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Many approaches for cancer immunotherapy have targeted dendritic cells (DCs), directly
or indirectly, for the induction of antitumor immune responses. DC-based vaccines have
been developed using a wide variety of ex vivo DC culture conditions, antigen (Ag) source
and loading strategies, maturation agents, and routes of vaccination. Adjuvants are used to
activate innate immune cells at the vaccine injection site, to promote Ag transport to the
draining lymph nodes (LNs) and to model adaptive immune responses. Despite years of
effort, the effective induction of strong and durable antitumorT-cell responses in vaccinated
patients remains a challenge.The study of vaccine interactions with other immune cells in
the LNs and, more recently, in the injection site has opened new doors for understanding
antitumor effectorT-cell licensing and function. In this review, we will briefly discuss the rele-
vant sites and up-to-date facts regarding possible targets for antitumor vaccine refinement.
We will focus on the processes taking place at the injection site, adjuvant combinations
and their role in DC-based vaccines, LN homing, and modeling vaccine-induced immune
responses capable of controlling tumor growth and generating immune memory.

Keywords: immunotherapy, cancer vaccines, dendritic cells, vaccine injection site, draining lymph nodes, antitumor
T cells

INTRODUCTION
Therapeutic cancer vaccines are the focus of active investigation
and testing, fueled by their promise as a tool for cancer treat-
ment. In contrast to other cytotoxic therapies, cancer vaccines have
demonstrated minimal toxicity in clinical trials to date and have
showed some positive results, including slowed tumor growth rates
and improved overall survival, but no substantial reductions in
tumor burden or improvement in relapse-free survival (1, 2). Den-
dritic cells (DCs) are professional antigen (Ag)-presenting cells
(APCs) that, upon activation, can initiate and direct Ag-specific
immune responses. DCs have become a promising tool for cancer
immunotherapy due to considerable advances related to their biol-
ogy and their role in T-cell activation, which has clearly opened
avenues for the development of vastly improved clinical proto-
cols (3). Roads are currently leading to: (a) the optimization of
DC vaccines to elicit strong and long-lived Ag-specific cluster dif-
ferentiation (CD)8+ and CD4+ T-cell immunity to control early
stage disease and (b) the development of strategies that combine
highly immunogenic DC-based vaccines and immunomodula-
tory antibodies for advanced disease, both of which enhance the
potency of beneficial immune arms and offset immunoregula-
tory pathways (4, 5). Cancer vaccination efforts are centered on

Abbreviations: Ag, antigen; APC, antigen-presenting cell; CCR7, chemokine recep-
tor 7; CD, cluster differentiation; CTLA, cytotoxic T-lymphocyte-associated protein;
DC, dendritic cells; GM-CSF, granulocyte–macrophage colony-stimulating factor;
ICOS-L, inducible T-cell costimulator ligand; i.d., intradermal; IFA, incomplete Fre-
und’s adjuvant; IFN, interferon; IL, interleukin; LN, lymph node; NK, natural killer;
MDSC, myeloid-derived suppressor cells; MHC, major histocompatibility complex;
MIP, macrophage inflammatory protein; MMP, metalloproteinase; PBMC, periph-
eral blood mononuclear cells; PD, programed death; s.c., subcutaneous; Teff, effector
T cell; TGF, transforming growth factor; Th, T helper; TLR, toll-like receptor; TNF,
tumor necrosis factor; Treg, regulatory T cell.

the disruption of the tolerogenic state of the immune system and
direction of an effector T-cell (Teff) response, ultimately lead-
ing to cancer regression. This latter point remains a significant
challenge when it comes to an objective beneficial outcome in
patients. Several questions remain open on the true relevancy of
DC-based vaccination in the clinic and the lessons learned over
years of clinical investigation (3, 6, 7). Despite their complexity,
models reflecting experimental results have tried to simplify the
system to test immunotherapy treatment protocols with in sil-
ico simulations of vaccine efficacy (8). However, in addition to
multiple parameters in vaccine design, intrinsic variables present
in individual patients may equally influence the elicited immune
response. Here, we will briefly discuss the main critical stages
where immune response can be modulated, and the different
factors affecting DC-based strategies, which have been obtained
in recent years from basic studies of murine and human DC–
T-cell interactions, animal models, and human preclinical and
clinical studies.

