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Upon recognition of a foreign antigen, CD4+ naïve T lymphocytes proliferate and differ-
entiate into subsets with distinct functions. This process is fundamental for the effective
immune system function, as CD4+ T cells orchestrate both the innate and adaptive immune
response. Traditionally, this differentiation event has been regarded as the acquisition of
an irreversible cell fate so that memory and effector CD4+ T subsets were considered
terminally differentiated cells or lineages. Consequently, these lineages are conventionally
defined thanks to their prototypical set of cytokines and transcription factors. However,
recent findings suggest that CD4+ T lymphocytes possess a remarkable phenotypic plas-
ticity, as they can often re-direct their functional program depending on the milieu they
encounter. Therefore, new questions are now compelling such as which are the molec-
ular determinants underlying plasticity and stability and how the balance between these
two opposite forces drives the cell fate. As already mentioned, in some cases, the mere
expression of cytokines and master regulators could not fully explain lymphocytes plas-
ticity. We should consider other layers of regulation, including epigenetic factors such as
the modulation of chromatin state or the transcription of non-coding RNAs, whose high
cell-specificity give a hint on their involvement in cell fate determination. In this review, we
will focus on the recent advances in understanding CD4+ T lymphocytes subsets spec-
ification from an epigenetic point of view. In particular, we will emphasize the emerging
importance of non-coding RNAs as key players in these differentiation events. We will also
present here new data from our laboratory highlighting the contribution of long non-coding
RNAs in driving human CD4+ T lymphocytes differentiation.

Keywords: long non-coding RNAs, epigenetic regulation, lymphocyte differentiation

THE REVOLUTIONS OF REGULATORY NON-CODING RNAs
At the beginning of this century, the results of the human genome
project highlighted the complexity of our genome. What emerged
was that the fraction of the genome that is informative is higher
than we expected. Subsequent analysis revealed that the vast
majority of informative sequences does not encode for proteins.
Indeed against a total of 62.1% of the human genome covered
by processed transcript (74.7% by primary transcripts), exons of
protein-coding genes cover only the 2.94% of the genome (1).
From an evolutionary point of view, the genome size is in close
relationship with coding potential in prokaryotes, which have hap-
loid genomes primarily composed by protein-coding sequences
(~88%). Conversely, in eukaryotes, a correlation lacks between
protein-coding gene number and organismal complexity. These
observations are likely explained by the evolution of a more sophis-
ticated architecture to control gene expression that includes the
expansion of non-coding regulatory RNAs (ncRNAs) (2). Thus,
we should clearly reassess the centrality of protein-coding RNAs
in favor of non-coding ones.

Non-coding RNAs with fundamental functions within cells are
known since the discovery of the first transfer RNA (tRNA) (3) and
comprise also ribosomal RNAs (rRNAs). Nonetheless, the interest
toward non-coding RNAs with regulatory functions arose with

the discovery of the first human micro-RNA, let-7 (4). In order
to apply a theoretical framework to the transcriptome, regulatory
ncRNAs are usually classified based on their dimension: “small”
ncRNAs being less than 200 nucleotides in length and “long” or
“large” ncRNAs (lncRNAs) ranging from more than 200 to tens of
thousands of nucleotides (Table 1).

Further complicating the picture, lncRNAs seem to be the pre-
ferred substrate for the generation of small RNAs (21). This maze
of non-coding transcripts was revealed also in a genome-wide
identification of lncRNAs in mouse CD8+ T lymphocytes, where
18 of the identified lncRNAs appeared to overlap with annotated
miRNAs and 21 with snoRNAs (37).

Both classes can be further classified according to their posi-
tion relative to known sequences of the genome, like in the case
of promoter-associated RNAs (PASRs) or transcription initiation
small RNAs (tiRNAs). In particular, long non-coding RNAs are
usually classified relative to neighboring protein-coding genes.
They can be defined as “sense” if they are transcribed from the
same strand of the protein-coding gene or “antisense” if the oppo-
site is true. They can be “divergent” if their promoter and the one
of the coding transcript are in close proximity and located in a
head to head fashion. They can be “exonic” or “intronic” if they
overlap one or more exons, or an intron of the protein-coding
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Table 1 | Major classes of short and long regulatory non-coding RNAs.

ncRNA Length (nt) Function

SHORT

miRNAs Micro RNAs 21–23 In animals, associate with the miRNA-induced silencing complex (RISC) and silence the

expression of target genes mostly post-transcriptionally (5–7)

snoRNAs Small nucleolar RNAs 60–300 Help the chemical modification of mRNAs, thereby influencing stability, folding, and

protein-interaction properties (8, 9)

snRNAs Small nuclear RNAs 150 Assist splicing of introns from primary genomic transcripts (10, 11)

piRNAs Piwi-interacting RNAs 25–33 Associate with the highly conserved Piwi family of argonaute proteins and are essential for

retrotransposon silencing in germline, epigenetic modifications, DNA rearrangements, mRNA

turnover, and translational control also in soma (12–14)

PASRs Promoter-associated

short RNAs

22–200 Enriched at the 5′ end of genes, within 0.5 kb of TSS. Can be transcribed both sense and

antisense. Their function and biogenesis is not fully understood (15, 16)

TASRs Termini-associated

short RNAs

22–200 Can be transcribed both sense and antisense near termination sites of protein-coding genes.

Their function and biogenesis is not fully understood (15, 16)

siRNAs Short interfering RNAs 21–23 Processed from a plethora of genomic sources, both foreign (viruses) and endogenous (repetitive

sequences). Canonically induce the degradation of perfectly complementary target RNAs (17, 18)

tiRNAs Transcription initiation

RNAs

15–30 Enriched immediately downstream transcriptional start sites (TSSs) of highly expressed genes.

