, 212)

Decreases IL-6R expression, prevents Th17 differentiation (213)

TGF-β Mouse Induces FOXP3 expression in naïve CD4+ T cells in vitro and in vivo (24, 214)

Human Induces FOXP3 expression in naïve CD4+ T cells in vitro (31, 215, 216)

TNF-α Mouse Impairs TGF-β-induced differentiation of pTregs (92)

Homeostasis IL-2 Mouse Up-regulates pro-survival proteins (51, 52)

Involved in pTreg homeostasis (14)

Maintains Treg GATA3 expression, which suppresses T-bet and RORγt

induction

(54–56)

Mouse/ Human Controls size of Treg pool in vivo (53)

Induces and stabilizes FOXP3, regulates key Treg-signature molecules (217–219)

IL-7 Mouse Promotes homeostasis of IL-7Rα+ memory Tregs in the skin (57)

IL-15 Mouse Promotes homeostasis of IL-15Rβ+ memory Tregs accumulating with age (58)

IL-33 Mouse Induces proliferation of colonic ST2+ Tregs, increases TGF-β-induced

differentiation of ST2+ Tregs in vitro

(84, 85)

Induces CD4+ FOXP3+ Treg proliferation in vivo (81–83)

Function TNF-α Human Reduces FOXP3 mRNA and protein expression levels in Tregs (89, 90)

TNF-α-membrane bound: reduces suppressive capacity of Tregs (91)

Mouse Impairs Treg function (89, 92, 220)

Augments Treg function and proliferation (93, 97)

Differentiation IL-4 Mouse Induces Th9 differentiation in presence of TGF-β (221, 222)

TGF-β+ IL-1β, IL-6,

IL-21, IL-23, TNF-α

Mouse Induces Th17 differentiation and maintains Th17 cells (220, 223–225)

TGF-β+ IL-1β, IL-6,

IL-21, IL-23

Human Induces Th17 differentiation and IL-17 secretion (225–228)

IL-23 Mouse Inhibits Treg differentiation in vitro and Treg accumulation in gut (86, 87)

Th-like

Tregs/ex-Tregs

IL-6 Mouse Induces IL-17 secretion and conversion of Tregs to Th17 (101)

IL-1β, IL-2, IL-6, IL-15,

IL-21, IL-23

Human Combinations of these cytokines induce IL-17 secretion by Tregs (102, 103, 105,

107, 112)

IL-12 Human Induces expression of T-bet, CXCR3, and IFN-γ production in Tregs (114–116)

IL-12, IL-27, IFNγ Mouse Induces expression of T-bet, CXCR3, and IFN-γ production in Tregs (106, 109, 110)

system in humans will be key to developing therapies to boost
tTreg development in vivo.

THE ROLE OF CYTOKINES IN pTreg DEVELOPMENT IN THE PERIPHERY
The appropriate cytokine milieu is also a critical factor for the
development of pTregs. In mice, both TGF-β and IL-2 are required
to drive the conversion of CD4+CD25−FOXP3− naïve T cells into
CD4+CD25+FOXP3+ pTregs (11, 23–25). However, the final out-
come of TGF-β signaling is highly influenced by other surrounding
cytokines. For example, anti-inflammatory conditions augment
the effects of TGF-β, potentiating pTreg development (26). Con-
versely, pro-inflammatory cytokines (IL-1β, IL-6, IL-21, IL-23,
and/or TNF-α) counteract TGF-β-induced FOXP3 expression and
instead drive Th17 cell development by enhancing expression of

retinoid-related orphan receptor γt (RORγt), the master Th17
lineage transcription factor (27).

Because of their potential application as a cell-based therapy,
many groups have explored the cytokine combinations that can
drive the differentiation of FOXP3+ Tregs in vitro (iTregs) from
naïve human CD4+ T cells. Early evidence suggested that, as for
mice, TCR stimulation in the presence of both TGF-β and IL-2
induced FOXP3 expression. However, the interpretation of these
data became difficult when it was recognized that all activated
human T cells transiently express FOXP3. Indeed, although TGF-
β and IL-2-stimulated human CD4+ T cells express FOXP3, their
TSDR remains methylated (2, 28, 29), a phenotype indicative of
cells that are not stably committed to the Treg lineage. In addition,
there are controversial findings on whether the resulting cells are
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suppressive, with some studies finding suppressive function (30),
and others not (2, 28, 29, 31). It is important to note that human
Treg suppression assays are particularly difficult to interpret when
in vitro cultured cells are used due to non-specific effects mediated
by media consumption and cell killing (32). Therefore, analysis of
the TSDR status, and not functional assays, may be a more reli-
able way to measure human iTreg development. Collectively, these
data suggest that while TGF-β may be necessary for differentia-
tion of mouse and human pTregs in vivo, it is likely not sufficient,
with other unknown environmental factors needed for their full
development.