DC-BASED VACCINES: CURRENT APPROACHES
The application of ex vivo-educated DCs emerged in an effort
to avoid possible interferences in therapeutic efficacy due to the
dysfunction of endogenous DCs commonly observed in can-
cer patients (9–11). Ex vivo DCs are mainly generated through
in vitro differentiation of peripheral blood mononuclear cells
(PBMCs) in the presence of granulocyte–macrophage colony-
stimulating factor (GM-CSF) and interleukin (IL)-4 or IL-13 (12).
DC-based vaccines should present a “mature” state in order to
activate an Ag-specific immune response upon T-cell encounter.
This differentiated state is characterized by the expression of
several costimulatory molecules, the necessary activating sec-
ond signal in the immunological synapse (13). They include
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CD80 and CD86, CD40, CD70, or inducible T-cell costimulator
ligand (ICOS-L) molecules, which interact with their counter-
parts CD28, CD40L, CD27, and ICOS, respectively, expressed by
T cells. In addition, DCs have elevated levels of Ag-presenting
molecules, i.e., major histocompatibility complex (MHC) class
I, MHC class II, and CD1 molecules. An immunostimulatory
cytokine profile is also required to trigger an efficient CD8+ T-
cell response, currently considered as the “third signal” (9, 14).
This process is accompanied by an augmented chemokine-driven
migratory capacity, with increased chemokine receptor 7 (CCR7)
expression, which favors lymph node (LN) homing and T-cell
encounter and allows Ag presentation and T-cell activation (15).
This complex context has required the exploration of various
strategies (16). A “standard” maturation cocktail, comprised of
tumor necrosis factor (TNF)-α, IL-1β, IL-6, and prostaglandin
E2 (17) has been extensively used to develop conventional DCs.
This “standard” mature DCs acquire an activated phenotype,
respond to LN homing signals, and secrete moderate amounts
of T helper (Th)1 cytokine IL-12p70, but with low immunoreg-
ulatory cytokine production (17). Targeting the innate danger
signal pathway of toll-like receptors (TLRs) improved migra-
tion, cytokine profiles, and immune responses (18–20). Alternative
tracks use type-1 polarized DCs, generated in the presence of
interferon (IFN)-γ, which show a mature state with IL-12p70
release, chemotactical response to the LN homing chemokine
CCL19, and generate Ag-specific Teff (21, 22). “Fast DCs,” which
are generated in a 3-day culture, show similar performances (23,
24). Taken together, considerable progress has been made over
the years, although the potential impact of ex vivo-generated
DCs on immunotherapy requires additional studies to be fully
disclosed.

The production of ex vivo-generated DCs for personalized
vaccines is associated with several inconveniences. The time-
consuming vaccine preparation and elevated costs of produc-
tion have led to the study of alternative, but related strategies.
In vivo DC activation and Ag loading are an interesting approach,
as it by-passes the ex vivo DC vaccine drawbacks and may
combine the benefits of the physiological environment, mak-
ing selective use of all the DC subsets present in the dermis
and epidermis (25–28). Some targeted and non-targeted vac-
cines are poorly immunogenic when applied alone. The addi-
tion of adjuvants has generated a more favorable environment
with viable and motile cells available to initiate a successful
immune response, rather than an inflamed Ag depot (29). Many
adjuvants currently under evaluation as constituents of cancer
vaccines proved to be more than mere delivery systems. Min-
eral salts, emulsions, and liposomes were able to trigger B-cell
and Th1- or Th2-polarizing immune responses. Immunostim-
ulant adjuvants, like TLR-ligands, cytokines, saponins, and bac-
terial exotoxins, have components that directly interact with
the immune system to intensify the elicited response. These
events are reviewed in detail by Dubensky and Reed (30). Due
to high side effect and toxicity risks with relative low benefit,
increased regulatory standards have imposed several barriers for
the approval of new adjuvants that must be overcome to meet the
increasing demand.