Their function and biogenesis is not fully understood (16, 19, 20)

LONG

NATs Natural antisense

transcripts

>200 Transcribed from the same locus but opposite strand of the overlapping protein-coding

sequence. Involved in gene expression regulation, RNA editing, stability, and translation (21, 22)

PALRs Promoter-associated

long RNAs

200–1000 Enriched at promoters, found to regulate gene expression (23, 24)

PROMPTs Promoter upstream

transcripts

200–600 Enriched at TATA-less, CpG-rich promoters with broad TSSs. Affect promoter methylation and

regulate transcription (25–27)

T-UCRs Transcribed

ultraconserved regions

>200 Perfectly conserved between human, rat, and mouse. Frequently located at fragile sites and at

genomic regions involved in cancer (28)

Intronic

RNAs

>200 Transcribed from introns of overlapping protein-coding sequences. Involved in the control of

gene expression, alternative splicing, and source for generation of shorter regulatory RNAs (29)

eRNAs Enhancer-derived

RNAs

>200 Function still not completely understood. May functionally contribute to the enhancer function

(30–32)

LincRNAs Long intervening

(intergenic) RNAs

>200 Gene expression regulation, regulation of cellular processes (33, 34)

uaRNAs 3′UTR-derived RNAs <1000 Derive within 3′ untranslated region (3′UTR) sequences. Function still not clearly understood (35)

circRNA Circular RNA 100 to >4000 Diverse, from templates for viral replication to transcriptional regulators (36)

gene respectively. Instead, they can be “intergenic” (or “inter-
vening”; lincRNAs) if they lie within a sequence between two
protein-coding genes (38). In this review, we will focus on this
last category, which is probably the most studied given that the
location of these lncRNAs avoids complications deriving from
the overlap with other genes. The majority of known lncRNAs
is generated by the same transcriptional machinery of mRNAs.
This means that transcribed lincRNAs genomic sequences are
marked by RNA polymerase II occupancy and histone modifi-
cations that are shared with active protein-coding genes, such

as H3K4me3 at promoters and H3K36me3 within gene bodies
(39). They are capped by methylguanosine at their 5′, spliced,
and polyadenylated, even if the widespread representation of this
last property among known lncRNAs could be partially due to
the RNA sequencing strategies used for their identification (15,
40). Indeed, broader analysis identified about 39% of lncRNAs
to have at least one of the six most common poly(A) motifs,
compared to 51% for coding transcripts (1). These properties
imply that there are few distinctive biochemical features that allow
the distinction of lncRNAs from protein-coding mRNAs. Among
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them, lncRNAs have unusual exon structure, with on average 2–5
exons. Intriguingly, lncRNAs are significantly more likely to over-
lap repetitive elements and particularly RNA-derived transposable
elements (TEs). These last account for about 30% of human lncR-
NAs nucleotides, often in proximity of their transcriptional start
site (TSS), which could suggest that TEs could be important dri-
vers of lncRNAs evolution (see below). Nonetheless, the main
difference between lncRNAs and protein-coding genes relies by
definition on their coding potential: lncRNAs does not possess
open reading frames (ORFs), as evaluated based on: the conser-
vation of ORFs codons (41), ORFs length, the presence of known
protein domains, in vitro translation (42, 43), and ribosome foot-
printing (44) assays. However, these conceptual constraints are
terribly artificial: short, non-canonical peptides have been found
to arise from small ORFs within ncRNA (45–48); lncRNAs genes
can also code for proteins and have a double function (49) and ulti-
mately, the coding potential does not necessarily exclude a function
as RNA also for known mRNAs (50). Evolution makes bound-
aries between coding and non-coding genes fainter as ncRNAs
can evolve by pseudogenization. This event can follow disrup-
tion of the ancestral ORF, but not of the untranslated regulatory
regions (UTRs) in protein-coding genes duplicates (50) or can
arise without duplication, but from the co-option of ancestral
genes to different, non-coding functions (51). This was the case of
the long-known Xist RNA, involved in the silencing of the inac-
tive X chromosomes in eutherians. In particular, two exons of
the protein-coding gene Lnx3 are homologous to Xist. This gene
retained a protein-coding capacity at least in the common ancestor
of marsupials and placentals. Conversely, the Xist A-repeat impli-
cated in X-silencing function is not conserved. This sequence likely
arose from the insertion of a TE recruited to form a proto-Xist gene
(52, 53). Therefore, the difference between dosage compensation
in marsupials, eutherians, and monotremes can be ascribed from
the presence of a Xist-independent XCI in mammalian ancestor
and the peculiar evolution of the proto-Xist gene by pseudoge-
nization in the eutherian ancestor. Intriguingly, other lncRNAs
involved in X-inactivation are similarly examples of pseudoge-
nization (54). The boundary between coding and non-coding
is even less defined when ncRNAs arise from joining of coding
and non-coding exons through alternative splicing (55, 56), from
untranslated regions of mRNAs (57, 58) or from the opposite
strand of the overlapping protein-coding gene (59). Strikingly,
more than a half of protein-coding genes in mammals have a
complementary non-coding transcript (60). These findings fur-
ther challenge our “linear” model of the genome, prompting a
re-evaluation of current dogma and genes definitions. Genomic
regions indeed are far more complex than previously thought:
genes can be used for different purposes and different functional
elements can co-locate intermingling coding and non-coding
regions.