Interestingly, activated human Tregs express high levels of latent
TGF-β coupled to latency-associated peptide and bound to the
cell surface protein GARP (33–35). Therefore, Tregs themselves
can drive the generation of new pTregs by providing a source of
TGF-β (36, 37), offering a molecular explanation for a process
termed “infectious tolerance” that has been observed for many
years in animal models of transplantation (38–40). Mucosal DCs
are also a rich source of TGF-β because they express integrin αvβ8,
which converts extracellular latent TGF-β to its active form (41,
42). These cells may therefore be particularly important for the dif-
ferentiation of intestinal pTregs that, as discussed in more detail
below, are required for intestinal homeostasis.

Based on evidence that in humans TGF-β alone does not
induce robust differentiation of stable Tregs, many studies have
sought to define whether addition of other cytokines and/or com-
pounds can enhance the effect (43). The most convincing evidence
comes from addition of either the vitamin A metabolite all trans
retinoic acid (ATRA, discussed further in the Section“Metabolites”
below) or the mTOR inhibitor rapamycin. In mice, ATRA can be
effectively generated by mucosal DCs and functions to enhance
TGF-β-mediated pTreg generation, (44–46). In humans, suppres-
sive iTregs can be generated with ATRA and TGF-β, but their
stability based on the methylation of the TSDR is unknown (47–
49). Similarly, addition of rapamycin enhances TGF-β-induced
FOXP3 expression (49), and although the stability of these cells
is unknown, there is an ongoing clinical trial to test their poten-
tial as a cellular therapy in hematopoietic stem cell transplantation
(NCT01634217). Notably, rapamycin can also increase the stability
of fully differentiated human Tregs in vitro (29), and of adoptively
transferred non-human primate Tregs in vivo (50). These data
provide a strong rationale to consider using rapamycin therapy to
promote Treg function in vivo.

THE ROLE OF CYTOKINES IN Treg HOMEOSTASIS
After development, naïve and memory Tregs in both mice and
humans continue to rely heavily on IL-2 signaling for sur-
vival and homeostasis. IL-2 may also be important for facili-
tating Treg survival because it upregulates expression of pro-
survival protein myeloid leukemia cell differentiation 1 (MCL1),
which counter-regulates the FOXP3-induced pro-apoptotic pro-
tein BCL-2-interacting mediator of cell death (BIM) (51, 52).
Indeed, administration of IL-2 to mice enhances Treg survival
in vivo and reduces expression of the pro-apoptotic protein cas-
pase 3 (53). In mice and humans, IL-2 also maintains Treg function
by inducing FOXP3 mRNA, stabilizing FOXP3 protein expression,
and regulating key Treg-signature molecules such as CTLA-4

and glucocorticoid-induced tumor necrosis factor receptor related
protein (GITR) (11).

IL-2 is also essential to prevent the polarization of Tregs into
pro-inflammatory effector cells (54, 55). For example, IL-2 signal-
ing in Tregs is required to sustain expression of the GATA-binding
protein 3 (GATA3) transcription factor (55, 56). Although this
protein is commonly thought of as a Th2 cell lineage-defining
protein, its expression is required for negative regulation of the
TBX21 and RORC loci, which encode two transcription factors
that feedback to diminish FOXP3 expression (55). It is currently
not clear whether the role of GATA3 in Tregs is due to direct bind-
ing of GATA3 to regulatory regions in the TBX21 and RORC loci,
or indirect via positive regulation of FOXP3 itself, which can then
repress TBX21 and RORC transcription.

Whether or not other cytokines that signal via γc can substi-
tute for IL-2 during pTreg development/survival in vivo remains
unclear. Of note, some murine memory Tregs residing in the skin,
or accumulating with age seem to preferentially rely on IL-7 or
IL-15 for homeostasis (57, 58). Although human Tregs can defi-
nitely proliferate in response to IL-15 (59, 60), the relevance of IL-7
in humans is unclear as the lack of IL7Rα expression is a defining
feature of human Tregs (4, 5).