VACCINE ADMINISTRATION: IMMUNE ROLE FOR THE
INJECTION SITE
The route of DC-based vaccine administration remains a matter
of debate. Maintaining DC viability and maturation status while
eliciting a T-cell response can be difficult due to technical and/or
budget limitations (31, 32). Direct Ag delivery to DC through
selective targeting using monoclonal antibodies against endocytic
receptors, such as the C-type lectin receptor DEC205, results in
100-fold more efficient CD4+ and CD8+ T-cell activation than
fluid-phase or solute pinocytosis (33, 34). However, DC-targeted
vaccines must be timely combined with adjuvants in order to
avoid Ag-specific tolerance (35). Targeting the skin either with
ex vivo-loaded DCs or in vivo DC-based strategies has improved
immune responses. Local delivery of cell-associated Ag showed
delayed T-cell cross-priming, but a more robust, polyfunctional,
effector response (36). Likewise, intradermal (i.d.) administra-
tion induces a more potent and long-lasting specific, functional
CD8+ T-cell response that effectively breaks self-tolerance in mice
(37) and provides a superior functional tumor Ag-specific reac-
tion in delayed-type hypersensitivity sites after DC vaccination in
melanoma patients (32). The skin offers a rich immune network
comprised of Langerhans cells in the epidermal compartment and
dermal DCs. Local APC are accompanied by specialized cells with
immune function, including macrophages, keratinocytes, mast
cells, natural killer (NK) T cells, and fibroblasts, with access to
draining lymphatic and blood vessels (27). These features turn the
skin into an ideal niche for DC-based vaccination, so far exten-
sively explored in mice (25, 38) and in in vitro human cell cultures
(39), although little is known about human APC function in situ.
Microneedle arrays are a new vaccine delivery system that can
enter the skin at a very low insertion force and controlled depth,
facilitating i.d. vaccine administration in simultaneous proximal
inoculations (40). The microneedles offer a dose-sparing advan-
tage, improved safety, and patient compliance, and therefore stand
firm as an effective, easy delivery route with a great future in
vaccination (41). Polymeric, water-soluble microneedles dissolve
and release nanoencapsulated Ag into skin tissue, with no resid-
ual waste. In mice, skin-derived DCs delivered nanoparticles to
draining LNs, subsequently inducing a potent activation of spe-
cific CD4+ and CD8+ T cells (42); however, the study did not
make comparisons to traditional Ag delivery systems.

The natural skin micromilieu should not be underestimated
when choosing the vaccine injection site, as it may influence
the elicited immune response, especially with respect to tumor
localization (43, 44). Keratinocytes may also be involved in local
APC inflammatory activation through the secretion of the active
form of IL-1β, as well as in suppressive imprinting through
transforming growth factor (TGF)-β1 production. Therefore, the
immunological balance within the newly formed structure at the
site of DC-based vaccine injection, observed both in mice (45)
and humans (46), must be delicately studied. One study reports
that repeated vaccination with melanoma peptides in incom-
plete Freund’s adjuvant (IFA) induced organized and persistent
lymphoid aggregates in the patients’ dermis. They contained sep-
arate B- and T-cell areas, with proliferating CD4+ and CD8+

T cells, as well as CD4+FoxP3+ lymphocytes, mature DC, high
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endothelial venule-like vessels, and lymphoid chemokines (46).
Though Ag persistence at the vaccination site produces a delayed,
but stronger Teff response (36), the long-persistent peptide depots
with IFA induce tumor-specific CD8+ T cells that remain locally
sequestered, dysfunctional, and eventually deleted, rather than
redistributing into the tumor, resulting in hyporesponsiveness to
subsequent vaccination (29). Biomaterials may overcome these
limitations, as short-lived formulations like hydrogels can pro-
vide a niche that allows in situ priming and immune modula-
tion while preserving cell viability, thus enhancing the efficacy of
next-generation immunotherapy (47, 48).

