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The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides
with a wide range of activities that include recruitment of immune cells to sites of
infection and inflammation, as well as stimulation of cell proliferation. As such, they
function as antimicrobial molecules and play a central role in host defenses against
pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong
the inflammatory response may have profound implications for the progression of oral
diseases such as chronic periodontitis, where tissue destruction may be widespread.
Moreover, it is increasingly recognized that chronic inflammation is a key component
of tumor progression. Interaction between cancer cells and their microenvironment is
mediated in large part by secreted factors such as chemokines, and serves to enhance
the malignant phenotype in oral and other cancers. In this article, we will outline
the biological and biochemical mechanisms of chemokine action in host–microbiome
interactions in periodontal disease and in oral cancer, and how these may overlap and
contribute to pathogenesis.
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Introduction

The human body is constantly under assault from a plethora of environmental factors that includes
chemical, physical, andmicrobiological agents. In turn, cellularmechanisms have developed to com-
bat these noxious stimuli, and cells of the innate immune system are central players. Sophisticated
molecular regulatory pathways exist to coordinate the host response to bacterial infection and other
microbiological challenges. Innate immunity also plays a fundamental role in the pathogenesis of
malignant disease, acting as a surveillancemechanism to prevent tumor establishment. On the other
hand, the cellular immune response is now recognized as a key promoter of tumor progression and
metastasis through potentiation of chronic inflammation at tumor sites. Today, it is widely accepted
that deregulated inflammation within the cellular microenvironment is one of the key elements
driving tumorigenesis (1–4). Therefore, how immune and inflammatory processes are regulated and
how they may result in different outcomes to the host are intriguing questions that are beginning to
be understood in some detail.

The oral cavity is home to a diverse microbial community of more than 700 microbial species
including commensal and opportunistic bacteria, viruses and fungi living in a symbiotic relationship
with each other and the host immune system (5–7). The host–microbiome interactions at the oral
mucosal surface are critical to maintain periodontal tissue homeostasis, and the balance between
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microbial cell turnover and host pro-inflammatory and anti-
inflammatory responses eventually determines the clinical out-
come. Deregulated host immune responses resulting from envi-
ronmental and systemic exposures (e.g., smoking, obesity, stress,
aging, diabetes), host genetic, and epigenetic defects and/or dys-
biotic oral microflora subverting the host defense mechanisms
lead to chronic periodontitis (8–13). Thus, today it is believed that
although microbial insult initiates the periodontal disease, dereg-
ulated immune response mechanisms determine the progression
of the lesion and the extent of tissue destruction.

Periodontal disease affects 47% of the population (14). It is
defined as inflammation of the periodontium involving the sup-
porting tissues of the teeth and it is characterized by loss of epithe-
lial attachment, connective tissue, and alveolar bone. Chronic
periodontitis also serves as a constant reservoir of inflammatory
mediators and microbial products that can act upon host tissues.
Thus, besides its destructive local effects, persistent forms of
the disease are also associated with several systemic conditions,
including cardiovascular diseases, adverse pregnancy outcomes,
rheumatoid arthritis, diabetes, and pulmonary diseases (15–21).

Emerging evidence also suggests a link between periodontitis
and oral cancer, the rationale being that chronic inflammation is
a major factor in both diseases (22, 23). The ability to re-route
immune cells to a site of infection within the body relies in large
part on the action of chemotactic cytokines, or chemokines. These
are small polypeptides that are secreted into the microenviron-
ment, and which serve to recruit leukocytes and other immuno-
logical mediators to their point of action, such as periodontal
inflammatory foci. However, as well as these functions, some
chemokines and their receptors have been implicated in cancer
development and progression by promoting cell proliferation,
motility, angiogenesis, and metastatic spread (3).

In this review article, we will outline the pathogenesis of peri-
odontal disease and oral cancer and the plausible biological mech-
anisms that may link these, focusing on chemokine ligand and
receptor function, and how this might promote tumorigenesis
through modulation of the microenvironment.

Periodontal Disease Pathogenesis

The development and progression of periodontitis is a complex
process initiated by a dysbiotic polymicrobial insult and involves
multiple host cells of myeloid and non-myeloid origin including
oral keratinocytes, neutrophil polymorphs (PMNs),macrophages,
monocytes, dendritic cells, osteoblasts, and osteoclasts. These
cells possess cytosolic,membrane-associated, and secreted pattern
recognition receptors (PRRs) including toll-like receptors (TLRs),
NOD-like receptors (NLRs), RIG-I-like receptors (RLR), and C-
type lectin receptors, which can engage with periodontal micro-
bial associatedmolecular patterns (MAMPs) [e.g., lipopolysaccha-
ride (LPS), lipoproteins, fimbriae, BspA, nucleic acids] and dam-
age/danger associated molecular patterns (DAMPs) (e.g., nucleic
acids, fibrinogen, heat-shock proteins). This interaction releases
inflammatory mediators that aid in the development of an effi-
cient innate immune response to eliminate the pathogen and coor-
dinate development of an adaptive immune response. Although
activation of the immune system is crucial to combat microbial

insult, deregulated, persistent immune responses due to factors
that are still not completely understood result in chronic inflam-
mation, eventually leading to periodontal tissue destruction (24).

In its most general classification, periodontal disease can be
categorized as either gingivitis or periodontitis. Gingivitis defines
the inflammation of gingival tissues without alveolar bone loss,
whereas periodontitis is accompanied by destruction of alveolar
bone. Periodontal disease progression follows four histological
stages: initial, early, established, and advanced (25). These defi-
nitions are based on the distinctive histological features of the
pathological site with regard to the cells and the extent of tis-
sue destruction involved. However, it is important to note that
disease progression is a dynamic and highly interactive process
where there is overlap between each stage, with common cells and
inflammatory mediators.

The initial sequela to the polymicrobial insult is an acute
inflammatory responsewith increased vascular dilation and blood
flow. There is activation of complement and kinin systems and
arachidonic acid pathways. There is also increased PMN migra-
tion toward the lesion due to chemotactic stimuli originating both
from microbial cells as well as host-derived inflammatory media-
tors. These include IL-8 (CXCL8), complement components C5a
and C3, and leukotrines. Some collagen loss is also apparent. The
character and intensity of the inflammatory response determine
whether the initial lesion resolves rapidly, with restoration of the
tissue to a normal state, or whether it evolves into a chronic
inflammatory lesion.