Because of the essential role of exogenous IL-2 for keeping Tregs
alive and maintaining FOXP3 expression, therapeutic approaches
that deliver IL-2 signals specifically to Tregs are being actively
explored. For example, delivery of IL-2/anti-IL-2-antibody com-
plexes in pre-clinical studies stimulates Treg expansion and reduces
disease in models of type 1 diabetes (T1D),experimentally induced
autoimmune encephalomyelitis (EAE), collagen-induced arthritis,
and angiotensin II-induced aortic stiffening (61–64). Similarly,
in models of proteinuric kidney disease and renal ischemia-
reperfusion injury, administration of IL-2/anti-IL-2-antibody
complexes promotes Treg expansion, improves renal function, and
reduces inflammation and disease symptoms (65, 66). In clinical
trials, low-dose IL-2 therapy has been investigated for the treat-
ment of graft versus host disease (GVHD) and T1D and appears
to successfully expand the circulating Treg cell pool (67–70). A
major caveat, however, is finding a dose regimen of IL-2 that only
affects Tregs and does not activate CD8+ T cells and NK cells
in parallel, as recently observed in a clinical trial of low dose
IL-2 and rapamycin in T1D (71, 72). Another consideration is
that IL-2-based therapies might not work in subjects who have
genetic defects in IL-2R-signaling such as patients with a T1D-
susceptibility IL-2RA haplotype (73) or whose Tregs have become
IL-2-unresponsive (74).

A converse application of IL-2 targeted therapy is blockade of
IL-2, which could theoretically be beneficial in the setting of can-
cer where depletion of Tregs could boost anti-tumor immunity
(75). Interestingly anti-CD25 mAbs (basiliximab, daclizumab)
were originally developed as immunosuppressive agents designed
to deplete effector T cells and are still in common use today in
transplantation. Investigation into whether daclizumab may also
affect Tregs has revealed that it does indeed cause a reduction
in Tregs by approximately 50%, both in the setting of autoim-
munity (multiple sclerosis) and in cancer immunotherapy (76,
77). Basiliximab has similar effects in transplantation (78). How-
ever, post daclizumab therapy, the remaining 50% of Tregs are
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fully functional (77). These data suggest that, at least using cur-
rent agents, IL-2 blockade is actually not a very effective way to
deplete Tregs, possibly because of their elevated expression of the
high affinity IL-2 receptor (i.e. CD25) and/or the ability of other
cytokines to compensate in vivo.

Another cytokine that has recently gained interest as a regulator
of Treg biology is IL-33, a member of the IL-1 cytokine family that
signals via a heterodimeric receptor consisting of interleukin-1
receptor-related protein ST2 and the IL-1 receptor accessory pro-
tein IL1RAcP (79). Expressed by stromal and immune cells, IL-33
is well known to have a pathological role in airway inflammation
and arthritis because it enhances and prolongs immune activation
(80). Surprisingly, however, IL-33 treatment can actually protect
against experimental colitis and rejection of HLA-mismatched car-
diac allografts in mice by promoting Th2 cells and FOXP3+ Tregs
(81–83). This anti-inflammatory effect of IL-33 on Tregs seems
to be mediated in part via DCs, as IL-33-dependent expansion of
murine ST2+FOXP3+ Tregs requires secretion of IL-2 by ST2+

DCs exposed to IL-33 (84).
In some tissues, however, there may be direct effects of IL-33

on Tregs. For example, more than 50% of colonic Tregs express
ST2 enabling them to quickly respond to IL-33 released by epithe-
lial cells upon tissue damage (85). Functionally, IL-33 can increase
TGF-β-induced proliferation of colonic ST2+ Tregs in vitro and
stabilize FOXP3 expression in inflamed tissues in vivo (85).
Notably, IL-23, which is known to inhibit pTreg differentiation
(86, 87), reduces expression of ST2 on Tregs (85), resulting in
abrogation of the IL-33-mediated increase in pTreg induction and
stabilization. Therefore, the balance between IL-33 and IL-23 may
be an important factor in determining the outcome of tissue local-
ized immune responses. In humans, IL-33 was previously thought
to be an attractive target for therapeutic blocking (88), as a variety
of inflammatory diseases feature elevated serum levels of IL-33.
However, in light of its newly discovered function in promoting
Treg expansion and function, inhibition of IL-33 could also have
deleterious effects in some settings.

CONTROL OF Treg FUNCTION BY CYTOKINES
The function of Tregs is also controlled by local the cytokine
milieu, with mounting evidence that the presence of pro-
inflammatory cytokines affect Treg suppression both directly and
indirectly. Cytokines with direct effects on Tregs, such as tumor
necrosis factor alpha (TNF-α), provide possible therapeutic tar-
gets for modulating Treg function. TNF-α is a pleiotropic cytokine
that can act on a wide range of cells. Tregs express the TNF recep-
tor, and there is evidence for both positive and negative effects
of TNF-α on their function. Recent evidence shows that TNF-α
induces expression of protein phosphatase 1 (PP1), which de-
phosphorylates the C-terminal DNA-binding domain of FOXP3,
resulting in a reduction in its function as a transcription factor
(89). Notably, treatment of rheumatoid arthritis subjects with
TNF-α-antibodies restores Treg function, decreases PP1 expres-
sion, and increases FOXP3 phosphorylation. These data are con-
sistent with previous studies showing that TNF-α impairs Treg
function in rheumatoid arthritis by reducing FOXP3 expression
(90), and that Tregs expressing membrane-bound TNF-α are less
suppressive than TNF-α negative Tregs (91). TNF-α also impairs

TGF-β-induced pTreg development in EAE by reducing FOXP3
transcription (92).