The recruitment of APC to the injection site and subse-
quent local activation is a thoroughly explored strategy. Dif-
ferent chemoattractants such as GM-CSF and chemokines have
been used as adjuvants in the clinical setting (49), with occa-
sionally unexpected results. Conditioning the injection site with
macrophage inflammatory protein (MIP)-3α-expressing irradi-
ated cells prior to DC vaccination effectively suppresses B16F1
melanoma growth in animals (50). However, co-expression of
MIP-1α nullified the GM-CSF-induced immune response against
the GL261 glioma, rather than attracting T cells to GM-CSF-
stimulated DC (51). TLR-ligands are added to vaccine formu-
lations to avoid Ag-specific tolerance, i.e., when targeting DEC205
(35), and to further stimulate cells of the innate immune system,
thereby increasing the potency of the elicited immune response
(52). Their ability to skew the response toward a Th1 or Th2 pro-
file, generating different Ag-specific Teff to regulatory T cell (Treg)
ratios, is the main parameter evaluated, and differs according to
vaccine setting. Some TLR2/4, TLR3, and TLR9 ligands, like Bacil-
lus Calmette–Guerin, polyinosinic:polycytidylic acid, and CpG
oligodeoxynucleotides respectively, are currently being studied
in DC-based cancer immunotherapy with combinatorial positive
results (19, 53–55), while the TLR7 ligand imiquimod and lipid
mediators such as QuilA or ISCOM produce more varied results
(53, 54, 56–58).

DRAINING LN: DC MIGRATION AND THE ACTIVATION OF
T CELLS
After vaccine administration, activated DC must closely interact
with naïve T cells, which, upon Ag recognition, exert their cyto-
toxic, helper, or regulatory function. The LN is a multifunctional
and compartmentalized organ that collectively offers structural
guidance for optimal Ag-loaded DC proximity to, and scanning of
a large number of T cells (59, 60). Apart from the events con-
trolling DC migration from the skin toward, into, and within
the lymphatic vessels (61), recent advances in multiphoton-based
time-lapse and intravital microscopy have provided insight into
the complex migratory behavior and interactions of DCs and T
cells within the lymphoid microenvironment, mainly in mice.
Activated DCs typically arrive at the draining LN between 24
and 72 h after injection, but it can be as soon as 2 h after stim-
ulation (62). DCs vigorously extend long, agile dendrites, thus
promoting the scanning of a vast, autonomously moving T-cell
repertoire. CD4+ and CD8+ T cells have different Ag surveil-
lance strategies, presenting asymmetric roles for MHC interactions
and LN transit times (63, 64). Ag-bearing DCs are highly efficient
recruiters of peptide-specific T cells, in part through the secretion

of chemokines. The resulting overall avidity of the interaction
influences the probability that T cells are stably captured by DCs
(65, 66). Chemokines present in the LN structure promote DC
interaction with cognate CD4+ and CD8+ naïve T cells (59, 67)
that, once activated, leave the LN to exert their function. Taken
together, these complex cellular behaviors promote proper Ag pre-
sentation in the LN and the potential efficient systemic antitumor
CD8+ T-cell response.

The efficiency of DC migration to the LNs has been related
to their maturation state (68) as well as to the expression of
CCR7, which confers additional attributes to mature DC, such
as migratory speed and inhibition of apoptosis (69, 70). Again,
the route of administration has great influence over both DC
migration and activated T-cell LN homing, and therefore may
improve clinical outcome, as seen in mice (31). When choosing
i.d. or subcutaneous (s.c.) inoculation, the manipulation of either
the injection site or the DCs themselves can stimulate DC migra-
tion. As mentioned before, conditioning of the injection site can
activate resident APC and generate a more immunogenic envi-
ronment and more permeable lymphatic vessels with increased
secretion of the CCR7-ligand CCL21 (71, 72). DC mobilization
can be improved through metalloproteinase (MMP) secretion and
changing the adhesion molecule profile (73, 74). In mice, increas-
ing the number of injected DCs has shown improved migration
efficacy. CCR7+ DCs efficiently induce a rapid increase in LN
cellularity, observed before the onset of T-cell proliferation. The
elicited CD4+ T-cell response is proportional to the number of
Ag-carrying DCs reaching the LN (71). In patients, decreasing
the number of injected DCs actually improves the proportion
of cells migrating to the LNs, but the analysis is limited by the
detection method (75). Today, the number of Ag-loaded DCs
required at the LN to mount a complete antitumor response is
unknown.

