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Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central
nervous system (CNS). Accumulation of brain damage in progressive MS is partly the
result of mononuclear phagocytes (MPs) attacking myelin sheaths in the CNS. Although
there is no cure yet for MS, significant advances have been made in the development of
disease modifying agents. Unfortunately, most of these drugs fail to reverse established
neurological deficits and can have adverse effects. Recent evidence suggests that MPs
polarization is accompanied by profound metabolic changes, whereby pro-inflammatory
MPs (M1) switch toward glycolysis, whereas anti-inflammatory MPs (M2) become more
oxidative. It is therefore possible that reprograming MPs metabolism could affect their
function and repress immune cell activation. This mini review describes the metabolic
changes underpinning macrophages polarization and anticipates how metabolic re-
education of MPs could be used for the treatment of MS.

Key points:

• Inflammation in progressive MS is mediated primarily by MPs.
• Cell metabolism regulates the function of MPs.
• DMAs can re-educate the metabolism of MPs to promote healing.

Keywords: immune metabolism, macrophages, microglia,Warburg effect, multiple sclerosis, EAE, mitochondria

INTRODUCTION
Multiple sclerosis (MS) is an inflammatory disease of the cen-
tral nervous system (CNS) in which perivascular infiltration of
self-reactive T lymphocytes leads to demyelination (both primary
and secondary) and axonal damage. Inflammation is an early
and transient event in MS and remyelination occurs afterwards
(1). The early stages of the disease are characterized by episodes
of neurological dysfunction that usually recover. Over time, the
pathological features of MS become dominated by widespread
microglial activation associated with extensive and chronic neu-
rodegeneration, which associates with progressive accumulation
of disability (2).

Current immune modulatory treatments are effective at reduc-
ing T-cell-mediated damage early in disease (3). However, most
of these therapeutic strategies have failed to work in patients
with progressive MS, where uncontrolled activation of mononu-
clear phagocytes (MPs) takes place in the chronically inflamed
CNS (4–6).

Mononuclear phagocytes, such as microglia and macrophages,
are present in all tissues where they have a range of home-
ostatic functions including the removal of apoptotic cells and
cell debris (7). Although functionally similar, microglia and
macrophages are ontogenetically distinct populations (8–11).

Microglia, the primary MPs in the CNS, are derived from
the yolk-sac blood islands and migrate to the neuroepithe-
lium during early development (7, 12, 13). Microglia interact
with neural progenitor cells to regulate both structural and
functional responses in the CNS during development, home-
ostasis, and disease (14, 15). Macrophages are derived from
hematopoietic stem cells in the bone marrow that differentiate
into peripheral blood monocytes (16). Macrophages are critical
for innate immune defense and also control organ homeosta-
sis in a tissue-specific manner. In non-parenchymal areas of the
CNS, macrophages and microglia survey for tissue injury and
infection (17).

Mononuclear phagocytes are phenotypically classified as classi-
cally activated (M1-like; pro-inflammatory) or alternatively acti-
vated (M2-like; anti-inflammatory) cells. This paradigm should
not be over-interpreted, as it is not a rigid classification. M1-like
MPs produce neurotoxic molecules, pro-inflammatory cytokines,
and chemokines and present self-antigens to attract cytotoxic
CD8+ T cells (18, 19), whereas M2-like MPs are regenerative cells
that secrete growth and neurotropic factors (20, 21). MPs polar-
ization is governed by intrinsic (22) and extrinsic factors, and even
differentiated macrophages can be reprogramed when transferred
into a new microenvironment (23).
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Accumulation and activation of MPs in the CNS is thought
to be a crucial step in the pathological cascade of MS, which
frequently culminates in irreversible injury to myelin and axons
(24). Therefore, MS therapies that steer MPs toward a repara-
tive, rather than pro-inflammatory, phenotype are now emerging
as ideal approaches to promote tissue healing without disrupting
MPs functions.

This mini review describes the metabolic changes underpin-
ning macrophages polarization and anticipates how metabolic
re-education of MPs could be used for the treatment of MS.