Data reporting negative effects of TNF-α on Tregs contrast to a
series of reports showing that TNF-α signaling through the TNF
receptor 2, which is expressed by a subset of mouse and human
effector and memory Tregs, enhances Treg proliferation and sup-
pressive activity (93, 94). Notably, one of the common side effects
of TNF-α therapy is psoriasis (95, 96) and data from mouse mod-
els suggest this may be due to an anti-TNF-α-mediated decrease in
Treg frequency in the skin (97). Therefore, environmental TNF-α
may actually bolster Treg function. Understanding how the local
tissues define whether TNF-α has a negative or positive effect on
Treg function will be key to understanding the side effects of this
very common therapy.

Similar to conventional CD4+ T cells, Tregs respond to
lineage-defining cytokines, resulting in differentiation into sub-
sets that seem to mirror classical Th1, Th2, and Th17
cells (98, 99). Th1-like, Th2-like, and Th17-like peripheral
CD4+CD45RO+CD127lowCD25high memory Tregs can be iden-
tified in human peripheral blood on the basis of differential
expression of the chemokine receptors CXCR3, CCR4, and CCR6,
respectively (100). A major question is whether these subsets of
Th-like Tregs are protective or pathogenic. Evidence for the former
comes from studies showing that Th-like Tregs remain suppres-
sive and are necessary to provide protection from various diseases
(101–114). On the other hand, in humans with autoimmunity
and/or inflammation, Th1-like FOXP3+ Tregs that express T-bet,
CXCR3 and produce IFN-γ appear to lose their suppressive func-
tion (115, 116), and multiple reports have shown that Th17-like
Tregs are enriched at inflammatory sites, indicating a potential role
in disease pathogenesis (116–120). We have also recently shown
the first evidence for IL-13+ Th2-like Tregs, which are significantly
increased in the skin, but not the blood, of subjects with systemic
sclerosis (121). IL-13 is a pro-fibrotic cytokine that drives tissue
fibrosis in this disease and in vitro experiments revealed that IL-33
increases the proportion of IL-13-producing Tregs in cultures of
skin biopsies from healthy controls. Therefore, in addition to pro-
moting Treg survival as described above, in some cases, IL-33 may
cause detrimental changes to Treg function.

METABOLITES
Dietary metabolites are another important environmental factor
that influence Treg differentiation and function, especially in the
gut. Research on the effect of metabolites on Tregs has particu-
larly focused on vitamins A, D, and tryptophan. Understanding
the effect of these and other metabolites on Tregs could identify
dietary supplements that enhance Treg-based therapies and novel
compounds that enhance in vitro expansion of stable Tregs.

VITAMIN A
All trans retinoic acid (ATRA) is the main bioactive metabolite
of vitamin A and, as briefly discussed above, is well known to
have an important role in the differentiation of pTregs (122, 123).
In vivo, a major source of ATRA appears to be mucosal DCs
which in mice characteristically express CD103 (integrin αεβ7),
(44–46, 124–126). Since mucosal DCs also express integrin αvβ8,
which converts extracellular latent TGF-β to its active form (41),
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these cells can drive the synergistic induction of FOXP3+ pTregs,
which specifically express gut homing markers, including CCR9
and integrin α4β7 (46). In humans, it has recently been demon-
strated that ATRA acts on DCs and gives them the ability to
preferentially drive the induction of gut homing Tr1 cells, an IL-
10-producing FOXP3− Treg subset (127). The Tr1 cells produced
by ATRA-producing DCs in this study displayed in vitro suppres-
sive function, expressed gut homing markers CCR9 and integrin
α4β7 and also produced IFN-γ.

As described in the Section “Cytokines,” Tregs can convert into
Th-like cells in response to different inflammatory cytokines, a
phenomenon, which may prove to be an obstacle for their use
as immunotherapy. Recent work by Lu et al. has demonstrated
that pre-treatment of human CD4+CD25highCD127low Tregs with
ATRA almost completely prevents IL-1β/IL-6-driven conversion to
Th1/Th17-like cells (128). Upon in vitro expansion in the presence
of IL-1β and IL-6, ATRA-primed Tregs maintained high FOPX3
expression, suppressive function and were superior to untreated
Tregs in preventing xenogeneic GVHD in mice. A similar effect
of ATRA has also been observed in a study of individuals with
autoimmune hepatitis type 2. Holder et al. demonstrated that the
suppressive function of Tregs specific for liver enzyme cytochrome
P450IID6 (the main disease autoantigen) was impaired follow-
ing culture with IL-1β/IL-6; however, this was prevented by the
addition of ATRA (129). Therefore, ATRA appears to be impor-
tant for Tr1 cell differentiation in the gut and for stabilizing
Tregs under inflammatory conditions, and has shown potential
for therapeutic use in mouse models of colitis and periodontitis
(130, 131).