Early lesion is characterized by accentuation of the features of
the initial lesion with increased vascularization, accumulation of
more PMNs and lymphocytes (mainly T-cells), as well as contin-
uous activation of complement and arachidonic acid pathways.
Macrophages, plasma cells, and mast cells start to appear at the
site of acute inflammation. These cells produce pro-inflammatory
mediators including IL-1β, IL-6, IL-8, IL-17, and TNF-α, which
may exacerbate the inflammatory response and promote progres-
sion to more advanced stages of disease. There is further loss of
the collagen fiber network around the inflammatory infiltrate due
to activation of the local immune system.

As the disease progresses into the established phase, there is a
transition from an acute to a chronic state. The manifestations of
early and initial changes still persist, along with the appearance
of B-lymphocytes and continuingly increased numbers of PMNs,
macrophages, monocytes, and T-cells. There is also the presence
of extravascular immunoglobulins in the connective tissue and
in the junctional epithelium. In the established lesion, which is
clinically diagnosed as chronic gingivitis, there is substantial loss of
gingival extracellular matrix due to increased collagenase activity
and activation of the local immune system, but without bone loss.

The advanced lesion constitutes the final stage of the transition
to periodontitis. At this stage, there is progression of inflam-
mation to involve the alveolar bone. Production of inflamma-
tory mediators such as cytokines, chemokines, arachidonic acid
metabolites (prostaglandins), and complement proteins by acti-
vated PMNs, macrophages, monocytes, lymphocytes, fibroblasts,
and other host cells can cause oxidative damage by promoting
the release of tissue-derived enzymes such as matrix metallopro-
teinases (MMPs). Furthermore, cytokines can act on stromal and
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non-stromal cells causing increased expression of receptor acti-
vator of nuclear factor kappa-B ligand (RANKL) while decreas-
ing osteoprotegerin (OPG) production. If the inflammation is
not resolved, destruction of extracellular matrix and irreversible
alveolar bone loss occur.

In summary, a polymicrobial insult initiates the periodontal
disease process while the progression and clinical presentation of
the disease involve complex interactions between host cells and
the oral microbiome, triggering persistent inflammation, which
eventually destroys the local tissues and further impacts distant
sites due to the continuous access of inflammatory mediators and
microbial components into the systemic circulation. The biologi-
cal and biochemical pathways that may link chronic periodontitis
with various systemic diseases are reviewed elsewhere (15–21).

Pathogenesis of Oral Squamous Cell
Carcinoma

Squamous cell carcinoma is the most frequently occurring malig-
nancy of the oral cavity and adjacent sites, representing over 90%
of all cancers. Worldwide, 200,000 new cases of oral cavity and
lip cancer are diagnosed annually, with around 98,000 deaths
(http://globocan.iarc.fr/Pages/fact_sheets_population.aspx). The
predominant etiological factors for oral cavity cancer are alcohol
and tobacco use, with carcinogens impacting on the oral mucosa
to create a field that is predisposed to undergo malignant trans-
formation, so-called “field cancerization.” Although, with early
detection, “cure” rates may be as high as 50%, most lesions are
diagnosed at a late stage and have a much poorer prognosis due
to locoregional or distant spread, with 5-year survival as low as
16%. Disappointingly, clinical outcomes have not improved sig-
nificantly in decades, in spite of advances in surgical, chemother-
apeutic, and radiotherapeutic management, as well as the advent
of targeted therapies.

The molecular pathogenesis of oral cavity cancer is, in many
cases, the result of dysregulation of common signaling pathways
that actively drive oncogenesis, on a background of tumor sup-
pressor inactivation. The basis for this may be a combination of
somaticmutations, as described recently (26), togetherwith epige-
netic and transcriptomic alterations. As just one example, hyper-
activation of epidermal growth factor receptor (EGFR) signaling
through receptor overexpression, or mutation of either the recep-
tor or downstream signaling components, can lead to enhanced

cell proliferation and motility, thereby contributing to tumor
growth and metastasis. Inactivation of the P53 and CDKN2A
tumor suppressors also occurs with high frequency in oral cancer.
In addition to molecular dysregulation as a result of chemical
carcinogens in tobacco and alcohol, infectious agents play a role in
development and progression of oral cancer. Although consider-
ably less frequent than in the oropharynx, human papillomaviral-
related carcinogenesis contributes to a small proportion of oral
cavity cancers [around 10%: (26)]. What is less clear, however, is a
mechanism that might explain the long-standing notion that poor
oral hygiene is related to OSCC development. As in other cancers,
though, there is no doubt that chronic inflammatory conditions
underpin oral carcinogenesis, and perturbations of cytokine- and
chemokine-dependent immunoregulatory pathways are evident
in oral cancer. Of course, the oral cavity is prone to a number
of bacterial infectious diseases, such as periodontitis, and it is
possible that oral bacteria may serve to initiate or promote tumor
development, analogous to the association of gastric cancer with
Helicobacter pylori infection. In fact, a number of periodontal bac-
teria including Prevotella intermedia, Porphyromonas gingivalis,
Fusobacterium nucleatum have been associated with OSCC (27,
28) The plausible biological mechanisms, includingmicrobial and
inflammatory, that may link periodontitis and oral cancer are
discussed below.

Chemokines

Members of the chemokine superfamily are secreted polypeptides,
which range in molecular mass from around 5 to 20 kDa. Histori-
cally, these were named based on their function (e.g., macrophage
inflammatory protein: MIP-1α, β), but a generic nomenclature
is now in use. This categorizes chemokines into four subfami-
lies based on the relative position of conserved cysteine residues
within the polypeptide. Thus, C, CC, CXC, andCX3C chemokines
are recognized (Figure 1).

Chemokine ligands bind to cell surface receptors and the inter-
actions may be unique (single ligand and single receptor) or
promiscuous (single ligand/multiple receptors, or multiple lig-
ands/single receptor). For example, IL-8 (CXCL8) binds to both
high- and low-affinity receptors (CXCR1 and CXCR2, respec-
tively), whereas CXCL5 only binds to CXCR2. Conversely, the
CXCR2 receptor bindsmultiple CXC-chemokine ligands, whereas
CXCR1 binds IL-8 exclusively. Intracellular signaling pathways

FIGURE 1 | Chemokine structure. (A) Schematic indicating the relationships
between conserved cysteine residues (C), together with intrachain disulfide
bridges. C-, CC-, CXC-, and CX3C- classes of chemokines are depicted.