PROGRESSIVE MS AND MPs
A balanced response between the M1- and M2-like phenotype
is necessary for tissue homeostasis, and in MS and its animal
model experimental autoimmune encephalomyelitis (EAE), this
balance is disturbed. The fact that the MS per se exists in the relaps-
ing/remitting type points to the M1/M2 dynamics as potentially
relevant for this disease (25–27).

By expressing pattern recognition receptors, including toll-
like receptors (TLRs) and NOD-like receptors (NLRs), MPs can
sense both danger-associated molecular patterns and pathogen-
associated molecular patterns from damaged tissue and microbes,
respectively (28). The trigger for activation of MPs in the CNS
is unknown, but is thought to be a combination of genetic
susceptibility and environmental factors. M1-like MP polar-
ization results in the release of pro-inflammatory cytokines,
including tumor necrosis factor (TNF)-α and interleukin (IL)-
1β; chemokines, such as monocyte chemoattractant proteins
and reactive oxygen species (ROS), through increased nicoti-
namide adenine dinucleotide phosphate (NADPH) oxidase activ-
ity. All these factors contribute to demyelination, gliosis, and
axonal loss, thus leading to irreversible tissue damage (29). Pro-
inflammatory cytokines indirectly damage neurons and oligo-
dendrocytes (ODCs) through sensitization of axons to glutamate
excitotoxicity (30, 31). Chemokines promote the recruitment of
innate immune cells and T cells to the site of ROS produc-
tion in the CNS, causing mitochondrial dysfunction of neuronal
cells and an increased energy demand due to inefficient nerve
conductance, which can result in axonal damage and neuronal
death (32, 33).

The role and function of microglia in progressive MS still
remains a matter of debate, especially considering the intrin-
sic plastic nature of these cells (34–36). Classifying the differ-
ent phenotypes of microglia in vivo (i.e., applying to microglia
the old M1-like vs. M2-like classification of macrophages) has
proven challenging. Unlike macrophages, microglial cells are not
professional antigen-presenting cells, but they quickly increase
the expression of MHC class-I and -II complexes in response
to injuries and/or local inflammation. Specifically during brain
inflammation, T cells crossing the blood–brain barrier, directly
interact with microglia to recognize antigens, and ultimately medi-
ate their skew toward M1-like activation (37). Activated microglia
release the Th1-like pro-inflammatory cytokine interferon (IFN)-
γ, which might induce their own polarization via IFNGR, trough
an autocrine loop (38). This potentially vicious cycle typical
of progressive MS, in which microglia contribute to the self-
propagation of neuroinflammation, is likely to be determined

also by a failure in the M2-like responses in a microenvironment
dominated by Th1/Th17 cytokines (39).

In the context of brain repair, the activation of microglia is also
necessary for clearing debris and, more importantly, to support
the remyelination of damaged axons (40–42). In Cuprizone-fed
mice, an animal model of demyelination/remyelination, microglia
sustain remyelination with a durable effect involving (i) the phago-
cytosis of myelin debris and apoptotic cells during demyelination
and (ii) the expression of a repertoire of cytokines and chemokines
that include insulin-like growth factor (IFG)-1, platelet-derived
growth factor (PDGF)-α, and transforming growth factor (TGF)-
β, which ultimately mediate the recruitment of oligodendrocyte
precursor cells (OPCs) and their differentiation into mature func-
tional ODCs (43). Indeed, remyelination of damaged axons is a
process that can be driven by M2-like MPs (21). In mice with
lysolecithin-induced focal demyelination of the corpus callosum,
a switch from M1-like to M2-like phenotype is described for both
microglia and peripheral macrophages. This M2-like polarization
takes place as early as remyelination begins, and it is indispensable
to promote OPC differentiation. Interestingly, M2-like MPs also
produce neurotropic and growth factors, such as the TGF-β super-
family member activin-A, a key signaling intermediate for ODC
function, thus contributing to the remyelination process (21).
During progressive MS, this remyelination-supportive microglia
phenotype may be impaired, thus preventing proper repair. Inter-
estingly, the same failure of M2-like microglia seems to occur also
in other neurodegenerative diseases characterized by chronic MP
activation in the CNS, such as Alzheimer’s disease (44, 45).