VITAMIN D
Vitamin D metabolites have long been recognized as important
immunomodulators and exert their effects by binding to the
vitamin D receptor, which is expressed on many immune cells
including activated T cells (132). The active vitamin D metabo-
lite calcitriol (1,25-dihydroxy vitamin D3) can be metabolized
from vitamin D in the diet or synthesized in the skin follow-
ing UV exposure. Calcitriol is known to promote the growth
of both FOXP3+ and IL-10 producing Tregs, while inhibiting
Th17 cells (133, 134). It has recently been shown that calcitriol
also induces expression of skin (CCR10 and CLA) and inflamed
tissue (CXCR6) homing receptors in Tregs (135), and that addi-
tion of TGF-β enhances calcitriol-driven expansion of FOXP3+

Tregs in vitro (136). Furthermore, calcidiol (25-hydroxy vitamin
D3), a vitamin D metabolite similar to calcitriol, has been shown
to prime mucosal DCs to induce suppressive IL-10 and IFN-
γ producing Tr1 cells (127). A recent study has suggested that
calcitriol could be a useful adjunct therapy with allergens in sub-
lingual immunotherapy as it specifically enhanced Treg responses
to allergens in vitro (137). It is interesting to note that, follow-
ing treatment with UVB, MS patients had enhanced levels of
serum calcitriol, which correlated with increased levels of cir-
culating pTregs (138). This link between UVB exposure, serum
levels of vitamin D metabolites, and Treg frequency might con-
tribute to the observed epidemiological associations between envi-
ronmental UVB exposure and incidence of autoimmune disease
(139–141).

METABOLITES THAT ACTIVATE ARYL HYDROCARBON RECEPTORS
Numerous metabolites have been described that can activate the
aryl hydrocarbon receptor (AHR), a transcription factor that alters
the balance between Tregs and Th17 cells. The direction of this
balance shift is though to be ligand-dependent, with some AHR
ligands preferentially promoting Tregs and others promoting Th17
cells (142–144). For example, kynurenine, which is produced when
tryptophan is catabolized by indoleamine 2,3-dioxygenase (IDO),
is an AHR agonist that is important for generating Tregs and
inhibiting Th17 cell development (145). Indeed, many tolero-
genic cells, such as plasmacytoid DCs (146, 147) produce IDO, and
through the production of tryptophan metabolites preferentially
induce Tregs. Notably, both IDO and AHR are highly expressed in
human placenta, implying that tryptophan metabolites acting via
AHR also induces Tregs in pregnancy (148), a process critical for
maternal/fetal tolerance (149).

Another tryptophan metabolite, cinnabarinic acid, has been
identified as a novel AHR ligand (150) that is also an agonist of the
type-4 metabotropic glutamate receptor. Cinnabarinic acid has
been shown to prevent onset of EAE in mice following admin-
istration of myelin oligodendrocyte glycoprotein peptide through
enhancing immune responses that were dominated by Tregs (151).
Other dietary metabolites that can act as AHR ligands and promote
Tregs include indole-3-carbanole (I3C) and 3,3’-diindolylmethane
(DIM), derived from cruciferous vegetables. Treatment of EAE
mice with either I3C or DIM completely protects against dis-
ease symptoms, significantly reduces immune cell infiltration into
the CNS, increases Tregs, and reduces Th17 cells (152). These
effects are AHR-dependent as treatment with an AHR antagonist
reversed the protective effects of I3C and DIM. Similarly, a study of
methionine–choline-deficient (MCD)-diet induced mouse non-
alcoholic steatohepatitis (NASH) found that administering DIM
reduced disease and shifted the immune dominance from Th17
cells toward Tregs using AHR-dependent mechanisms (153).

Studies of these natural metabolites have also led to the identi-
fication of novel AHR ligands, such as benzimidazoisoquinolines,
which are not part of a normal diet. Administration of these com-
pounds to mice increased Treg frequency and suppressed GVHD
in an AHR-dependent manner (154). Understanding how the
activity of AHR controls the balance between Tregs and inflam-
matory T cells will lead to new approaches to alter this balance
therapeutically (155).