(B) Schematic representation of human CXCL5, a pro-inflammatory and
pro-angiogenic ELR+ chemokine, which contains the ELR motif N-terminal to
the CXC consensus sequence.
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activated by chemokine ligand-receptor binding include those
mediated by extracellular signal regulated kinases (ERKs), phos-
phoinositide 3-kinase (PI3K), AKT, small GTPases (Rac, Rho,
cdc42), and NFκB family members. Thus, there is good potential
for molecular crosstalk with growth factor signaling pathways.

In general, the CXC chemokines primarily activate neutrophils,
whereas CC chemokines are mainly chemotactic for mono-
cytes/macrophages and lymphocytes, and play a role in the class
switching of macrophages from M1 to M2 during the transition
from acute to chronic inflammation. CC chemokines are also
crucial in the development of adaptive immunity by propagating
lymphocyte recruitment and antigen presentation, and they play
a critical role in bone metabolism by providing signals for the
trafficking of osteoblast and osteoclast precursors.

Several inflammatory mediators including cytokines are abun-
dantly expressed in the course of periodontitis (29). With regards
to cancer risk, chemotactic cytokines or chemokines are of par-
ticular interest to us as they are involved in almost every stage
of periodontal pathogenesis and can also be expressed in healthy
sites. In addition to their role in immune cell trafficking to the
site of infection, they also regulate angiogenesis, cell proliferation,
apoptosis, and tumor cell homing. Thenext sectionwill give a brief
overview of chemokines involved in chronic periodontitis. Later,
we will discuss how they may modulate the oral microenviron-
ment to promote cancer progression.

Chemokines in Periodontal Disease

As noted above, the host immune response to infection is largely
regulated by cytokine signals that drive initiation and progression
of the inflammatory process. Their involvement with periodon-
tal disease and their possible systemic effects have been well-
reviewed elsewhere (24, 30). Here, we will focus specifically on
chemokines that are expressed in periodontal tissues and their
potential modulatory role in the tumor microenvironment.

Chemokine expression can be triggered by MAMPs, DAMPs,
inflammatory mediators, host factors, and mechanical stress. In
the oral tissues, chemokines can be synthesized by a variety of cell
types including fibroblasts, osteoblasts, endothelial, epithelial and
mast cells, PMNs, lymphocytes, and monocytes/macrophages.
Thus, they play a major role in immune cell trafficking to sites of
periodontal infection (29).

IL-8 (CXCL8) is one of the most abundantly expressed
chemokines in the oral cavity and can be detected in both healthy
and periodontally diseased tissues (31–36). IL-8 is primarily pro-
duced by gingival keratinocytes, fibroblasts, endothelial cells, and
macrophages in response to periodontal bacteria and bacterial
components. It functions to direct cell trafficking, mainly PMNs,
to the site of infection. Inflammatory cell recruitment eventually
results in more cytokine production, thus contributing directly to
progression of the periodontal lesion. Although clinical studies
consistently show that increased IL-8 levels are associated with
periodontally diseased sites (31–36), in vitro studies with indi-
vidual periodontal pathogens show variations in IL-8 production
depending on the bacteria and the cell type being studied. For
example, P. gingivalis, a key-stone periodontal pathogen, shows
a distinct ability to manipulate local immune responses for its

survival, either by increasing or suppressing IL-8 production
(37–42). These unique features, possessing both pro- and anti-
inflammatory properties, give P. gingivalis the ability to create
a dysbiotic environment and escape immune surveillance. How-
ever, the possible biological mechanisms through which this bac-
terium may promote tumor development have yet to be investi-
gated in depth.

Besides being a major chemoattractant for PMNs, IL-8 can
also affect bone metabolism through its direct actions on osteo-
clast differentiation and activity by signaling through the high-
affinity CXCR1 receptor (43). Additionally, the results of a meta-
analysis investigating the risk of oral cancer in patients with poly-
morphisms of the IL-8-251A>T locus revealed that Caucasian
populations harboring the AA genotype had a higher risk of
developing malignancy (44), whereas a separate meta-analysis
also indicated increased risk for individuals with either the AT
or AA genotype (45). The functional significance of this finding
is yet to be determined. Thus, many periodontal bacteria and
bacterial components can trigger IL-8 production in different
cells of the periodontal tissues and IL-8 is considered as one
of the major chemokines associated with periodontal disease.
Therefore, future investigations are warranted to elucidate the
biological mechanisms triggered by IL-8 that modulate the oral
environment and increase susceptibility for tumor development
and/or progression.

Besides IL-8, another CXC-chemokine, CXCL12 is reported to
provide trafficking signals for osteoblast and osteoclast precur-
sors, and it also enhances the activity of MMP9 in osteoclasts,
promoting bone resorption. CXCL10, which is a chemoattractant
for activated Th1 cells, is found in inflamed gingival tissues (29)
and is expressed by human gingival fibroblasts (46) in response
to interferon-γ, tumor necrosis factor-α, and IL-1β, suggesting
this as a mechanism to recruit Th1 cells to inflammatory foci
in periodontitis. Notably, these authors also found that the anti-
inflammatory cytokine IL-10 represses CXCL10 expression. B-
lymphocytes are also plentiful in periodontal lesions, and it is
not surprising that CXCL13, which is chemoattractant for B-
cells, is highly expressed in diseased tissues, suggesting a role
for this chemokine in the local humoral response to periodontal
pathogens.