The interest toward lncRNAs has been rapidly growing and
their expressions have been quantitated in many different tissues
and cell types by high-throughput sequencing (RNA-seq). These
efforts retrieved catalogs with little overlap, so that the number of
known lncRNAs is still growing, in contrast with the number of
known protein-coding genes that has been remarkably stable over
years. Indeed, lncRNAs are far more cell-specific than mRNAs,

generally less but also more dynamically expressed at various dif-
ferentiation stages. For this reason, immune system is an excellent
context in which we can deepen our knowledge on lncRNAs. While
many excellent reviews cover the recent advances in understand-
ing the role of these molecules within the innate branch (61, 62),
little is still known about their importance for the human adap-
tive immune system. Effector lymphocytes are highly specialized
cells that arise from common progenitors through differentiation
processes still not completely understood. Besides, lymphocytes
can be purified through cell sorting from blood of healthy donors
and the existence of in vitro differentiation protocols provide the
ideal setting for the identification of lncRNAs expressed in the
human immune system and for their functional characterization.

Indeed, the growing interest on lncRNAs and the lack of knowl-
edge on their expression patterns in the human immune system
prompted us to perform the RNA-seq analysis on 13 human pri-
mary lymphocytes subsets purified by FACS sorting from healthy
donors (CD4+ naïve, TH1, TH2, TH17, Treg, TCM, TEM, CD8+

naïve, TCM, TEM, B naïve, B memory, B CD25+) and to develop a
bioinformatics pipeline for lincRNAs identification.

Through this analysis, we identified long intergenic ncRNAs
genes expressed in these subsets and confirmed that lincRNAs cell-
specificity is higher than protein-coding genes even when com-
paring lincRNAs genes with membrane receptor protein-coding
genes, which are generally referred as the most accurate mark-
ers for lymphocyte subsets definition. Besides, a major outcome
of this analysis is the identification through de novo transcrip-
tome reconstruction of 563 novel, previously unannotated long
intergenic ncRNAs genes, increasing by ~12% the number of
lincRNAs known to be expressed in human lymphocytes (63).
Intriguingly, a fraction of lincRNAs specific for B cells and a frac-
tion of “pan-T” lincRNAs also exist (63). It would be extremely
interesting to study these lincRNAs during lymphocytes develop-
ment in order to understand their likely peculiar role in thymic or
bone-marrow-derived cells development.

These observations imply that the little overlap between avail-
able catalogs is a direct consequence of lncRNAs specificity and
that we could overcome this limitation only assessing lncRNAs
expression in every different, highly purified cell type at different
developmental stages, instead of considering tissues as a whole.
Moreover, due to their specificity of expression, human lympho-
cytes lincRNAs that are not yet annotated in public resources
would have not been identified without performing de novo
transcriptome reconstruction. As mentioned before, such tissue-
specificity has been linked to the enrichment of TEs in proximity
to lincRNAs TSS (64, 65). Moreover, RNA-seq experiments per-
formed in a human CD4+ naïve T cells in vitro differentiation
time-course suggest that lincRNA-specific expression in human
lymphocyte subsets is acquired during their activation-driven
differentiation from naïve to memory cells (63).

These findings hint to the involvement of lymphocyte-specific
lincRNAs as fine-tuners in cell fate commitment, differentiation,
and maintenance of cell identity, as demonstrated by many exam-
ples in other cell types (66–68). Also, lincRNAs are functionally
involved in cell growth (69, 70), apoptosis (71–74), development
(75–77), imprinting (78–80), and dosage compensation (81) in
almost every cellular context (Table 2).
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Table 2 | Examples of lincRNAs with key roles in various cellular contexts.

LncRNA Cellular context Function

H19 HSC, placenta Maternally expressed imprinted gene important for inhibiting placental growth (69) and maintaining adult

hematopoietic stem cell populations (HSC) via miR-675 generation and repression of Igf1r (70)

GAS5 T lymphocytes,

cancers

Plays an essential role in normal growth arrest inT lymphocytes (71). Its increased level of expression correlate with

cell death and reduced cell proliferation both in prostate (72) and colorectal cancer cell lines. Its lower expression is

instead significantly correlated with larger tumor size and poor prognosis in colorectal cancer patients (74)

Linc-MD1 Muscles Governs the timing of muscle differentiation by acting as a competing endogenous RNA (ceRNA) with respect to

miR-133 and miR-135 in mouse and human myoblasts (75)

Xist Somatic cells Expressed by the future inactive X chromosome, triggers gene silencing in cis by coating the chromosome. It

induces a cascade of chromatin changes, post-translational histone modification and DNA methylation, and leads

to the stable repression of X-linked genes, ensuring proper dosage compensation (81)

KCNQ1OT1 Most tissues Paternally expressed antisense transcript to an interior portion of Kncq1, part of an imprinted locus on human

chromosome 11p15. It is critical for imprinting-mediated silencing in most tissue, via long-range intrachromosomal

loop and recruitment of polycomb repressive complex 2 (PRC2) (78–80)

Long non-coding regulatory RNAs exert their function in these
fundamental processes interacting with chromatin or DNA mod-
ifiers and transcription factors (TFs) modulating gene expression
(82); competing with micro-RNAs acting as sponges (83); mod-
ulating subcellular trafficking (84), translation (85), splicing (86),
and likely through many other mechanisms still to be discovered
(Figure 1).