PURINE METABOLISM
Another important metabolic process is purine catabolism,
which regulates the balance of pro-inflammatory adenosine 5’-
triphosphate (ATP) and immunosuppressive adenosine. Through
expression of adenosine receptors and the ecto-enzymes CD39
and CD73 that metabolize ATP, Tregs are able to both react to,
and modulate, immune purinergic signals. CD39 and CD73 func-
tion to sequentially catabolize extracellular ATP: CD39 catalyzes
the conversion of ATP into adenosine diphosphate (ADP) and
adenosine monophosphate (AMP); and CD73 converts AMP into
adenosine (156). Whereas ATP signals through type 2 purinergic
(P2) receptors to initiate pro-inflammatory responses, adeno-
sine, signals through type 1 purinergic (P1) receptors to suppress
immune responses (157).
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Mouse Tregs express both CD39 and CD73 and the produc-
tion of adenosine by these enzymes is thought to be one of the
Treg mechanisms of suppression (158). In contrast, most human
CD39+ Tregs do not express CD73, and it is thought that human
Tregs primarily generate adenosine when they are in proximity
to CD73+ cells (159). Interestingly, expression of CD39 enables
DCs and neutrophils to move along an ATP concentration gra-
dient to sites of inflammation (160–162), and this may also be
true for Tregs. Evidence using the EAE model showing that CD39
has an important role in directing migration of Tregs to lymphoid
draining sites of the central nervous system (163) supports this
hypothesis.

Regulatory T cells themselves can also respond to adenosine
(157), which signals through the A2 class of P1 receptors to stim-
ulate a positive feedback loop by increasing expression of CD73
mRNA via stimulation of cyclic AMP (cAMP) response elements
in the CD73 locus (164). Adenosine can also act in an autocrine
manner via A2A receptors expressed on Tregs to enhance their
generation, CTLA-4 expression, and suppressive function (165).

Interestingly, in comparison to the negligible levels of cAMP
levels in conventional T cells, human Tregs generate and main-
tain high intracellular levels of cAMP (166–168). CD39 may be
important in this process, as intracellular production of cAMP is
increased by extracellular adenosine signaling through A2 recep-
tors. Of note, Tregs can mediate suppression by transferring cAMP
through gap junctions into neighboring conventional T cells and
DCs (166, 169). Intracellular cAMP also positively feedbacks on
Tregs stimulating upregulation of both CTLA-4 (170) and CD39
expression (171).

In terms of the effects of cAMP on pTreg differentiation, in
mice there may actually be negative effects as cAMP can suppress
TGF-β-driven differentiation of pTregs in vitro (172). This nega-
tive effect of cAMP is likely due to cAMP-mediated activation of
protein kinase A, which enhances TGF-β-mediated activation of
mitogen-activated protein kinases ERK and JNK. In humans, how-
ever, the effect of cAMP on pTreg differentiation may be different
as studies of prostaglandin E2 and vasoactive intestinal peptide,
compounds that increase cAMP levels, result in increased pTreg
generation and function (172, 173). As growing evidence shows
that signaling through G-protein coupled receptors, which stim-
ulate the cAMP pathway, has major effects on Treg differentiation
and function (discussed in Section “Microbiome”), developing a
full understanding of how cAMP affects Treg biology will be an
important area of future research.

MICROBIOME
There are approximately 1000 species of different microbes colo-
nizing the gut, with densities of 104-105 bacteria per millimeter of
effluent in the proximal small intestine and 1011 bacteria per gram
of luminal content in the colon (174). The high microbial con-
tent in the large intestine poses a large challenge to the mucosal
immune system, as it needs to tolerate commensal microbiota
and dietary antigens while maintaining the ability to eliminate
pathogens. Induction of colonic Tregs is crucial in fostering this
immune homeostasis.

It is now appreciated that a major site for development of
pTregs is the colon, resulting in a large population of regulatory

cells that have a distinct TCR repertoire and are critical for
intestinal homeostasis (175). Since colonic pTregs are signifi-
cantly reduced in germ-free mice, commensal microbiota has
an essential role in inducing these cells (175–177). Similarly,
the development of pTregs in the liver (178) and lungs (179)
also requires the presence of commensal microbiota early in life.
The exact mechanism behind the induction of colonic pTregs
remains unknown, but several microbial components have been
found to enhance their expansion and function, including short-
chain fatty acids (SCFAs) (180–182), and the bacterial mole-
cule polysaccharide A (PSA) of Bacteroides fragilis (183, 184)
(Figure 1).