CC-chemokines are also documented to play various roles in
the pathogenesis of periodontitis. CCL2 and CCL3 are chemo-
tactic for monocytes and lymphocytes, CCL4 is chemotactic for
CD4+ T cells, and CCL5 attracts Th1 cells. All of these ligands
have been found at higher levels in chronic periodontitis patients
compared to healthy controls, and are associated with disease
severity (47–49). Increased expression of the CC-chemokines,
CCL2, and CCL20 was also correlated with increased numbers
of dendritic cells (50). Macrophages are one of the key cell types
found in large numbers in periodontitis lesions, and are involved
in phagocytosis of pathogens and production of inflammatory
mediators. However, increased accumulation of macrophages and
deregulated inflammatory responses can disrupt tissue home-
ostasis, thereby contributing to periodontal disease. Like IL-8,
CCL3 and CCL5 also play roles in bone metabolism and induce
migration and activation of osteoclasts. Thus, it is likely that they
exacerbate periodontal disease severity.
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CCL20 is involved in Th17 cell recruitment and may promote
periodontal disease. Hosokawa and coworkers (51) demonstrated
that IL-22 increased CCL20 production in human gingival fibrob-
lasts through an NF-κB-dependent mechanism when the cells
were pre-challenged with IL-1β. Similarly, IL-6-stimulated peri-
odontal ligament cells showed elevated secretion of CCL20 in a
STAT3-dependent manner (52).

CCR4 is a high affinity receptor for both CCL17 (53) and
CCL22 (54) and is expressed at higher levels in chronic peri-
odontitis, as well as being associated with higher levels of the
anti-inflammatory IL-10 in the periodontium (55). CCL17 and
CCL22 are also expressed in diseased periodontium, and it may be
possible that expression of these ligands serves to limit periodontal
disease severity by attracting Th2 and Treg cells. Stimulation of
human gingival fibroblasts with a combination of TNF-α and IL-
4/IL-13 was found to increase expression of CCL17.While CCL17
expression was inhibited by Escherichia coli LPS and Pam3CSK4,
which are activators of TLR4 and TLR2 signaling, respectively,
in TNF-α/IL-4 stimulated gingival fibroblasts, CpG DNA (which
activates TLR9) enhanced CCL17 production induced by TNF-
α/IL-4. Thus, it remains unclear whether CCL17 is likely to reduce
or exacerbate inflammation in periodontitis.

Chemokines in Oral Cancer

Although the normal function of the chemokine system is
immunomodulation, there is an ever-increasing body of evidence
that documents subversion and dysregulation of this intricate
network of signaling molecules during the onset and progres-
sion of malignant disease. Overall, altered chemokine function in
cancer promotes cell survival, enhanced proliferation, neovascu-
larization, motility and metastasis in multiple tumor types, and
this is comprehensively reviewed elsewhere. Several studies have
implicated a number of chemokines and their receptors in oral
squamous cell carcinogenesis [reviewed in Ref. (56)]. Most fre-
quently, this appears to involve chemokines of the CXC subgroup
such as CXCL1 (Gro-α), CXCL8 (IL-8), CXCL5, and CXCL12
(SDF-1). IL-8 has long been recognized as an autocrine regulator
of OSCC growth (57), and it also contributes to enhanced cell
motility (58). Indeed, salivary IL-8 has been proposed to be a
discriminative biomarker for oral cancer (59). The closely related
CXCL5 protein, normally chemotactic for neutrophils, has also
been shown to drive oral cancer cell growth and motility as well
as enhance tumor angiogenesis. Moreover, in vivo studies demon-
strated complete inhibition of the tumorigenic phenotype when
CXCL5 expression was suppressed in OSCC cells (60). Studies
by Khurram and colleagues (61) reported elevated expression of
both CXCR1 and CXCR2 in oral cancer. The former is a high-
affinity IL-8 receptor, and the latter is a low-affinity IL-8 receptor
that is also able to bind a number of CXC-chemokines including
CXCL1, CXCL2, CXCL3, CXCL5, and CXCL6. These authors
reported coincidental activation of signaling pathways by IL-8 and
CXCL1, suggesting that simultaneous stimulation of cancer cells
by multiple chemokines in the tumor microenvironment is likely
to occur.

The CXCL12 (SDF-1)/CXCR4 axis also appears to play critical
roles in OSCC development and progression. Expression of the

CXCR4 receptor is elevated in tongue cancers (62), withmetastatic
tumor cells expressing higher levels than non-metastatic. This
is consistent with the homing model proposed by Muller et al.
(63), where tumor cells that overexpress a chemokine receptor
migrate preferentially to organs that express the cognate ligand via
a chemokine gradient. Perhaps of high relevance to this review,
bacterial products have been reported to increase the expression
of CXCR4 on oral cancer cells (64).

SDF-1/CXCR4-driven invasion of oral cancer is reported to be
dependent upon NFkB signaling (65, 66). Further studies have
demonstrated release of the CXCR4 ligand, SDF-1, from bone
cells adjacent to the tumor. This has been proposed to contribute
to bone turnover as a result of CXCR4-mediated upregulation of
IL-6, which is then secreted by the tumor cells to stimulate osteo-
clastogenesis (67), thereby enhancing tumor invasion. Studies by
Oue et al. (68) provided further evidence of a role for IL-6 and
RANKL in OSCC, mediated at least in part through a CXCL2-
dependentmechanism, as the effects were diminished by aCXCL2
neutralizing antibody.

Of course, there is always the potential for repression of malig-
nant properties by chemokines, as some have noted anti-tumor
effects. The chemokine CXCL14, also known as BRAK to sig-
nify the tissues (breast and kidney) from which it was originally
isolated (69), was shown to be expressed in normal squamous
epithelium but reduced or absent in malignant oral tissues (70),
and is also repressed by EGFR signaling (71). Ectopic expression
of CXCL14 completely blocked OSCC growth in vivo (72), sug-
gesting that loss of expression may contribute significantly to the
pathogenesis of oral cancer.

The CC-class of chemokines has also been implicated in oral
carcinogenesis. Studies by Ferris and coworkers (73) documented
loss of CCR6 and upregulation of CCR7, the receptor for CCL19
and CCL21, on oral cancer cells, and demonstrated that this
was related to lymph node metastasis. CCL5–CCR5 signaling is
reported to enhance OSCC motility, as well as increasing produc-
tion of the gelatinase, MMP9 (74). An interesting study from Li
and colleagues (75) demonstrated CCL2 production by cancer-
associated fibroblasts (CAFs), which stimulated production of
reactive oxygen species (ROS) in cocultured oral cancer cells.
In turn, ROS promoted further CCL2 production in CAFs, thus
generating amutually beneficial microenvironment in which both
tumor cells and fibroblasts could thrive.

