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Non-coding small RNAs including tRNA,
rRNA, snoRNA, and Y RNA, have been
recently shown to undergo processing into
smaller RNA molecules (1, 2). These deriv-
atives of known small RNAs are not
merely degradation products but are spe-
cific cleavage products that function in
patho-physiological conditions (3–5). Par-
ticularly, tRNAs are processed into two
types of tRNA-derived small RNAs (2): (i)
The 5′ and 3′ tRNA halves are 30–40 nt long
and are produced by cleavage of mature
cytoplasmic tRNAs (6). Two ribonucleases
have been shown to cleave mature tRNAs
near or in the anticodon loop to generate
tRNA halves during stress: Rny1 in Saccha-
romyces cerevisiae (7) and angiogenin in
higher eukaryotes (6, 8). (ii) The shorter
tRNA-derived fragments (tRFs) are 18–
22 nt long, and are produced from both
mature and pre-tRNAs by Dicer or RNase
Z. Here, I will consider only the tRNA
halves and argue their potential as immune
signaling molecules.

Initial reports showed that tRNA halves
accumulate in Tetrahymena thermophila
(9) and Trypanosoma cruzi (10) sub-
jected to nutritional stress, and in S. cere-
visiae, plants, and human cell lines where
they become highly induced during oxida-
tive stress conditions (8, 11). The stress-
associated induction of tRNA halves has
been suggested as a conserved feature of
the cellular response to stress: 5′ tRNA
halves are produced in the cytoplasm of
stressed cells to inhibit translation and
thus preserve cellular energy (8, 12). Many
studies now indicate that some organ-
isms and cell types express tRNA halves
constitutively, while others produce them
under stress conditions. For example, tRNA

halves, in addition to other small RNAs
derived from various RNA species, have
been observed under non-stress conditions
in plants (13), the soil bacterium Strep-
tomyces coelicolor during its development
(14), the fungi Aspergillus fumigatus in its
resting state (15), and unstressed human
cells (6, 16); however, these basal levels of
tRNA halves are low and often increase dur-
ing stress conditions (17). Also, it remains
to distinguish them from intermediates of
similar size generated during tRNA splic-
ing (18). In other systems, tRNA halves
were observed only under stress conditions
[reviewed in Ref. (19)].

Fu and colleagues were the first to
observe tRNA halves in mammalian tis-
sues (6). In an effort to identify liver-
specific miRNA, they found traces of
Val–tRNA–AAC halves in fresh normal
mouse liver and heart tissues, and much
higher levels when these tissues were sub-
jected to ex vivo starvation by incu-
bation in PBS for various lengths of
time (6). The same study also reported
the presence of significant amounts of
tRNA halves in human fetal liver tissue
that has been kept at room temperature
for a few hours before RNA extraction
(6). Two other studies later reported the
presence of mainly 5′ tRNA halves in
mouse mature sperm (20) and in human
semen (21). Our own examination of sev-
eral mouse tissues revealed that 5′ tRNA
halves are exceedingly more expressed in
hematopoietic and lymphoid tissues than
other tissues (22). We have found that
mouse spleen, lymph nodes, and fetal liver,
which is a hematopoietic tissue, leukocytes,
bone marrow, and thymus, and human
leukocytes contain considerable amounts

of 5′ tRNA halves when compared to
mouse non-hematopoietic tissues (testes,
liver, heart, brain, and kidney), which
showed only traces of 5′ tRNA halves
[Figure 1; (22)]. The very small amounts
of 5′ tRNA halves we detected in non-
hematopoietic tissues are comparable to
the levels observed by Fu and colleagues
in normal fresh mouse liver and heart tis-
sues [see Figure 2 in Ref. (6)]. We have
speculated that the trace amounts of 5′

tRNA halves in non-hematopoietic tissues
may originate from residual blood cells in
those tissues (22). A later deep sequenc-
ing survey of several mouse tissues under
physiological conditions found very low
levels of 5′ tRNA halves in all tissues
examined except the bone marrow, which
expressed significant quantities of 5′ tRNA
halves (23).

Small non-coding RNAs and their
derivatives are released into the extracel-
lular environment and thereby may carry
paracrine and even endocrine signaling
functions (22, 24–26). There is evidence
that extracellular miRNAs can enter cells
and alter gene expression and functions
of the recipient cells (27), which sug-
gests involvement of miRNAs in cell-to-
cell communication not only in normal
biology but also in disease pathogene-
sis (28). MiRNAs complexed to high-
density lipoprotein entered hepatocytes
and altered expression of genes involved
in lipid metabolism, inflammation, and
atherosclerosis (27). Extracellular miR-126
secreted by endothelial cells triggered the
production of the chemokine CXCL12
in recipient vascular cells (29). Simi-
larly, miR-150 secreted by human blood
cells and cultured monocytic THP-1 cells
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Dhahbi 5’ tRNA halves in immunity

FIGURE 1 |Tissue distribution of tRNA–Gly–GCC halves. Northern blotting analysis of RNA extracted from the indicated mouse tissues (A–C) or from human
leukocytes or serum (D). Blots were analyzed with 5’ end probes of tRNA–Gly–GCC. DM, decade markers.This figure is an edited version of Figure 7 in Ref. (22).

reduced c-Myb expression and enhanced
cell migration after delivery into HMEC-1
cells (30).