SHORT-CHAIN FATTY ACIDS
Despite substantial individual variation in the composition of
the microbial community, in healthy adults most gut bacteria
belong to two phyla: Firmicutes and Bacteroidetes (185). Because
of the large anaerobic community and low oxygen availability
in the colon, bacterial metabolism is dominated by fermentation
and anaerobic respiration where nitrate, sulfate, and other com-
pounds are used as electron acceptors (186). Undigested dietary
carbohydrates are fermented to produce gases and organic acids,
particularly the SCFAs acetate (C2), propionate (C3), and butyrate
(C4), typically at a ratio of 3:1:1, respectively (187). Of these three
main SCFAs, acetate can be produced by enteric bacteria and
acetogens; propionate is a by-product of the succinate pathway
in Bacteroidetes; and butyrate is formed from two acetyl-CoA
molecules in Firmicutes (188). Specific species that have been
recognized by their high levels of butyrate production include
Faecalibacterium prausnitzii and the cluster IV and XIVa of genus
Clostridium (189). SCFAs are the most abundant (50–100 mM)
in the proximal colon, where most fermentation occurs (190).
However, in the peripheral blood, only acetate remains in rela-
tively high concentrations, since butyrate is preferentially utilized
by colonocytes as an energy source and propionate is metabolized
by hepatocytes (190).

Recent work has revealed that SCFAs are important in promot-
ing the differentiation of colonic Tregs. An early study reported
that germ-free mice have reduced colonic Treg numbers, and that
colonization by bacterial strains belonging to the cluster IV and
XIVa of the genus Clostridium rescues the deficiency and protects
mice from colitis (176). Administration of acetate, propionate, and
butyrate in drinking water mimics the effect of Clostridium colo-
nization in germ-free mice, resulting in an elevated Treg frequency
in the colonic lamina propria and increased IL-10 production by
these Tregs (180, 182).

Of the three main SCFAs, butyrate has been found to be the
most potent inducer of colonic Tregs. Mice fed a diet enriched
in butyrylated starches have more colonic Tregs than those fed a
diet containing propinylated or acetylated starches (181). Arpaia
et al. tested an array of SCFAs purified from commensal bacte-
ria and confirmed butyrate was the strongest SCFA-inducer of
Tregs in vitro (180). Mechanistically, it has been proposed that
butyrate, and possibly propionate, promote Tregs through inhibit-
ing histone deacetylase (HDAC), causing increased acetylation of
histone H3 in the Foxp3 CNS1 region, and thereby enhancing
FOXP3 expression (180, 181).
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FIGURE 1 | Microbial-derived molecules promote colonicTreg
differentiation. Undigested dietary carbohydrates are fermented by gut
commensal bacteria to produce the SCFAs acetate, propionate, and
butyrate. Administration of acetate in drinking water results in the
accumulation of IL-10+ colonic Tregs, and this effect is independent of
HDAC inhibition and acetylation of the Foxp3 CNS1 region. Although
acetate is a potent GPR43 ligand, it is not clear whether acetate mediates
its effect through this receptor. GPR43 expression in colonic Tregs is
required for propionate to inhibit HDAC function and enhance FOXP3

expression, thereby promoting Treg differentiation and IL-10 production,
Butyrate has similar effects by either directly acting on Tregs or through
modulating DC function to enhance their Treg-inducing ability; however,
the role of GPR109A in these effects is controversial. Purified PSA derived
from B. fragilis can also directly act on Tregs through TLR2 to promote Treg
function by enhancing expression of effector molecules including IL-10,
TGF-β2, and granzyme B. Membrane-bound PSA cannot act directly on
Tregs, instead it interacts with TLR2 on DCs to promote Treg differentiation
in a Gadd45α-dependent manner.

Short-chain fatty acids partially mediate their effects through
G-protein coupled receptors (GPR), including GPR41, GPR43,
and GPR109A. GPR41 and GPR43 are stimulated by all three
major SCFAs (191), whereas GPR109A only interacts with
butyrate (192). In mice, colonic and small intestinal Tregs
express GPR43, and expression of this receptor is required for
propionate-mediated HDAC inhibition and Treg expansion (182).
There are conflicting results as to whether GPR109A is required
for butyrate to mediate its pro-Treg effect. In both mice and
humans, GPR109A is only expressed on DCs and macrophages,
but not on T cells (192). Singh et al. found that splenic DCs
from Gpr109a−/− mice were not able to induce Treg differenti-
ation in response to butyrate (192). Additionally, the study found
that butyrate treatment increases transcription of Aldha1 (alde-
hyde dehydrogenase) in a GPR109A-dependent manner (192). As
discussed above, this enzyme is important in vitamin A metabo-
lism, so these data suggest that GPR109A signaling may increase

ATRA production by APCs and indirectly promote Treg differ-
entiation and function. In contrast, Arpaia et al. reported that
butyrate-pre-treated Gpr109a−/− DCs are not defective in in vitro
generation of Tregs (180). The reason for these discrepant find-
ings is not clear, but overall the emerging data demonstrating that
SCFAs can have both direct and indirect effects on Tregs and have
opened up an exciting new area of research.