Evidence is also present in the literature to support a role for
XCR1, a receptor for lymphotactin (XCL1), in epithelial biology.
Khurram and colleagues (76) reported expression of this recep-
tor on oral cancer cells as well as on normal keratinocytes and
neutrophils. Based on immunohistochemical analysis, low but
detectable expression in normal mucosa was primarily restricted
to the basal layer. In contrast, XCR1 expression was more marked
in oral cancer tissues and could also be found in metastatic
deposits. Interestingly, positive staining was observed in lichen
planus, a potentially premalignant condition of immunological
etiopathogenesis. Stimulation of XCR1 activity led to elevated
expression of the gelatinases MMP2 and MMP9, which was more
marked in cancer cells compared to normal keratinocytes. More-
over, cancer cells expressed MMP7, which was not observed in
normal cells treated with lymphotactin. Potentially, then, XCR1
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maymediatematrix remodeling in oral epithelium, and potentiate
migration and invasion in malignant disease.

Potential Biological and Biochemical
Mechanisms Linking Periodontal Disease
and Oral Cancer

It has been estimated that 15–20% of tumors are driven by
chronic infection and inflammation, and that individuals who
are prone to chronic inflammatory disorders have an increased
risk of cancer development (77). Recent advances suggest that the
tumor microenvironment plays an important role in the initiation
and progression of malignant disease (78). This can be mediated
through biological factors related to genetic and epigenetic make-
up of the cancer cells or through interaction of tumor cells with
the surrounding milieu, which is composed of cells and solu-
ble molecules of both microbial and host cell origin as well as
extracellular matrix.

Several studies have reported an association between chronic
periodontitis and cancer both in the oral cavity as well as at distant
sites (22, 79, 80). Studies that have investigated the association
between periodontal disease and oral cavity cancer are summa-
rized in Table 1. While plausible biological mechanisms exist that

can link the two diseases (Figures 2 and 3), the exact etiology is
yet to be established. Tezal and coworkers reported that patients
with periodontitis had a 5.23-fold increased risk of tongue cancer
for each millimeter of alveolar bone loss (81). A further case-
control study suggested a similar trend, with a stronger associ-
ation between periodontitis and oral cavity cancer, compared to
oropharyngeal or laryngeal tumors (82), and this was still notice-
able in non-smokers. In addition, SCC lesions were more likely
to be poorly differentiated in periodontitis patients compared to
patients without periodontitis. Furthermore, a study of base-of-
tongue cancers indicated that patients with HPV-positive tumors
had greater bone loss than those with HPV-negative lesions (83),
with the authors concluding that chronic periodontitis may influ-
enceHPV infection. Interestingly, a cross-sectional study revealed
a relationship between alcohol consumption (a recognized risk
factor for oral cavity cancer development) and clinical attachment
loss (84). Thus, it may be possible that alcohol promotes oral car-
cinogenesis throughmultiplemechanisms, including potentiation
of periodontal inflammation. As outlined above, constant polymi-
crobial insult and production of inflammatorymediators drive the
initiation, progression, and persistence of periodontitis lesions.
Chronic exposure to microbial and host-derived products can
likely modify the oral microenvironment and possibly distant tis-
sues, promoting carcinogenesis or at least increasing susceptibility.

TABLE 1 | Studies investigating the link between oral cancer and periodontal disease.

Author Study design Oral health criteria Study population Results

Bundgaard
et al. (85)

Case-control Missing teeth 161 patients and 400 controls
(Denmark)

Significantly increased risk of developing oral SCCA
for patients with fewer than 15 teeth

Rezende
et al. (86)

Case-control CPITNa and DMFTb 50 patients and 50 controls
(Cuba)

76% of subjects in cancer group showed greater than
6mm pockets compared to 10% of control group

Garrote
et al. (87)

Case-control Missing teeth 200 patients and controls (Cuba) Significantly increased risk of oral cancer for patients
missing 16 or more teeth

Hiraki
et al. (88)

Case-control Missing teeth 429 patients and 10,480 controls
(Japan)

Significantly increased risk of head and neck cancer
with decreased number remaining teeth

Marshall
et al. (89)

Case-control Missing teeth 290 patients and controls (United
States)

Significantly increased risk of oral cancer with loss of
11 or more teeth

Michaud
et al. (90)

Cohort Self-reported history of periodontal
disease (confirmed by radiographs
and missing teeth)

118 patients (United States) No significant increase in risk for oropharyngeal
cancer with history of periodontal disease or
increased number of tooth loss

Rosenquist
et al. (91)

Case-control Missing teeth 132 patients and 320 controls
(Sweden)

Significantly increased risk of oral and oropharyngeal
cancer for missing over 20 teeth

Tezal et al. (92) Cohort Clinical attachment loss (CAL) 131 oral tumors and 323 oral
pre-cancerous lesions (United
States)

Significantly increased risk of oral tumor and
pre-cancerous lesion with >1.5mm clinical
attachment loss

Tezal et al. (81) Case-control Alveolar bone loss 51 cases and 54 controls (United
States)

Significantly increased risk of tongue cancer with
increased alveolar bone loss

Tezal et al. (82) Case-control Alveolar bone loss 266 patients and 207 controls
(United States)

Significantly increased risk of oral cavity SCC with
periodontitis

Tezal et al. (93) Case-control Alveolar bone loss 124 head and neck SCC patients
(United States)

Periodontitis is associated with tumor HPV status

Wen et al. (94) Cohort Medical records from insurance
claims

96,375 gingivitis and 51,791
periodontitis cases (Taiwan)

Significantly increased risk of oral cancer with the
history of periodontitis

Zheng
et al. (95)

Case-control Missing teeth 404 subjects and controls
(United States)

Significantly increased risk of oral cancer with
increased missing teeth

aWHO guidelines of community periodontal index of treatment needs (depth of periodontal pockets on scale of 1–4).
bWHO guidelines of decayed, missing, and filled teeth.
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FIGURE 2 | Factors contributing to periodontitis and cancer. Flow
diagram outlining the interplay between host and environmental factors that
modify the oral microenvironment, contribute to periodontitis and oral cancer,
and which may link the two diseases.