Maximizing LN homing of DC-based vaccines may enhance
antitumor responses (76), therefore techniques for the clini-
cal assessment of DC migration have been perfected, including
fluorescent-, 111Indium-, and magnetic particle-labeling for cell
tracking (77, 78). But, more importantly, DCs must not only reach
one or multiple secondary lymphoid tissues, but also enter the
T-cell-rich areas in order to efficiently elicit an antitumor CD8+

response that may contribute to a better clinical outcome. Fur-
thermore, following the vaccination of tumor-bearing mice, high
tumor-specific Teff to specific Treg ratios in draining LN were
associated with enhanced CD8+ T-cell infiltration and durable
rejection of tumors (53). The normal immunological function of
regional tumor-draining LN is compromised through immuno-
suppressive mechanisms (79) and the presence of metastases,
though they remain a rich source of sensitized T cells (43, 80,
81). FoxP3+ T cells induce the death of DCs and impede nor-
mal motility and the cross-priming of CD8+ T cells (82). Spatial
organization of DCs within the tumor-draining LNs impacts the
duration of disease-free survival in breast cancer patients, where
the number and size of DC clusters were associated with DC
maturation status and T-cell co-localization and interaction (83).
Therefore, knowing which DC subsets are present in LNs and their
role in T-cell activation (84), it is possible to specifically target
therapies to break the tolerogenic environment. Combinatorial
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approaches may include the use of adjuvants or cytokines (81,
85) as well as other cells expressing costimulatory molecules or
functioning as helpers, such as NK cells (58, 86–88).

EFFECTOR ANTITUMOR IMMUNE RESPONSES: BREAKING
THE ICE
The efficacy of antitumor therapy mainly depends on four critical
components: the elicited CD8+ Teffs, the quality of the CD4+

helper T cells, the elimination and/or non-activation of Tregs,
and the breakdown of the immunosuppressive tumor microen-
vironment (3). Therapeutic vaccination is currently designed as
an adjuvant or neoadjuvant treatment for patients with a high
risk of recurrence. Adequate vaccine design and a better under-
standing of host–tumor interactions are needed to overcome
systemic and local immune tolerance and generate an effective
antitumor response (2). There are several essential steps in vac-
cine formulation that collectively impact the immune response
and ultimately the clinical outcome. Vaccine design must con-
sider the administration route (36), the type and amount of Ag
provided (89–92), the delivery system (93), and the addition
of different immunostimulants that lead to in vivo activation
of CD8+ T cells (53, 58) as well as long-term memory (54).
Favorable clinical responses require a Th1 immune profile, and
furthermore, a high vaccine Ag-specific Teff to Treg ratio was pre-
dictive of clinical benefit (94). Along with CD8+ Teffs, CD4+

T cells strongly influence the elicited antitumor response. Ag-
loaded DCs can induce human CD4+ T-cell proliferation that
combined with strong activating signals, overcome immunosup-
pression through Th17 differentiation (95). In mice, CD4+ T
cells generate increased numbers of tumor-specific effector and
memory CD8+ T cells. The role of CD4+ T cells is critical in
the early stages of the immune response, helping reduce CD8+

T-cell exhaustion by decreasing expression of the immunoin-
hibitory receptor programed death (PD)-1 (96). However, selective
CD4+ T-cell tolerance underlies ineffective vaccination. Vaccine-
mediated naïve T-cell priming is inhibited due to a minor but
distinct population of tumor-reactive CD4+ T cells, generated
in the tumor-draining LNs and systemically redistributed (97).
Higher numbers of administered DCs revert this effect, allowing
CD4+ T-cell priming comparable to tumor-free mice (97). Incor-
porating CD4+ T-cell epitopes from foreign Ags into vaccines
reconstitute CD4+ T-cell help, reactivating the latent functional
capacity of Ag-specific CD8+ T- and B-cell pools with durable
antitumor immunity (98). In melanoma patients, coactivating
Ag-specific CD4+ T cells with MHC-I/II peptide-loaded DCs aug-
ments Ag-specific CD8+ T-cell responses, which contributes to
improved clinical responses, as compared to dacarbazine-treated
control patients (99).