Long non-coding regulatory RNAs functional flexibility derive
from their intrinsic propensity to fold into thermodynamically
stable secondary and higher orders structures that function as
interaction modules (87). Each module can fold independently
from another, forming bonds at the level of Watson–Crick, Hoog-
stein, and ribose face (88, 89). These RNAs can rapidly shift
between diverse stable structural conformation, allowing allosteric
transitions that can act as switches in response to environmen-
tal stimuli. They are also processed faster than mRNA, given
that they must not be translated, allowing a rapid response to
signals. LncRNAs can also be regulated via more than a hun-
dred different nucleotide modifications, like in the case of tRNAs,
rRNAs, and snoRNAs (90–92) that modulate their function and
probably their structure. RNAs can generate multiple modules
within their structure, allowing the interaction with multiple
players, the reception of multiple stimuli, and the generation of
multiple outputs. The required pairing is likely extremely flexi-
ble, such as in the case of micro-RNAs, and allows mismatches,
bulges, and wobblings (93). Many of these interaction mod-
ules derive from repetitive elements, such as transposons that
took advantage of the fewer constraints that lncRNAs sequences
have compared to protein-coding genes (1, 94). Indeed, lncRNAs
rate of sequence evolution is higher relative to protein-coding
genes, even if also these transcripts exhibit evolutionary signa-
tures of functionality. They evolve under modest but detectable
selective pressure, accumulating fewer substitutions than neu-
trally evolving sequences (95, 96). Likely, conservation of rela-
tively small units of lncRNAs sequences (estimated to be less
than 5%) could be sufficient to preserve their function, con-
sidering their already mentioned modular structure (97). This

FIGURE 1 | Examples of the main functions associated to lincRNAs.
(1–5) LincRNAs described in the immune system. (1) Modulation of cell
growth and apoptosis mediated by GAS5 that acts inhibiting glucocorticoid
receptors binding to their DNA responsive elements; (2) Jα recombination
guided by the PARL TEA; (3) Tmevpg1 recruits WDR5 to induce IFNγ

expression; (4) Nron modulates the import–export of NFAT to the nucleus;
(5) IFNα1-AS acts as a competing endogenous RNA, releasing IFNα from
micro-RNA inhibition. In light red other mechanisms are described for
lincRNAs outside the immune system.

could be the reason why existing bioinformatic approaches fail
to detect low level and scattered selective constraint within these
loci (97).
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Through such a plastic and versatile structure, lncRNAs can
exert their functions binding to proteins, other RNAs (98), and
probably also DNA, even if there is still little evidence on the exis-
tence of RNA:DNA triplex (99, 100). In particular, lncRNAs can
act as scaffolds, bridging together different molecules in a coordi-
nated hub, like in the case of NEAT1: a highly abundant lncRNA
that controls sequestration of proteins involved in the formation
of paraspeckles, nuclear domains associated with mRNA reten-
tion and pathologically enriched in influenza and herpes viruses
infections (101, 102). LncRNA can also act as guides, recruiting
proteins at specific loci: this has been hypothesized in the case of
recombination events that mediate genetic diversity in develop-
ing lymphocytes as class switch (CS) and V(D)J recombinations
that seem to be mediated by sense and antisense transcripts that
dictates the locations of combinatorial events (103–105). Again,
lncRNAs can act as control devices or riboswitches in response
to extracellular stimuli. For example, they can act as decoys, pre-
cluding pre-existing interactions such as GAS5 RNA that detach
glucocorticoid receptor (GR) from its responsive elements in con-
ditions of growth arrest (106, 107). Nonetheless, the regulatory
potential of lncRNAs has been better characterized in the context
of the epigenetic regulation of transcription that ultimately defines
the cell transcriptome.

THE ROLE OF LONG NON-CODING RNAs IN EPIGENETICS
Histones and DNA modifications together with the tridimensional
chromosomes conformation within the nucleus define, at least in
part, the epigenetic landscape of the cell. This extremely dynamic
context modulates gene expression and dictates the final transcrip-
tional output in response to environmental stimuli. By definition,
these modifications are then propagated throughout cell divisions.
This process is important in every moment of cell life, but partic-
ularly during differentiation. Indeed, every cell within our body
harbor the same genome, but every cell acquires a particular phe-
notype according to intrinsic and extrinsic cues that ultimately
defines its epigenome and therefore its fate during differentiation.
Epigenetics also defines to what extent this fate can be irreversible
or plastic (108–110).

As mentioned before, human lymphocytes are an interesting
model system for understanding the basis of cell fate specifi-
cation and plasticity. Indeed, although traditionally the broad
range of effector lymphocytes has been referred to as composed
by distinct lineages, it has become increasingly clear that these
cells also have notable features of plasticity. Differentiation of
naïve cells into specific helper subsets requires the integration
of extrinsic cues that converge into cell-intrinsic changes in the
epigenetic landscape on the genome (111, 112). The interest
within the field has been focused on the regulation of proto-
typical cytokine genes for each subset such as Ifng gene for
TH1 or Il-4 for TH2 CD4+ lymphocytes. Much work has been
done in both cases to define the complex genetic structure of
these loci and the cis regulatory elements bound by TFs and
chromatin modifiers promoting or repressing their transcription
(113–115). The importance of the setting of epigenetic memory
at these fundamental loci was underlined also by treatment with
DNA methylation inhibitors (116, 117) or histones deacetylases
inhibitors (118–120) and by deletion of DNA methyltransferase