METABOLIC REPROGRAMING OF MPs IN MS
Already in the 1980s, macrophages were known to undergo pro-
found metabolic changes upon activation (46). More recent evi-
dence corroborated these findings. While quiescent macrophages
predominantly use mitochondrial respiration to generate energy,
lipopolysaccharide (LPS)-activated macrophages switch their
metabolism from oxidative phosphorylation to glycolysis (47, 48)
(Figure 1). This metabolic switch, also known in cancer biology
as the Warburg effect (49), is a key feature of the M1 macrophages.
By contrast, mouse IL-4-stimulated MPs activate mitochondrial
metabolism, fatty acid uptake, and fatty acid oxidation (50). These
observations indicate that the switch between glycolytic or oxida-
tive metabolism could play a role in macrophage polarization
(Figure 1). However, the relevance of some of these metabolic
features in human macrophages is still debated and more work
is required to clarify the differences between mouse and human
models.

HYPOXIA CONTROLS THE M1 POLARIZATION OF MPs
The switch toward aerobic glycolysis in activated macrophages
is orchestrated – at least in part – by the transcription factor
hypoxia-inducible factor (HIF) 1. HIFs are heterodimeric pro-
teins composed of a constitutively expressed beta subunit and
an oxygen-dependent alpha subunit (HIF-1α). In the presence of
oxygen, the oxoglutarate-dependent prolyl hydroxylases (PHDs)
hydroxylate HIF-1α, producing succinate and carbon dioxide.
Once hydroxylated, HIF-1α is targeted for proteasomal degrada-
tion. When oxygen becomes limiting, PHDs are inhibited, leading
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FIGURE 1 | Schematic diagram of the metabolic reprograming of macrophages undergoing M1- vs. M2-like polarization. AICAR, aminoimidazole
carboxamide ribonucleotide; cis-aco, cis-aconitase; DMF, dimethyl fumarate; HIF, hypoxia-inducible factor; IL, interleukin; IFN-γ, interferon-γ; TCA, citric acid
cycle; TLR, Toll-like receptor.

to HIF-1α stabilization and to the activation of its transcriptional
program, which drives the expression of numerous glycolytic
enzymes and of the pro-inflammatory cytokine IL-1β (47, 51).
Sites of inflammation in MS are often hypoxic and acidic (33,
52, 53) and, accordingly, tissue from MS lesions exhibits hypoxic
markers, including increased expression of glucose transporters
(GLUTs) and monocarboxylate transporters (MCT), compared
with healthy patients (54), most likely due to increased gly-
colysis of activated MPs. The increased avidity for glucose by
MS lesions can be exploited for diagnostic purposes, since these
lesions uptake substantial amounts of the glucose analog [18F]-
fluorodeoxyglucose, which can be visualized by positron emission
tomography during neuroimaging exams (55). In line with these
findings, tissue hypoxia and the corresponding increased expres-
sion of HIF-1α develops rapidly in response to inflammation
in white and gray matter of animals subject to EAE. Levels of
hypoxia correlate with neurological defects and the reintroduc-
tion of oxygen restores function in EAE mice within an hour
of treatment, lasting up to 1 week (56). Interestingly, MPs and
microglia from MS patients show different levels of HIF-1α, with
MPs increasing HIF-1α expression compared to microglia (11, 23,
57). These observations suggest that MPs, rather than microglia,

could be actively involved in the glycolytic switch observed in MS
inflammation sites.

MITOCHONDRIAL METABOLITES AND REGULATION OF MPs FUNCTION
Changes in mitochondrial metabolism have important implica-
tions for activated macrophages, beyond cellular energetics. It has
been recently shown that succinate, which accumulates in LPS-
activated macrophages, impairs the enzymatic activity of PHDs
by product-inhibition, leading to HIF-1α stabilization even in the
presence of oxygen, a phenomenon known as pseudohypoxia (47).
Importantly, manipulating succinate levels in macrophages in vitro
can both stabilize HIF-1α as well as drive IL-1β expression (47).
Furthermore, the inhibition of succinate dehydrogenase (SDH),
the enzyme that converts succinate to fumarate, with diethyl-
butylmalonate increases intracellular succinate in macrophages
and exacerbates the production of LPS-induced IL-1β (47). Inter-
estingly, SDH is less active in the microglia of rats with EAE
(58), underlining a possible deregulation of the enzyme in this
experimental model of MS.