Measuring the frequency of IFN-γ-secreting CD8+ T cells is
insufficient to evaluate the quality of vaccine-elicited immunity
(3). The localization of CD8+ Teff impacts their phenotype and
function. Melanoma-infiltrating CD8+ Teffs express higher levels
of PD-1 and cytotoxic T-lymphocyte-associated protein (CTLA)-
4, both associated with T-cell exhaustion, than their counter-
parts in normal tissues and circulating blood (100). The tumor
microenvironment exhibits several immunosuppressive factors,
reviewed in Vasaturo et al. (101) that neutralize tumor-specific

T cells and hamper DC vaccination efficacy. Along with myeloid-
derived suppressor cells (MDSC), Tregs directly suppress CD8+

Teff responses at the tumor site. Increased numbers of MDSCs
and Tregs are also found in the metastatic LN and peripheral
blood of patients (102). Studies in mice have demonstrated a
superior suppressive capacity in Ag-specific Tregs than polyclonal
Tregs. Melanoma patients display a broad repertoire of circulating
tumor Ag-specific Tregs that are not detected in healthy individu-
als (103). The use of HClO-oxidized tumor lysate for DC loading
reduced circulating Tregs and serum IL-10 while eliciting a potent
Teff response against ovarian tumor Ags, as compared to standard
Ag preparation methods (104). Adjuvants can determine the Th
response profile as well as the generation of MDSC and Tregs (53,
56). Vaccine antitumor effects can be improved substantially with
combination therapy since it allows a simultaneous counterattack
on multiple tumor evasion mechanisms. Radiation therapy modi-
fies both the phenotype and the microenvironment of tumor cells,
but requires CD8+ T cells to achieve a therapeutic effect. Further
combination with Th1 cell therapy augmented the generation of
infiltrating Teff and induced a complete regression of tumors in
mice (105). Treg depletion helped induce protective antitumor
immunity and the generation of immunological memory after s.c.
peptide immunization (55). Blockade of PD-1 enhanced breast
cancer vaccine efficacy by altering both the CD8+ T-cell and DC
components of the tumor microenvironment (106). Peptides com-
bined with a single low dose of cyclophosphamide reduced the
number of Tregs in renal cell cancer patients (107). Nevertheless,
combinatorial therapies must be carefully designed and tested due
to possible increased toxicity, autoimmunity, or opposite effects,
e.g., the systemic coadministration of IL-2 alongside DC vaccina-
tion resulted in higher Treg frequencies in peripheral blood and
invariant Ag-specific Teff response (32).

CONCLUDING REMARKS
There is no clear consensus for a “DC vaccine recipe” that would
provide a better performance in terms of disease control. There
are as many possible components for vaccine formulation as vari-
ations in vaccination scheme design. However, integrating an opti-
mized vaccine preparation with a local immune activation seems
to be the future of treatment platforms (Figure 1). There is a push
for new immunomonitoring parameters, since assessment of rele-
vant immune responses following DC-based vaccination remains
a true pitfall. Events occurring in the tumor microenvironment are
not accessible or are even invisible in undetected micrometastases.
Traditional monitoring of peripheral blood immune response
does not correlate with clinical outcome of therapeutic vaccines.
Over the past decade, the increased knowledge of DC biology and
crucial mechanisms involved in the generation of the immune
response provided valuable tools to improve DC-based vaccines
and position them as a potentially curative strategy for cancer
patients. The discovery of molecular targets and blocking anti-
bodies for immune checkpoints has opened new avenues for
combination therapy with DC-based vaccines. In the near future,
cancer immunology researchers face the challenge of integrating
all of the knowledge and advances to design rational and effi-
cient DC-based vaccine treatments to achieve long-term clinical
response.
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FIGURE 1 | “Hot spots” in DC-based vaccine design. Current
approaches for cancer immunotherapy targeting DC include multiple
steps, resulting in one out of hundreds of possible combinations, with
different antitumor immune responses. Direct or indirect strategies can be
achieved either ex vivo or in vivo, with particular implications to be
considered in each case. We identify the relevant sites, or “hot spots,”
that become targets for antitumor vaccine refinement according to recent

years of basic and clinical investigation. First, the skin as an injection site
can be widely activated in order to improve vaccine efficacy. Second,
DC-based vaccine migration to the lymph node compartment can be
exploited to enhance the induction of Ag-specific immune effectors.
Finally, systemic vaccine-induced immune response should overcome
local immunosuppression to control tumor growth and to generate
long-term immune memory.
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