(121–123), which caused respectively: constitutive production of
IFN-γ, enhanced production of both TH1 and TH2 prototypic
cytokines, and inability to activate the proper pattern of expressed
cytokines. The same is true for deletion of components of tritho-
rax group (TrxG) or polycomb repressive complex (PRC) that
dictates active or repressive epigenetic marks at fundamental loci
for proper T-helper cell differentiation, such as Il-4, Il-5, Il-13, and
Gata3 (124–129). The pattern of chromatin marks is conventional
for signature cytokines: active marks are present at prototyp-
ical cytokines whereas repressive marks restrain the expression
of antagonistic molecules. However, master regulators and other
TFs, usually considered as definers of lineage-specific identity, are
characterized by bivalent poised domains, in which both active
and repressive chromatin marks are present (130, 131). This his-
tone epigenetic status is peculiar also to promoters in embryonic
stem cells, where it poises the expression of key developmental
genes thus allowing their timely activation in the presence of dif-
ferentiation signals and concomitantly precluding expression in
their absence (132). Indeed, while the expression of master TFs is
quite rapid, cell divisions are required for cytokine loci to become
accessible or conversely repressed. Indeed, GATA3 and T-bet/STAT
proteins initiate the epigenetic changes at IFN-γ and IL-4 loci
that follow the initial activation of naïve T cells and differentia-
tion toward TH1 and TH2 cell fate (133, 134). These observations
imply that T-helper cells harbor both clear-cut and plastic epige-
netic marks. Nonetheless, we must consider that even cytokines
genes that are clearly defined epigenetically, can be expressed
or repressed in unexpected context, as reported in TH1 cells
converted in IL-4-producing cells during strong TH2-polarizing
helminth infections (135) or stable TH1/TH2 hybrid cells derived
after parasite infections (136). Therefore, other players must be
involved to define the degree of plasticity of lymphocytes in
response to these ever-changing environmental conditions during
differentiation.

Long non-coding regulatory RNAs have been linked to epige-
netic control of gene expression since the first studies regarding
the already mentioned Xist transcript, involved in X chromosome
inactivation in eutherians. Many other lncRNAs have been asso-
ciated to chromatin or DNA modifiers and even TFs, thanks to
specific mechanistic studies or high-throughput screenings (82,
137–139). This interplay can be observed across a broad range of
eukaryotic organisms, suggesting that the epigenetic role of lncR-
NAs is conserved, even if their mere sequence conservation is often
limited (as described previously). It seems that lncRNAs could
act as scaffolds, physically associating with proteins that modify
chromatin either activating or repressing gene expression. Thanks
to the already discussed structural properties of RNA, lncRNAs
could organize multiple players in spatially and temporally con-
certed actions (138). Not only: thanks to their ability to base pair
with other nucleic acids, they could recruit these modifiers at spe-
cific loci, therefore conferring them specificity of action (98). This
property has been an unsolved issue, given that chromatin mod-
ifiers do not possess intrinsic bias toward consensus sequences,
at least in mammals, while in Drosophila these “docking sites” are
well defined (140, 141). Interestingly, while many of these enzymes
lack DNA-binding properties, they instead possess RNA-binding
motifs (142–144).
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The majority of reported lncRNAs are involved in the repres-
sion of gene transcription, in particular by interacting with
polycomb group (PcG) proteins. The first examples of a direct
interaction with PRC2 are the already mentioned Xist (145) and
Kcnq1ot1, expressed only in the mammalian paternal chromo-
some and involved in the silencing of 8–10 protein-coding genes
(146). In both these cases, lncRNAs are strictly required for the
enrichment of PRC2-associated proteins and for the trimethyla-
tion of the lysine 27 of histone H3 at specific loci. Furthermore,
other lncRNAs such as NEAT2 and TUG1 promote relocation of
growth-control genes at foci of PcG proteins (called PcG bod-
ies), therefore likely facilitating the concerted repression/activation
of the transcription units in response to mitogenic signal (147).
Many other protein complexes have been found to interact with
lncRNAs, the majority targeting histones, either methylases or
demethylases, but other involved in DNA methylation (148).
Indeed, lncRNAs can bind proteins part of the TrxG (68) that
antagonize PcG-mediated silencing (149). Interestingly, an anti-
sense lncRNA has been recently involved in recruiting a regulator
of DNA demethylation at a specific promoter (150). This process
remains still largely unknown and it has only recently been asso-
ciated to active enzymatic reactions, via TET family of methyl-
cytosine dioxygenases (151, 152). Even in this case, one of the
unsolved questions has been how locus-specificity can be achieved.
Particularly, DNA demethylation is often restricted to few dinu-
cleotides at the TSS. The precise mechanism, though, through
which lncRNAs could direct DNA or chromatin modification has
never been described. Indeed in all reported examples, correlations
have been described between lncRNA-modifiers associations and
loss of modification after lncRNA gene silencing.

Long non-coding regulatory RNAs are supposed to confer
binding specificity to modifiers and recruiting them either in cis
or in trans. In the first case, lncRNAs could act directly on sites
where they are synthesized without needing to leave DNA. The
current hypothesis suggests that the 5′ region of the nascent tran-
script could bind proteins while the 3′ is transcriptionally lagging,
being still tethered to chromatin by RNA polymerase (153). This
model is particularly intriguing as through this mechanism, lncR-
NAs could exert an allele-specific effect, like in the well-studied
case of Xist. In trans regulation is instead achieved when lncRNAs
act modulating genes across great distances or even on different
chromosomes (154). Regarding this dichotomy, we must under-
line once again its artificiality. Indeed, chromosomes fold into
complex, three-dimensional territories together with specialized
subnuclear bodies. Proteins that are part of the transcriptional or
splicing machinery and regulators of these processes group at these
foci (155, 156). These structures are not static, but on the contrary,
large-scale chromosomal repositioning is observed in response to
environmental stimuli or during differentiation (157, 158). Sub-
nuclear movements are of key importance in regulating events
like transcription and rearrangement that occur at immunoglob-
ulin loci during B lymphocytes development (159). The dynamic
folding of the genome into higher order structure encompasses
loci belonging to the same chromosome, even hundreds of kilo-
bases apart, or different ones, bringing together regions that are
distant if we consider the genome as linear. Therefore, in this con-
text, it is extremely difficult to discern what regulations are in