POLYSACCHARIDE A
Another microbial component capable of enhancing Treg function
is PSA from the commensal gut bacterial strain B. fragilis. The ini-
tial study reported that in germ-free mice either colonization by B.
fragilis or administration of purified PSA induces IL-10 secretion
by CD4+ T cells and reduces gut inflammation (193). A subse-
quent study confirmed that the IL-10-expressing CD4+ T cells
were FOXP3+ Tregs and that PSA treatment increases Treg fre-
quency and their expression of effector molecules including IL-10,
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TGF-β2, granzyme B, and CCR6 (184). Notably, the authors found
that in the absence of APCs, PSA acts directly on Tregs through
toll-like receptor 2 (TLR2) to induce the observed effects (194).
It has also been demonstrated that administration of PSA pro-
tects against induction of EAE in mice through TLR2-mediated
expansion of CD39+ Tregs (195).

It remains unknown how PSA is recognized by the mucosal
immune system. Since the genome of B. fragilis does not con-
tain genes for any known bacterial secretion system (196) and
PSA is a large capsular polysaccharide (197), it has been pro-
posed that B. fragilis delivers PSA by secreting outer membrane
vesicles (OMVs) (198). Shen et al. observed that oral admin-
istration of PSA-containing OMVs purified from B. fragilis is
sufficient to protect mice from experimental colitis and that TLR2
expression on DCs, but not T cells, is required to promote IL-10
production by Tregs (198). Subsequent work identified that PSA-
treated plasmacytoid DCs, but not conventional DCs, are respon-
sible for inducing IL-10-secreting Tregs (199). Therefore, while
Tregs can directly respond to purified PSA, immune responses to
membrane-bound PSA require TLR2+ DCs. It is worth noting
that many other TLR ligands can also directly or indirectly impact
Treg function [reviewed in Ref. (200)]. In contrast to PSA, other
TLR2 ligands, such as Pam3CSK4 and FSL-1, inhibit the function
of both mouse and human Tregs (201–204). How multiple TLR
signals are integrated in the mucosal environment is unknown.

PROBIOTICS
Long before the direct effects of microbial products on Tregs
were understood at the molecular levels, many groups have been
exploring the potential therapeutic use of bacteria in the form
of probiotics to modulate Tregs. For example, administration
of a five-strain probiotic mixture (designated IRT5, including
Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus reuteri,
Bifidobacterium bifidum, and Streptococcus thermophilus) in mice
increases the proportion of Tregs in the mesenteric lymph nodes
(205). CD11c+ DCs purified from these treated mice also had
higher expression of IL-10, TGF-β, and IDO, and were more capa-
ble of inducing Treg differentiation compared to DCs from control
mice (205). A more recent study demonstrated that administration
of L. reuteri to mice was sufficient to prevent high-fat-diet-induced
adipose inflammation and obesity, an effect that was associated
with enhanced Treg induction and IL-10 expression (206). In vitro,
L. casei and L. reuteri can also prime human monocyte-derived
DCs to stimulate IL-10-producing Tregs through the adhesion
molecule DC-SIGN (207). Lopez et al. found that DCs exposed
to B. bifidum membrane vesicles strongly induced Treg differenti-
ation in vitro, suggesting that the potential use of the membrane
vesicle as a safe adjunct therapy (208).

Although much work is still needed to elucidate the details of
how commensal microbiota induce Tregs, numerous randomized
trials in the past decade using Lactobacillus and Bifidobacterium
to treat inflammatory disorders have already demonstrated the
clinical benefit of this approach (209). Indeed, while delivery of
purified PSA or SCFAs may represent an effective, transient ther-
apy, the use of probiotics may offer a well-tolerated long-term
therapeutic solution to enhancing intestinal immunoregulatory
cells.

CONCLUSION
Environmental stimuli influence all aspects of Treg biology: from
development and differentiation to migration and function. As
well as refining our understanding of how well-described cytokines
affect Tregs, we are also discovering new cytokines, such as IL-33,
which have a critical role in Treg function (Table 1). Other key fac-
tors influencing Tregs, particularly in the gut, are dietary metabo-
lites, catabolites, and bacterial components from the microbiome.
There is emerging evidence that retinoic acid is a key metabo-
lite for expanding a stable population of Tregs, data that have clear
implications for developing therapeutic approaches. Furthermore,
aspects of the microbiome clearly help determine which commen-
sal antigens the immune system is educated against and have a
previously unappreciated role in influencing T cell differentiation
in the gut. Further studies in this area will expand our knowledge
of T cell biology and hopefully uncover new elements of disease
pathogenesis and guide the development of Treg-based therapies.
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