Using deep sequencing of serum small
RNAs, we and others detected 5′ tRNA
halves circulating in mouse and human
bloodstream (31, 32), they were later
found in rat and monkey serum at lev-
els higher than miRNAs (23). Likewise,
extracellular tRNA halves were observed
in another biological fluid, human semen
(21), media surrounding cell lines (33),
and in plant phloem sap (34). Extracel-
lular tRNA halves have no known func-
tions yet; however, it is important to have
an open mind regarding the function of
circulating 5′ tRNA halves. Their intracel-
lular counterparts have been suggested to
act as signal molecules in stress-induced
response (4, 35). Specifically, cellular 5′

tRNA halves promote assembly of stress
granules and inhibit translation in mam-
malian cells (8, 12, 36). Stress-induced
5′ tRNA halves act independently of the

eIF2α phosphorylation pathway; instead,
they inhibit translation by associating with
the translational repressor YB-1 and dis-
placing eIF4G/eIF4A from the translation
initiation complex (12). A recent study has
discovered an additional signaling func-
tion of tRNA halves during osmotic stress:
they protect cells from apoptosis by seques-
tering cytochrome c and thus inhibit-
ing apoptosis (37). Furthermore, it has
been shown that blocking the formation
of tRNA-derived small RNAs by inhibit-
ing tRNA cleavage slows tumor develop-
ment (38). The involvement of intracel-
lular tRNA halves in such key biological
processes (5, 12, 37, 39) strongly suggests
that they may be released in the circu-
lation in a form that also has biologi-
cal and functional significance. Given the
evidence discussed above that extracellu-
lar miRNAs may enter recipient cells and
modulate their functions, it seems likely
that circulating 5′ tRNA halves could also
act as cell-to-cell communication signaling

molecules that enter recipient cells and
alter their functional properties analo-
gously to extracellular miRNAs. In sup-
port of possible functionality of circu-
lating 5′ tRNA halves, we have found
that aging alters the serum levels of spe-
cific subtypes of 5′ tRNA halves in mice
while calorie restriction mitigates the age-
associated changes (22); aging and calo-
rie restriction were used as model phys-
iologic changes to explore the functional
potential of circulating 5′ tRNA halves. We
also found that changes in serum levels of
specific types of 5′ tRNA halves are asso-
ciated with breast cancer and its clinico-
pathological characteristics (31). Levels of
5′ tRNA halves rapidly increased in the
serum of mouse and monkey models of
LPS-induced acute inflammation and in
patients with active hepatitis B virus infec-
tion (23), and in the livers of humans and
chimpanzees with chronic viral hepatitis
(40). Furthermore, the production of tRNA
fragments has been observed in several
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human pathological conditions including
cancer, infection, and neurodegeneration
[Reviewed in Ref. (39)].

Here, I propose that 5′ tRNA halves are
potential systemic immune signaling mol-
ecules. I base this idea on the findings
discussed above and summarized below:

(1) Intracellular 5′ tRNA halves are emerg-
ing as signaling entities.

(2) 5′ tRNA halves occur at the whole
organism level and not only in cell
lines.

(3) 5′ tRNA halves are drastically more
expressed in hematopoietic and lym-
phoid organs relatively to other tis-
sues, and concurrently circulate in the
bloodstream as stable complexes.

(4) The expression of 5′ tRNA halves
at the organismal level, mainly in
immune tissues and in the blood-
stream, takes place under normal, non-
stressed physiologic states. This is in
contrast to observations in cell lines
where tRNA halves are generally pro-
duced in response to stress. Further-
more, both 5′ and 3′ tRNA halves are
induced by stress in cell lines; while in
whole mouse organism under normal
physiologic conditions,predominantly
5′ tRNA halves are present in immune
tissues and in serum.

(5) Finally, the circulating levels of 5′

tRNA halves can be modulated by
patho-physiologic conditions.

Taken together, these findings highlight
the relevance of 5′ tRNA halves in immu-
nity and may be even in hematopoiesis,
and hint that these tRNA-derived small
RNAs could be secretory signals in a cell-
to-cell communication system analogously
to circulating miRNAs. There is some evi-
dence in the literature that supports the
idea that 5′ tRNA halves may play a role
in immunity. Deep sequencing revealed
that small RNAs derived from the 5′ and
3′ ends of mature tRNAs were abundant
in the cytoplasm of immune cells and
small RNAs derived mostly from the 5′

ends were selectively enriched in vesicles
derived from these immune cells (33).
5′ tRNA halves were found in human
seminal exosomes (21); seminal plasma
and exosomes exert immunosuppressive
effects on cells in the genital mucosa to
induce tolerance to paternal antigens (41).