cis or in trans, especially when they involve long distance inter-
actions. Intriguingly, lincRNAs have been found to regulate the
formation of subnuclear structures, such as NEAT1, required for
paraspeckles nucleation (101). LncRNAs can also affect directly
the three-dimensional organization of chromosomes enhancing
the function of proteins involved in looping formation, like the
insulator protein CTCF (160). There are also many examples of
lncRNAs involved in three-dimensional local chromatin looping
that brings together the ncRNA gene with the region that it regu-
lates within the same chromosome (68, 161). Recently, a lincRNA
called Firre has been shown to recruit specific gene loci located on
different chromosomes, acting as a docking station for organizing
trans-chromosomal associations. Consistently, genetic deletion of
Firre leads to a loss of proximity of several trans-interactions
(162). A peculiar type of lncRNA has been described that is
transcribed from enhancer regions (eRNAs). Classic enhancer ele-
ments therefore likely act through transcription of these lncRNAs
that upregulate expression at promoters via the recruitment of
Mediator complex (163, 164). Finally, there is increasing evidence
that even promoters could be transcribed (165), producing lncR-
NAs probably involved in the enhancer–promoter loop that was
hypothesized years ago but never fully resolved (166).

LONG NON-CODING RNAs IN THE ADAPTIVE IMMUNE
SYSTEM
The adaptive immune system is an extraordinary context for the
study of the role of lincRNAs in differentiation. Indeed, upon
antigen stimulation, naïve CD4+ T cells differentiate into dis-
tinct T-helper subsets that were traditionally considered lineages
and defined by a prototypic set of expressed cytokines and mas-
ter TFs. Recently, this relative simple scenario, although useful,
has been subjected to debate. CD4+ T cells demonstrated to
exhibit substantial plasticity and it has become increasingly clear
that they can change the pattern of cytokines and TFs accord-
ing to the milieu they encounter through their life (167, 168).
Not only, in some cases, they can concomitantly express other
cytokines and TFs together with their prototypical set. Best exam-
ples include IL-10, once thought to specifically identify TH2 and
now known to be produced also by TH1, Treg, and TH17 cells
(169) and IFN-γ, the classic TH1 cytokine, frequently released
by TH17 cells simultaneously with IL-17 (170, 171). Regarding
master TFs, Tregs can express Foxp3 (their prototypical TF), but
also RORγt (TH17 TF) and Runx3 (172–174); similarly TFH cells
can differentiate from FOXP3 positive cells also expressing Bcl6
(their specific TF) (175, 176). In this context, lncRNAs have a
fundamental role in governing flexibility and plasticity or main-
tenance of cell identity, together with lineage-specific TFs and
other ncRNAs. In particular, what is emerging from the litera-
ture is that ncRNAs typically act as fine-tuners of fate choices and
this seems to be true not only in the immune system. Nonethe-
less, in the case of CD4+ T-cell subsets that are specified but not
fully determined, subtle changes in extrinsic signals can reverber-
ate through responsive ncRNAs inducing changes that alter cell
phenotype (38, 177, 178). Usually, the stability of lineage identity
is achieved through the implementation and inheritance of epi-
genetic modification, but as mentioned before, lncRNAs can act
directly on histone and DNA modifiers redefining this context.

Frontiers in Immunology | T Cell Biology April 2015 | Volume 6 | Article 175 | 6

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panzeri et al. LncRNAs in human lymphocyte differentiation

Conversely, lncRNAs can also buffer this situation in other condi-
tions, acting as maintainers of cell identity. In the cellular system,
lncRNAs can be regarded as minor nodes in a huge interconnected
network (179), as they usually interact with few other players.
This condition allows them to be more flexible and sensitive to
variations without disrupting the whole network integrity (180).
This is true both over a very short period, as cells can easily and
rapidly adapt to environment, and also over long evolutionary
periods, as lncRNAs are among the fastest evolving sequences in
the genome (95, 181–183). Conversely, master transcription reg-
ulators can be considered highly connected hubs, which confer
robustness to the network. Indeed, very few protein-coding genes
have been lost from worms to human and mutations are most
often pathological (184, 185).

Several single-case or genome-wide studies on lncRNAs in the
murine adaptive immune system or cell lines are now available in
the literature, whereas only few studies have been conducted until
now in the human context. The number of studies that unveiled
the function and mechanism of a specific lncRNA is so small that
can be counted on one hand (Table 3).

The importance of the studies in the human immune system is
underlined by the fact that the differences between experimental
animal models and human are still subject of debate in terms of
immunologic responses (199–201). Moreover, there are increasing
evidences that ncRNAs are poorly conserved between animal mod-
els and human (202, 203). In particular, lncRNAs are really fast-
evolving elements as demonstrated by the fact that over 80% of
the human lncRNAs that arose in the primate lineage, only 3% are

Table 3 | Studies on lncRNAs in the adaptive immune system.