Ongoing research efforts focus on theworking hypotheses that the
chronic periodontitis may be linked with oral cancer risk either
through direct toxic effects of the oral microbiome and associated
byproducts and/or through the indirect effect of chronic oral
inflammation. The next section will give an overview of potential
biological mechanisms related to persistent, chronic periodontal
disease that may promote cancer development in the oral cavity.

The Contribution of the Oral Microbiome

As mentioned above, a number of factors are considered to play
an important role in the genesis of oral cancer (96), including
tobacco and alcohol use, dietary factors such as saturated fat and
fruit/vegetable intake, and microbiological agents. While tobacco
and alcohol are recognized as being primary etiologic factors for
oral squamous carcinogenesis, there is a worrying trend in the
incidence of oral cancer in patients who have never used these
agents (97), raising the possibility that other factors may have a
major role in tumor progression in these subjects. Furthermore,
many users of tobacco and alcohol do not develop malignant oral
disease, suggesting that additional events and/or cofactors are of
importance.

A diverse group of microbial species inhabit the oral cavity,
including bacteria, viruses, and fungi. For many years, it has been
suggested that oncogenic human papillomavirusesmay contribute
to oral squamous carcinogenesis (98–101), similar to their role in
cervical cancer. However, more recent studies have indicated that

FIGURE 3 | Plausible biological mechanisms that may link deregulated
inflammation and cancer. Engagement of microbial components (LPS,
lipoproteins, nucleic acids) or damage-associated molecular patterns
(DAMPs) with their receptors (TLRs) triggers activation of inflammatory
signaling cascades and increases production of inflammatory mediators,
tissue destructive enzymes (MMPs), and reactive oxygen/nitrogen species.
Accumulation of these host-derived factors within the mucosa due to
deregulated inflammation may alter and create a favorable oral
microenvironment that promotes tumorigenesis.

HPV may be more closely related to particular subsets of disease,
specifically oropharyngeal and tonsillar carcinomas (102–105).

In addition to a possible viral etiology of a subset of oral
cancers, bacteria have also been implicated in tumor development.
For many years, Treponema pallidum has been associated with
oral squamous carcinogenesis (106, 107). While the incidence of
syphilis has declined markedly over the last century, it may still
be involved in a small number of cases (108). However, poor oral
hygiene has also been documented as a risk factor for development
of oral malignancy (85, 89, 91, 109, 110), raising the possibility
that some of the many other bacterial species present in the oral
cavity may be of importance. For example, in a study of bacterial
species associated with oral SCC, Nagy and coworkers reported
a significantly higher number of anaerobic periodontal bacteria
associated with malignant lesions compared to normal mucosa,
including periodontopathogenic Prevotella and Porphyromonas
species (28). Another study investigated the relationship between
salivarymicro-organisms and oral cancer (27). Interestingly, these
authors reported increased levels of bacterial species associated
with SCC, includingPrevotella,Porphyromonas, and other species,
and demonstrated that the levels of at least three salivary bac-
terial species were predictive of around 80% of SCCs. Whether
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this relationship is merely associative or indicates a role for oral
bacteria in neoplastic progression remains to be determined.

The idea of a bacterial etiology for human cancer is by nomeans
limited to the oral cavity. Indeed, it is readily apparent that H.
pylori infection is causally associated with malignancies of gastric
epithelia (111, 112), leading to the categorization of this organism
as a WHO class I carcinogen. H. pylori causes inflammation of
the gastric mucosa, likely by inducing gastric epithelial cells to
secrete IL-8, which results in recruitment of inflammatory cells
to the site of infection (113). Moreover, IL-8 has the capacity to
stimulate proliferation of epithelial cells, at least in part through
transactivation of the EGF receptor (114). Further, as mentioned
above, IL-8 and other chemokines and their receptors have been
implicated in tumor development and metastatic progression in
a number of human malignancies (115). This may well be true
for oral cavity cancers and that oral bacterial species have the
capacity to induce parallel events. In fact, a recent investigation
reported that increased IL-8 expression in OSCC significantly
correlated with increased serum IL-8 levels and poor clinical
outcomes. The study also showed that IL-8 enhanced generation
of CD163-positive M2 macrophages, and that CD163 positivity
at the tumor invasion front correlated with significantly worse
overall survival and disease-free survival in OSCC (116). In fur-
ther support of the possible contribution of the oral microbiome
to tumorigenesis, it was reported that hepatocyte growth factor
(HGF) can be induced in fibroblasts by oral bacteria as well as
by cytokines (117), while production of CCL20 was upregulated
by Actinobacillus actinomycetemcomitans, E. coli LPS, and TNF-
α (118). This provides a link between the oral microflora and
factors which are known to influence both the proliferation and
migration of epithelial cells. Additionally, studies by Sakamoto
and coworkers investigated bacterial colonization of oral tumors
and cervical lymph nodes (119, 120). Viable bacteria were recov-
ered from both tumor and lymph nodes, with involved nodes
showing higher colonization than uninvolved nodes (120). It was
suggested that disruption of the integrity of the epithelial layer by
the primary tumor might facilitate bacterial entry and subsequent
lymphatic drainage. If, indeed, oral bacteria can colonize and
survive in lymph nodes, they might stimulate the production of
factors that could aid survival and proliferation of any tumor cells
in the immediate environment. Furthermore, the association of F.
nucleatum, another periodontal bacterial species, with colorectal
cancer also supports the notion that oral pathogens can obtain
access to distant sites and may participate in tumorigenesis in
other organs as well (17, 121). F. nucleatum is one of the most
frequently identified bacteria both in healthy gingiva as well as
periodontitis sites and can also induce production of cytokines
and chemokines (121).

Another alternative may be that oral bacteria invade tumor
cells at the primary site, influencing their biological behavior. P.
gingivalis has the ability to invade and propagate intracellularly
(122), including in gingival epithelial cells (123). It can also delay
apoptosis in gingival epithelial cells through various different
mechanisms, such as by activating the JAK1/STAT3/Akt pathway,
downregulating caspase-3 and caspase 9 expression, upregulat-
ing microRNAs (specifically miR-203), leading to suppression
of SOCS3, preventing ATP-dependent apoptosis (124–128).