As well as acting intracellularly, succinate can also be released
in the extracellular milieu, where it has been shown to act as a
hormone-like molecule. High concentrations of succinate have
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been detected in the plasma of patients with peritonitis, in the
urine and plasma of diabetic and metabolic disease rodent mod-
els (59, 60), and in the synovial fluid of patients with rheumatoid
arthritis (61). Interestingly, succinate accumulation is induced as
a response to ischemia in several tissues including the brain (62),
thus suggesting that several factors could contribute to increase
succinate levels in the microenvironment of MS lesions. Succi-
nate has been shown to signal via the G-protein coupled suc-
cinate receptor 1 (SUCNR1), a protein highly expressed on a
variety of tissues, including the spleen (63) and in immune cells
(64). The activation of SUCNR1 by succinate synergizes with
TLRs on dendritic cells and is required for enhanced antigen-
presenting function of these cells (64). Therefore, blocking succi-
nate receptor on MPs using the highly specific and potent SUCNR1
antagonist (65) could prove to be effective for the treatment of
progressive MS.

Two other mitochondrial TCA metabolites, itaconic acid (ITA)
and citrate have been shown to be involved in macrophage inflam-
matory pathways (Figure 1). ITA is induced and secreted by
macrophages upon LPS and IFN-γ stimulation (66) and it inhibits
the growth of bacteria that express isocitrate lyase, such as Salmo-
nella enterica and Mycobacterium tuberculosis. Immunoresponsive
gene 1 (Irg1) protein is the enzyme responsible for the production
of ITA in mammalian cells. Gene silencing of Irg1 in macrophages
caused a substantial reduction in antimicrobial activity during
bacterial infections (67).

Citrate is another important mediator of LPS-induced sig-
naling in macrophages. Although produced exclusively in the
mitochondria, citrate can be exported into the cytosol by the mito-
chondrial citrate carrier (CIC), and converted to oxaloacetate and
acetyl CoA by the enzyme ATP-citrate lyase (ACLY). Interestingly,
upon LPS, CIC expression levels increase and its inhibition (68) or
the silencing of ACLY (69) was shown to block LPS-induced nitric
oxide (NO), ROS, and prostaglandin production in macrophages,
consistent with a role of cytosolic citrate as important precursor
for these molecules.

In summary, the evidence reported above suggests that the
mitochondrial dysfunction observed in MS lesions can lead to
imbalance of several mitochondrial metabolites that, beyond being
mere intermediates in energy metabolism, can directly influence
the immunological function of different cell types involved in MS
inflammation. Further understanding of the regulation of these
metabolites will be important for the identification of targets to
modulate MP metabolism.

METABOLIC RE-EDUCATION OF MPs IN MS
Given the relevance of metabolism in the activation and polar-
ization of MPs, it has been proposed that an M1-to-M2
transition can be achieved by altering cell metabolism. For
instance, it has been proposed that activating the key meta-
bolic regulator AMP-activated kinase (AMPk) in MPs would
enhance an M2-like phenotype by pushing oxidative metabo-
lism. Indeed, metformin and 5-aminoimidazole-4-carboxamide-
1-β-4-ribofuranoside (AICAR), well-established AMPk activators
can attenuate progression of chronic EAE in mice by inhibit-
ing macrophage infiltration into the CNS (70) and modulat-
ing the endothelial–macrophage interaction (71). Interestingly,

AMPk-null mice have more severe EAE through an increase in
macrophage infiltration to the spinal cord (72).

Another recently proposed metabolic strategy to polarize MPs
to an M2-phenotype is the modulation of sirtuins,a family of seven
NAD-dependent lysine deacetylases involved in a plethora of cel-
lular processes, including metabolic homeostasis (73–75). Among
the sirtuins, SIRT1, SIRT3, and SIRT6 play a key role in the regula-
tion of cellular metabolism. For instance, SIRT3 regulates the enzy-
matic activity of SDH (76) and both SIRT1 and SIRT6 coordinate a
switch from glycolysis to fatty acid oxidation in macrophages (77).
Moreover, nicotinamide phosphoribosyltransferase (NAMPT), an
important enzyme for NAD+ biosynthesis and sirtuins function,
is required for the inhibition of prolonged macrophage activation
via TLR4, indicating that sirtuins can act as anti-inflammatory
factors during physiological response to pathogens (78). There-
fore, sirtuins activity in MPs could favor an anti-inflammatory
M2-like phenotype, by re-educating intermediary metabolism of
these cells.