Sample LncRNAs Function

Granulocytes, monocytes, NK, B, naïve

CD8+ and CD4+, memory human T cells;

in vitro polarized precursors T-helper, TH0,

TH1, and TH2 human cells

240 lncRNAs associated with

autoimmune disease (AID)

loci (RNA-seq)

Analysis of the expression profile of the AID-associated lncRNAs

(186)

CD4−CD8−, CD4+CD8+, CD4+CD8−,

activated CD4+ mouse T cells

31423 lncRNAs (lncRNA

microarray)

Expression analysis and prediction of function (187)

17 T-cell leukemia cell lines Thy-ncR1 (expression profiling

of 10 thymus-specific ncRNA)

Enriched in human immature cells; acts as a cytoplasmic

riboregulator that reduces the level of MFAP4 mRNA (188)

Naïve, memory, activated, non-activated

mouse CD8+ T cells

Over 1000 mouse and human

lncRNAs (microarray)

Expression and conservation analysis (37)

CD4−CD8−, CD4+CD8+, CD4+, CD8+

mouse thymic T cells, and thymus-derived

Treg cells. In vitro differentiated TH1, TH2,

TH17, and induced Treg

1524 lincRNA genes

(RNA-seq); LincR-Ccr2-5′AS

Expression analysis and ChIP-seq data analysis to identify lincRNA

genes and possible regulators. LincR-Ccr2-5′AS is TH2-specific and it

reduces the expression of Ccr1, Ccr2, Ccr3, and Ccr5. It contributes

to the migration of TH2 cells (189)

Infected Namalwa B lymphocytes IFNA1-AS Cytoplasmic post-transcriptional stabilization of IFN-α1 RNA masking

a miRNA-binding site (190)

Jurkat cells, primary lymphomas,

lymphoma cell lines, CD19+ B cells

Saf/FAS-AS1 Regulates the alternative splicing of Fas which is impaired in

non-Hodgkin’s lymphomas associated with poor prognosis (191, 192)

Activated human CD4+ T cells BIC RNA (EST library analysis) Proto-oncogene, induced upon activation, sensitive to

immunosuppressive drugs (193)

Jurkat cells NRON (shRNA knock-down

screening)

Regulates NFAT subcellular localization as part of an RNA–protein

complex (84)

CEM-C7 CKM1, jurkat JKM1, human

primary lymphocytes

GAS5 Necessary and sufficient for growth arrest. Acts competing from

GREs (71, 106)

Human CD4+, CD8+ cells, PBMC NTT Unknown, it shows a similar expression pattern to IFNγR (194)

Thymocytes TEA Instruct the activity of Jα promoters and recombination (103, 195)

Human TH1 cells NeST/Tmevpg1/IFNG-AS1 Dependent on STAT4, T-bet, and NFκB. Contributes to Ifng

expression by binding WDR5 and alter H3K4me3 (196, 197)

Human primary CD4+ and CD8+ T cells,

primary and polarized (from CD4+ and

CD8+ T) CD4+ CM, TH1, TH2, TH17, and

Treg cells; neutrophils, basophils, CD8+

CM, B cells

GATA3-AS1 Specifically expressed in TH2 cells (198)
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conserved across tetrapods and most mammalian lncRNAs lack
known orthologs outside vertebrates (97). In detail, even between
mouse and human, lncRNAs are poorly conserved (204–206).
Despite their rapid evolution, lncRNAs are selected more than neu-
tral sequences and in particular more than intergenic regions, but
significantly less than mRNAs (96, 97, 207). It must be underlined
that the conservation rate reported could be overestimated: substi-
tution rates are derived from whole-genome alignment and based
on the assumption that even segment of homologies imply that
that segment belongs to the same RNA class, but this is not neces-
sarily the case. Indeed, it could be that in another genome context
a specific lncRNA gene segment is transcribed and processed as
part of a protein-coding RNA (208). A striking example is Hotair
that is involved in the regulation of the highly conserved clus-
ter of Hox genes (68). The human lincRNA is conserved in the
mouse genome (209), nonetheless only the 3′ region is effectively
part of the murine homolog (183). The importance of studying
lincRNAs specifically within the human immune system derives
from these considerations, but this field is still poorly investigated.
The majority of the studies focused on the innate immune system
(210–212) or analyzed pathological situations, such as cancer-
related lncRNAs (192, 213) or responses to specific infections
(102, 214–216), mostly in mice. The first functional study that
focused on the adaptive immune system, and in particular on
TH1 and TH2 lymphocytes, involved a lincRNA, Tmevpg1, that
is selectively expressed in TH1 cells via STAT4 and T-bet, both
in mouse and human. It participates in the induction of IFN-γ
expression strictly in response to TH1 differentiation program and
not in other cellular contexts. These results highlight once again
the complexity of gene expression regulatory network and the
specificity of action of lincRNAs (196). Another paper described
a lincRNA, GATA3-AS1, specifically expressed in primary TH2
cells and hypothesized its co-regulation with GATA3 (198). GAS5,
expressed in human T lymphocytes, is degraded in optimal growth
conditions, but it accumulates contributing to growth arrest in
starving conditions (107). In this situation, it competes with GRs
DNA-binding sequences, suppressing GR-mediated transcription
(106). Broader studies have been performed on the CD8+ T cell
transcriptome (37), and recently on CD4+ T lymphocytes (189),
but still on mice models. In B cells, chromatin remodeling asso-
ciated with V(D)J recombination has been potentially linked to
a widespread antisense intergenic transcription that occurs in the
variable (V) region of the immunoglobulin heavy chain (Igh) locus
(104, 105). So far, no studies have been published that performed
a deep transcriptomic analysis on human primary lymphocytes
from healthy donors, identifying lncRNAs fundamental for dif-
ferentiation processes. These few examples are just clues of the
importance that lincRNA could have for the proper function also
of the human immune system and prompt to a deeper analysis of
their role in this particularly intriguing context.