Programed cell death is one mechanism through which cells
avoid replicating if DNA damage is excessive and cannot be
repaired. Thus, by interfering with this key regulatory process P.
gingivalis may promote carcinogenesis. Furthermore, P. gingivalis
also possesses both anti- and pro-inflammatory activities thereby
contributing to dysbiotic microflora (129). This feature also gives
the bacterium a unique ability to manipulate the immune system
for its own survival. P. gingivalis can also promote invasion of
oral cancer cells by activating the ERK1/2-Ets1, p38/HSP27, and
PAR2/NF-κB pathways to induce MMP9 (130). Increased IL-
6 and IL-8 production was also reported in HSC-3 and H413
oral cancer cells in response to P. gingivalis challenge (131).
Another important way in which P. gingivalis might contribute
to tumor progression is through its ability to suppress angiostatic
chemokines. In a key study (132), Jauregui et al. found that this
bacterium could suppress the secretion of CXCL9, CXCL10, and
CXCL11. Thus, the removal of their regulatory activity could
promote neovascularization and enhance tumor growth.

While the bacterial etiology of periodontitis is well established,
the contribution of viruses to the pathogenesis of periodontal
disease has also been supported by a number of studies (133–137).
It is likely that viral/bacterial interactions in the oral cavity can
further modulate the oral microenvironment. For example, it has
been shown that Herpes simplex virus type 1 (HSV-1), Epstein-
Barr virus (EBV), and human cytomegalovirus-infected peri-
odontitis lesions harbor elevated levels of periodontal pathogens.
It was also reported that EBV can reside in gingival epithelial
cells, which may serve as an oral reservoir for virus infected cells.
Importantly, epithelial EBV infection was significantly increased
in chronic periodontitis (138). Additionally, both HPV and EBV
have been implicated in head and neck carcinogenesis. As men-
tioned above, a study among patients with base-of-tongue cancer
suggested a synergy between periodontitis and HPV status (82),
and chronic periodontitis was also associated with HPV positive
tumor status in patients with incident primary squamous cell
carcinoma of the oral cavity, larynx, and oropharynx (93). The
biological andmolecularmechanisms defining howbacterial/viral
interactions modify the tumor microenvironment and lead to
disease initiation or progression are poorly understood, and are
an area of active investigation. A plausible possibility is the acti-
vation of innate immune sensors such as TLRs (see below). For
example, TLR-2, TLR-4, and TLR-9 can be stimulated by oral
bacterial species, whereas viruses activate TLR-3, -7, -8, and -
9. Thus, there would seem to be scope for synergistic activation
of multiple pathways in response to different components of the
oral microbiome, resulting in gene activation and production of
secreted mediators into the extracellular millieu. However, this is
likely to be a complicated scenario as some studies have reported
that activation of specific TLRs (for example, TLR-3 and -7)
may trigger apoptosis rather than pro-survival and pro-oncogenic
mechanisms (139–141).

The Contribution of Chronic Inflammation

Disease progression in periodontitis is a complex process that
involves the interaction of multiple components of the host
immune response and the oral microbiome, as outlined above.
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The engagement of MAMPs and DAMPs with their cognate
receptors releases inflammatory mediators that aid in the devel-
opment of an efficient innate immune response to eliminate the
pathogen and coordinate development of an adaptive immune
response. However, the impaired tissue homeostasis and dereg-
ulated inflammation in periodontitis exposes the local and sys-
temic tissues to noxious metabolic products including living
and necrotic cells, cytokines, chemokines, prostaglandins, MMPs,
reactive oxygen and nitrogen radicals. Accumulation of these
host-derived factors may likely modulate the tumor microen-
vironment by causing DNA damage, promoting epigenetic and
genetic alterations, increasing angiogenesis, cell survival, prolif-
eration, migration, and inhibiting apoptosis (Figures 2 and 3).
Altered cells may eventually promote production of more inflam-
matory mediators, further enhancing inflammation and con-
tributing to cancer pathogenesis.

One mechanism through which host cells detect microbial
challenge is through engagement of microbial components with
innate receptors, specifically TLRs. These receptors can inter-
act with components of bacteria, viruses, and fungi (142). Sev-
eral cell types found in periodontal tissues express TLRs, and
each receptor is involved in the sensing of distinct microbial
products. TLRs are type I trans-membrane proteins composed
of an extracellular leucine-rich repeat (LRR) domain involved
in ligand recognition, a trans-membrane domain, and a toll-
interleukin 1 receptor (TIR) domain involved in signaling. The
signaling pathways activated by TLRs engage adaptor molecules
that are recruited by TIR/TIR domain interactions. These include
the myeloid differentiation primary response gene (MyD88), the
TIR domain-containing adaptor protein (TIRAP, also known as
MAL), TIR domain-containing adaptor inducing interferon-β
(TRIF), and the TRIF-related adaptor molecule (TRAM). MyD88
is essential for signaling through all TLRs, except TLR3, and is
involved in early activation of NF-κB and MAPKs, leading to pro-
inflammatory gene expression. As well as immune cells and oral
keratinocytes, oral cancer cells also express TLRs (143–146). Thus,
tumor cells or their premalignant counterparts may respond to
direct stimulation by oral microbes or their byproducts, activating
pro-inflammatory, pro-proliferative, and pro-migratory signaling
pathways.

Of high relevance to carcinogenesis, an interesting study by
Lappin and colleagues (147) determined plasma concentrations of
CXCL5 and IL-6 in systemically healthy subjects with or without
periodontitis, and who either did or did not smoke. They found
significantly higher levels of circulating CXCL5 in smokers with
periodontitis, which correlated with probing depth, attachment
loss, and tobacco consumption. Given the potential function of
CXCL5 as a pro-angiogenic factor (148), together with its role
to promote tumor cell growth and motility (60), high circulating
levels of CXCL5 could potentially act to promote tumorigenic
progression in concert with local factors.