In conclusion, the manipulation of metabolic pathways is a
tempting strategy to regulate MPs function in MS. However, using
small molecules to regulate ubiquitous enzyme and metabolite
levels may be cumbersome as metabolic pathways are crucial for
normal cell function and energy production. Therefore, more
selective strategies to target MP metabolism are required to reg-
ulate inflammation without impacting on metabolism of other
tissue.

DIMETHYL FUMARATE AS REGULATOR OF MONONUCLEAR
PHAGOCYTE METABOLISM IN MS
A current therapy for relapsing MS is oral dimethyl fumarate
(DMF; Tecfidera), a methyl ester of fumaric acid that is rapidly
hydrolyzed to its active metabolite monomethyl fumarate (MMF),
and shown to have a significant effect on relapse rate and time to
progression in phase III clinical trials of MS (79, 80). Fumaric acid
has been long licensed for the treatment of psoriasis (81), and pro-
gressive multifocal leukoencephalopathy, a rare potentially fatal
neurologic disease caused by reactivation of JC virus infection,
has been reported in rare cases (82, 83).

The mechanisms of action of DMF are still under investigation.
DMF interacts with immune cells in the circulation and promotes
a shift in cytokine production from a Th1-like (pro-inflammatory)
to Th2-like (anti-inflammatory) pattern. Despite being approved
for T-cell-mediated relapsing MS only, DMF has been shown to
affect MPs in vivo in animal disease models. During the acute
phase of EAE, Mac-3-positive microglia and macrophages are sig-
nificantly reduced in DMF-treated mice (84). In vitro studies show
that DMF can shift MPs from an M1-like to an M2-like pheno-
type. Evidence for the anti-inflammatory properties of DMF are
shown in human PBMCs treated with either IFN-γ or LPS where
the expression of the chemokines CXCL8, CXCL9, and CXCL10
are dose-dependently inhibited by DMF (85). In addition, appli-
cation of MMF to MPs results in increased expression of the
anti-inflammatory cytokines IL-4, IL-5, IL-10, and IL-1RA (86).
In human macrophages, DMF and MMF block NF-κB activity by
inhibiting its nuclear translocation and DNA binding in response
to TNF-α and also reduce TNF-α (87). Furthermore, DMF and
MMF suppress CCL2-induced chemotaxis of human MPs (87).
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These data suggest that this block in chemotaxis would result in
decreased infiltration of MPs into the CNS across endothelial sur-
faces. It has also been proposed that DMF may play a role in CNS
oxidative stress by activating the nuclear factor (erythroid-derived
2)-related factor-2 (Nrf2), a transcription factor with antioxidant
properties (88, 89). LPS-induced NO, TNF-α, IL-1β, and IL-6
expression in microglia cells is reduced by pre-treatment with
DMF, possibly through activation of Nrf2 pathway (90). However,
this effect has not been demonstrated in vivo in EAE mice (91). In
addition, fumaric acid esters induce up-regulation of superoxide
in monocytes, which is indicative of a pro-inflammatory response
(92). Although the exact mechanisms of action of DMF are not
fully understood and still controversial, we postulate that, since the
active form of DMF is fumarate, a TCA cycle metabolite, this mol-
ecule may act also by altering the metabolism of MPs and favoring
an M2-phenotype. However, more data is required to validate this
hypothesis.

SUMMARY
The link between metabolism and inflammation has become a
hot topic over the past 5 years. The metabolic state of MPs is now
thought to affect their inflammatory status. Understanding the
changes in metabolism that occur in inflammatory and autoim-
mune diseases is crucial to interpret disease pathogenesis and
identify novel therapies for progressive MS. Here, we provided
evidence to show that targeting specific metabolic processes in
MPs to regulate their inflammatory state might be used as an MS
therapy.
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