LONG NON-CODING RNAs AS EPIGENETIC MODULATORS IN
LYMPHOCYTE DIFFERENTIATION
Traditionally, the secretion of IFN-γ and TNF-α characterizes
TH1 lymphocytes, whereas IL-4, IL-5, and IL-13 are considered
prototypic cytokines secreted by TH2 cells. According to this clas-
sic paradigm, these differences underline the different functions

exerted by these lymphocytes: TH1 are considered as important
to eliminate intracellular bacteria and viruses, whereas TH2 to
resist parasitic infections (217). The advantage of solid in vitro
differentiation protocols allowed a deep understanding of the
genetic mechanisms governing these cells. Since the discovery of
this dichotomy, other cell subsets have been identified, but this
TH1/TH2 paradigm was undoubtedly useful. Therefore, it is not a
case that among the few lncRNAs identified in the immune sys-
tem, many of those functionally characterized have been described
in these two cell subsets. Nevertheless as mentioned before, just
one lincRNA, Tmevpg1 (also known as NeST or IFNG-AS1) has
been characterized in deep. Tmevpg1 is located proximal to IFN-
γ gene both in mice and humans, antisense and convergently
transcribed respect to the neighboring gene and plays a role in
chromatin remodeling. This transcript is a TH1-specific lincRNA:
it requires STAT4 and T-bet for being transcribed and is also bound
by CTCF and cohesin during lineage-specific induction (196).
Therefore, Tmevpg1 is directly dependent on the activation of a
TH1-polarizing transcriptional program, in which the presence of
IL-12 leads to the activation of the JAK/STAT pathway via STAT4
(and STAT1) that induces the expression of T-bet. Interestingly,
Tmevpg1 gene harbor sequences regulated by histone acetylation
and DNase I hypersensitive sites found in TH1 but not TH2 cells
(218, 219). Tmevpg1, in its turn, plays a direct part in defining the
proper TH1 cytokine expression pattern, influencing Ifng tran-
scription in the presence of T-bet (196), via H3K4 trimethylation
by WDR5 binding in mice models (197).

Given the increasing number of lncRNAs described in differ-
ent cellular contexts and the high number of specific lincRNAs
expressed in the different lymphocytes subsets identified with
the aforementioned RNA-seq analysis, many more lincRNAs will
likely be characterized in the future with a relevant function in the
human immune system. A major limitation, though, in the stud-
ies on lncRNAs is that there is little biological knowledge on the
biochemical or molecular function of lncRNA genes. Compared
to classical protein-coding gene studies, hints on their functions
cannot be gained simply by the analysis of their primary sequence
and application of computational methods to infer lncRNA func-
tion are also still in their infancy. As lincRNAs have been reported
to influence the expression of neighboring genes (25, 26, 28, 39),
one possible approach to investigate their putative function is to
focus on lymphocyte lincRNAs proximal to protein-coding genes
involved in key cell-functions.

Through this approach, we identified a TH1-specific lincRNA
that localized ~140 kb upstream to MAF that was therefore called
linc-MAF-4. MAF is a TF involved in TH2 differentiation and
required for the efficient secretion of IL-4 by TH17 and the proper
development of TFH cells (220–222). Intriguingly, the expression
of linc-MAF-4 is negatively correlated with respect to the expres-
sion of MAF : linc-MAF-4 expression is high and specific in TH1
lymphocytes, where MAF is lowly expressed whereas in TH2 cells
the expression of linc-MAF-4 is extremely low and MAF is highly
expressed. Coherently, linc-MAF-4 knock-down in naïve CD4+ T
cells increased the expression of MAF and interestingly induced a
more general skewing of the whole transcriptomic profile of these
cells toward a TH2-like fate (63). The regulation exerted by linc-
MAF-4 on MAF gene was analyzed in more detail and this lincRNA
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FIGURE 2 | Mechanism of action proposed for linc-MAF-4.

proved to modulate MAF expression in cis, as hypothesized by
expression analysis. Linc-MAF-4 exerts this regulation by exploit-
ing a chromatin loop that brings its genomic region close to the
promoter of MAF gene. Indeed, the chromatin organization of this
region allows linc-MAF-4 transcript to recruit chromatin remod-
elers that inhibit MAF transcription. In particular, linc-MAF-4
was found to associate with EZH2, key enzymatic subunit of the
PRC2 complex, and LSD1. These proteins methylate H3K27 and
demethylate H3K4, respectively: two histones modifications that
code for transcriptional repression. (63). A similar mechanism was
described for other lincRNAs, such as HOTAIR and MEG3 (154,
223) but never before for other lncRNAs expressed in the adaptive
immune system (Figure 2).

Changes of lincRNAs expression during naïve to memory
CD8+ T-cell differentiation (37) and during naïve CD4+ T cells
differentiation into distinct helper T-cell lineages (189) have been
described in the mouse immune system. linc-MAF-4, though, is,
to our knowledge, the first example of a lincRNA playing a role
in the proper differentiation of human TH1 cells, suggesting that,
besides cytokines and TFs, lncRNAs take part in the TH1 differ-
entiation program as already shown in many other cell types. At
this point, an obvious question arises: to what extent are these
cells plastic? These findings are evidences that it is possible to re-
direct the differentiation path of naïve CD4+ T cells acting on their
lincRNA content. Nevertheless, could it be possible to modulate
already committed cells? We would expect that the mere down-
regulation of a lincRNA would not be sufficient nor a lincRNA
knock-out: as mentioned before, lincRNAs are minor nodes in a
huge interconnected network composed by feedback mechanisms
and epigenetic marks that act stabilizing a pre-existent differen-
tiation status. However, a modulation in lincRNA content may

be sufficient to make these cells more responsive to environmen-
tal cues that could overcome stabilizing forces, inducing a sort of
trans-differentiation event. Functional characterization of other
lncRNAs is required to address this crucial issue and to assess the
extent of their contribution to cell differentiation and to the main-
tenance of cell identity in human lymphocytes. Based on what
we discussed so far on lncRNA functions and cell-specificity, we
believe that future studies will show how these molecules could be
capitalized as new molecular targets for the development of novel
and highly specific therapies for diseases, such as autoimmunity,
immunodeficiencies, allergy, and cancer.
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