Exosomes mediate inter-cellular commu-
nication by transferring its cargo, which
includes small RNA molecules (42). Thus,
the immunosuppressive effects of sem-
inal exosomes may be at least in part
mediated by the activities of 5′ tRNA
halves.

When used as adjuvants of hepatitis B
surface antigen in mice, tRNA fragments-
induced Th1 and CTL responses through
recognition of TLR3 (43). Bacterial tRNAs
bind TLR7 through recognition of spe-
cific nucleoside modification patterns and
induce secretion of IFN-α from immune
cells (44). This mediation of humoral- and
cell-mediated immune responses through
stimulation of TLRs by small RNAs has
been recently described for the most stud-
ied small non-coding RNAs, miRNAs (45).
Tumor-secreted miR-21 and miR-29a bind
to murine TLR7 and human TLR8 in
immune cells and trigger an inflammatory
response (45).

Specific nucleoside motifs within tRNA
may act as structural anti-determinants
for innate immune recognition; the stem-
loop of human tRNA–Ala and an inter-
action between D and T loops of tRNA–
His can be epitopes for autoantibodies
found in serum of patients with idiopathic
inflammatory myopathies (46). Treatment
with fungal tRNA protected cells against
adenovirus infection by inducing IFN-β
synthesis (47). Incubation of cells with
methionine initiator tRNA or the crude
extract of plant tRNA induce IFN-α pro-
duction (48). Infection with respiratory
syncytial virus (RSV) induces 5′ tRNA
halves in human airway epithelial cells
by cleavage at the tRNA anticodon loop
by angiogenin (5). This study further
showed that 5′ tRNA–Glu–CTC half pro-
motes viral replication while induction
of chemokines and cytokines by RSV
was significantly decreased upon inhibi-
tion of 5′ tRNA–Glu–CTC half by its anti-
sense sequence. T. cruzi secretes tRNA
halves in extracellular vesicles that can be
delivered to host mammalian cells where
the parasite tRNA-derived small RNAs
induce regulation of genes involved in
cell defense and immune responses against
pathogens (49). This is a clear indica-
tion that tRNA-derived small RNAs could
be relevant players in the host–pathogen
signaling. Collectively, these observations
point to a tRNA-derivatives characteristic

that is conserved across various kingdoms
of life.

Finally, another interesting observation
is that the largest human tRNA gene cluster
is located in the major histocompatibility
complex (MHC), the genomic region that
is crucial in adaptive and innate immu-
nity. It has been suggested that clustering
of tRNA genes in the MHC may allude to
a tRNA role in the immune system (50).
Other genes with immune-related func-
tions, including inflammation and stress
response genes, also co-localize with MHC
(50). These observations provide further
support the suggestion that 5′ tRNA halves
may act as immune signaling molecules.

In summary, 5′ tRNA halves stably cir-
culate in the bloodstream similarly to miR-
NAs, and given the increasingly recog-
nized functions of extracellular miRNAs,
it is not farfetched to envisage equally
significant functions for the circulating
5′ tRNA halves. More intriguingly, unlike
circulating miRNAs, which are secreted
by all types of peripheral tissues, circu-
lating 5′ tRNA halves seem to be con-
centrated in hematopoietic and lymphoid
tissues, which strongly implies a role of
5′ tRNA halves in the immune system.
This predominance of 5′ tRNA halves in
hematopoietic tissues may further suggest
a function in hematopoiesis, e.g., involve-
ment in important stages such as the com-
mitment and differentiation of stem and
progenitor cells. I believe that this idea
is worthy of investigation, given the great
potential of extracellular RNAs as non-
invasive biomarkers of health and disease.
It is clear that much work is needed to
test this idea. In particular, it remains
to demonstrate that 5′ tRNA halves exert
immune-related functions upon uptake
by recipient cells in peripheral tissues.
Future studies addressing the production,
secretion, uptake, and functions of cel-
lular and circulating 5′ tRNA halves will
provide insights into the proposed role
of 5′ tRNA halves in the immune and
hematopoietic systems or other as yet
undetermined functions. Establishing 5′

tRNA halves as new players in the com-
plex processes of hematopoiesis and immu-
nity would be invaluable for understanding
hematopoietic disorders such as blood can-
cers and diseases related to immunity such
as inflammatory disorders. Unraveling the
mechanisms underlying the functions of 5′
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tRNA halves will provide opportunities for
discovering health and disease biomarkers
and designing new therapeutic strategies.
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