The loss of periodontal tissue integrity due to chronic inflam-
mation aids viral and bacterial survival and persistence, as well
as enhancing the inflammatory response. It is therefore plausible
to hypothesize that prolonged inflammation in periodontal tis-
sues due to activation of innate sensors by periodontal microbial
products orDAMPsmay promote a tumor-favorable environment

by exposing the tissues to multiple cytokines/chemokines. In fact,
emerging evidence also supports this concept (149). Increased
expression of host innate receptors has been reported in peri-
odontitis lesions compared to healthy sites (150–153). Among
these, TLR9 has been implicated in oral squamous cell carcino-
genesis (149). TLR9 is an intracellular sensor that can activate a
range of cell types such as macrophages, dendritic cells, PMNs,
B cells, and epithelial cells through recognition of bacterial and
viral DNA sequences that are released following phagocytosis.
TLR9 activation can trigger production of multiple inflammatory
mediators in response to periodontal pathogens, including IL-8
production from gingival epithelial cells and macrophages (154–
157). TLR9 expression was also reported to be significantly ele-
vated in the tissues of oral squamous cell carcinoma as well as
periodontitis, and increased receptor expression was correlated
with increased tumor size and clinical stage (153, 158, 159).
In vitro studies revealed that activation of TLR9 can mediate
oral cancer cell migration by up-regulating MMP2, and tumor
cell proliferation by up-regulating cyclin D1 expression, both in
an AP-1-dependent manner (159, 160). Increased IL-1α and IL-
6 production in OSCC cells treated with a TLR9 agonist was
also reported (160). It is therefore possible that TLR9 activa-
tion can contribute to tumorigenesis by enhancing inflammation
and through modulating cell cycle progression. Another clinical
investigation reported a strong correlation between TLR2, -4,
and -9 expression and increased tumor invasion in oral tongue
squamous cell carcinoma (161). This study also revealed that
increased TLR9 expression correlated with advanced tumor size,
while high TLR5 expression was associated with a lower tumor
grade. It is important to emphasize that all of these receptors are
also activated by periodontal bacteria in the course of periodontal
disease and trigger production of cytokines and chemokines (162)
through NF-κB, AP-1, and MAPKs. Among these molecules,
NF-κB expression and activity is often elevated in oral cancers,
with protein levels gradually increasing as the lesion progresses
from premalignant to invasive form (163–165). Further, aberrant
function of NF-κB has also been reported to stimulate STAT3
activation by an autocrine/paracrine mechanism in SCC, suggest-
ing crosstalk between these signaling pathways (166). STAT3 is a
critical mediator of the pro-angiogenic and immunosuppressive
activities of myeloid cells in the tumor microenvironment, and
it can lead to enhanced cell cycle progression and neovascular-
ization, thus promoting tumor growth (167, 168). Collectively,
these findings support the hypothesis that aberrant activity of
multiple innate receptors and inter-related downstream signaling
pathways contribute to oral tumorigenesis. Intriguingly, STAT3
and NF-κB lie downstream of TLR-mediated inflammatory cas-
cades including those activated by TLR-2, -4, and -9 (169). It
remains to be determined whether STAT3 signaling is triggered
as a result of direct stimulation of these receptors or as a result of
the production of cytokines, such as IL-6, and development of a
positive feedback loop.

In summary, it is likely that deregulated receptor activity within
the oral cavity due to chronic periodontitis may be associated
with tumor progression, possibly as a result of exposure of the
mucosa to cytokines, chemokines,MMPs, and reactive oxygen (or
nitrogen) radicals. Accumulation of these host-derived factors are
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FIGURE 4 | Key chemokine functionalities in periodontitis and oral
carcinogenesis. A dysbiotic oral microflora triggers inflammatory processes in
the oral epithelium. Release of chemokines, among other molecules, results in
progression (or suppression, in some cases) of the inflammatory process and
stimulation of both innate and adaptive immune responses through recruitment
of cellular mediators. Persistent inflammation extends deeper into the tissues,
subsequently leading to osteoclast activation and subsequent destruction of

alveolar bone. Multiple chemokines involved in the periodontal inflammatory
process may stimulate their cognate receptors present on normal, dysplastic, or
malignant epithelial cells, deregulating cellular growth, and promoting the motile
phenotype. Pro-angiogenic chemokines, such as IL-8 and CXCL5, act upon
endothelial cells to promote neovascularization of developing tumors. LN, lymph
node; ROS, reactive oxygen species; PMN, neutrophil polymorph; OCP,
osteoclast precursor; DC, dendritic cell; MΦ, macrophage.

likely to modulate the tumor microenvironment by causing DNA
damage, promoting epigenetic and genetic alterations, increasing
angiogenesis, cell survival, proliferation,migration, and inhibiting
apoptosis. Altered cells may eventually promote production of
more inflammatory mediators, further enhancing inflammation
thereby contributing to cancer pathogenesis (Figure 3). Still, the
role of TLRs in cancer is ambiguous, as they can either medi-
ate signaling leading to inhibition of apoptosis and altered cell
proliferation, or trigger immune responses to cancer. While the
observations outlined above provide some evidence for plausible
mechanisms linking cancer and periodontal inflammation, future
studies arewarranted to delineate the specific cellular andmolecu-
lar pathways that may precipitate tumorigenesis in the oral cavity.

Concluding Remarks

Emerging evidence argues that mutual interactions between
host cells and the oral microbiome (bacteria and/or viruses) in
the course of chronic periodontal inflammation likely creates
a tumor-favorable microenvironment that may promote cancer
development and progression (Figure 4). However, studies of the
biological and biochemical mechanisms to explain the observed
associations between oral cancer and periodontitis are at an early
stage, and future investigations are warranted to determine the
etiology and to delineate the molecular pathways involved. While
the studies are underway exploring the possible cause–effect rela-
tionship between periodontal inflammation and oral cancer, it

is imperative for health care professionals to make their patients
aware of the current evidence that there might be a link between
periodontal disease and cancer development. Thus, maintaining
good oral health should be considered as part of a healthy lifestyle,
not only to prevent tooth loss but also for overall systemic health.
Individuals who exhibit periodontal disease and who also have
other risk factors related to their lifestyle or family history may
benefit frommore frequent periodontalmaintenance visits to help
maintain the infection and inflammation at a minimal level. In
general, patients should be encouraged to adopt positive lifestyle
habits such as regular physical and dental visits, meticulous oral
hygiene, cessation of smoking, healthy eating habits, regular exer-
cise, and elimination of other risks that may predispose to malig-
nant transformation. It is also imperative for dental and medical
professionals to communicate with each other and work as a team
to manage their patients and reduce or eliminate possible risks,
resulting in better overall oral and systemic health.
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