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Data herein reported and discussed refer to vaccination with the recombinant fatty acid
binding protein (FABP) family member of the schistosomes, called Sm14. This antigen was
discovered and developed under a Brazilian platform led by the Oswaldo Cruz Founda-
tion, from the Health Ministry in Brazil, and was assessed for safety and immunogenicity
in healthy volunteers. This paper reviews past and recent outcomes of developmental
phases of the Sm14-based anti schistosomiasis vaccine addressed to, ultimately, impact
transmission of the second most prevalent parasitic endemic disease worldwide.
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Introduction

Schistosomiasis is considered by the World Health Organization to be 1 of 17 neglected tropical
diseases (1).With 800million people at risk, and 200million infected in 74 countries, schistosomiasis
is the second most prevalent human, parasitic disease in the world after malaria. Some 7.1 million
people are infected with Schistosoma mansoni in the Americas, of whom 95% are in Brazil (1).
It is estimated that 25 million people are exposed to the risk of schistosomiasis in the Americas
(2). The WHO estimated that the morbidity of schistosomiasis resulted in the annual loss of 1.7
million disability-adjusted life years (DALYs), while mortality was estimated to be 41,000 deaths
per year (3). Control measures aim to reduce morbidity through treatment with praziquantel,
improved sewerage, access to potable water, and snail control (1–4). Vaccination, even if not 100%
effective, could contribute to the long-term reduction of egg-excretion from the host, and thus
controls transmission. An effective vaccine would also contribute to a positive trade-off regarding
the aggressive inflammatory response that has been observed following interrupted chemotherapy in
children living in high-transmission areas (5–7). The underlying reason for this “reboundmorbidity”
is unclear, but is thought to be due to an interruption of the natural down-regulating process of
specific immunological mechanisms typical for this disease. This outcome results from the typically
high-level re-infection after chemotherapy and is a direct result of chemotherapy being primarily
directed against morbidity and less against transmission of the disease. This effect needs to be taken
seriously, as the observed aggravated gross symptoms reflect long-term pathology, which is difficult
to remedy (8).

There have been initiatives in several countries to develop a vaccine against schistosomiasis. The
Brazilian Sm14-based anti schistosomiasis vaccine is the sole technology that emerged from an
endemic country, and that is at an advanced stage of development toward a safe highly innovative
product.
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In this review, we present the evolution of the Sm14 anti-
schistosome vaccine from the initial gene cloning to the results
of the recently completed phase I clinical trials.

Demonstration that Adult Schistosome
Saline Extracts Contain Protective
Antigens

The experimental background for the development of anti-
schistosome vaccines lies with the use of animal models of
infection that showed that an initial parasite infection resulted in
partial immunity against re-infection (9–11). Levels of resistance
achievable in laboratory models ranged from 60% in mice up
to 90% in rabbits. In an attempt to establish whether vaccine
development was feasible, extracts of adult parasites were utilized
to immunize experimental hosts to investigate whether such
antigen preparations also possessed the capacity to protect
against infections. In two independent lines of investigation, it
was demonstrated that simple saline extracts of live adult worms,
which are enriched in surface associated molecules, were indeed
capable of inducing protection comparable to that achieved with
live infection (12–14).

Adult Worm Antigen Gene Cloning

Once gene-cloning technology became incorporated into the vac-
cine research field, the genes for a number of major antigens
released by adult schistosomes briefly cultured in saline were
cloned and sequenced (15–17). One of these proved to be a fatty
acid binding protein (FABP) termed Sm14, which subsequently
became the basis of the experimental vaccine herein discussed.
The protein derived from the cloned gene exhibited significant
homologies with a family of related polypeptides, which bind
hydrophobic ligands, and purified recombinant protein exhib-
ited an affinity to fatty acids. Antibodies to the purified protein
were shown to bind to tubercles, which are structures located
on the dorsal surface of adult male schistosome and known
to contain lipids (17). In addition, the protein was localized
to the muscle layers as well as in the body of the parasite.
As the schistosome cannot synthesize fatty acids de novo, and
is dependent on the uptake of lipids from serum, the avail-
able data supported a role for Sm14 in the transport of fatty
acids. Following transfer of the Sm14 gene to a high level
expression vector, subsequent experiments demonstrated that
the recombinant rSm14 was able to protect outbred Swiss mice
by up to 66% and New Zealand White rabbits by up to 89%
against challenge with S. mansoni cercariae. It was thus demon-
strated that rSm14 could provide the basis of an anti-schistosome
vaccine (18).

Vaccine Development

The Sm14 project has been mostly funded by public funds at
Oswaldo Cruz Institute/FIOCRUZ, belonging to the Brazilian
Ministry of Health. Since the early stage of the development, there
was a critical concern to reduce the cost of production at its lowest
level and to ensure the use of non-proprietary components in
the production process in order to get a low final price for the

vaccine. The strategy adopted to reduce the cost of production of
the human Sm14 vaccine involved the following steps:

i. Scaling up steps of production process: this started in 2003
with the primary target being the investigation of Sm14 sta-
bility. New constructs were developedwith highly stable novel
molecular design (19), beginning thus to pave the way for
the ultimate goal of achieving large-scale production of highly
purified vaccine at both high yield and low cost.

ii. Replacement of more expensive reagents seeking a royalty
and proprietary free route of components: as presented in
Figures 1 and 2, two substitutions were successfully achieved,
whichwere the replacement of IPTG for lactose or salt (NaCl),
for the steps of induction of protein expression in culture.
Expression vectors were also constructed to avoid commer-
cial ones. Furthermore, the Sm14 vaccine is based only on
two highly purified and well-characterized components: the
protein itself and the glucopyranosyl lipid adjuvant stable
emulsion (GLA-SE) adjuvant produced and supplied by the
Infectious Disease Research Institute (IDRI, Seattle). Our
partner, IDRI, is a non-profit organization fully committed to
the support of the development of technologies for the control
of the so-called neglected diseases.

iii. Production process of the protein in large-scale is presently
in place at Ourofino, the partner for the veterinary vaccine.
There is currently pilot scale production of the vaccine in 5 L
fermentor, which is being scaled-up to 50 and 100 L fermen-
tors, with final cost already estimated to be approximately US
$1,00) for one 50 µg dose.

A series of modifications of the prototypic experimental Sm14
vaccine, which consisted of a fusion protein presented with
RIBI adjuvants (oil-in-water emulsions derived from bacterial
and mycobacterial cell wall components), were undertaken to
gradually convert the original laboratory-bench protein into a
clinical product. First, it was demonstrated that rSm14 could
be produced in a non-fused form while retaining its protective
immunogenicity (20). A genomic polymorphism was identified
in the Sm14 gene whereby the conserved methionine at position
20 is polymorphic, being exchangeable with threonine (M20T)
(21). Both forms were found to be protectively immunogenic
to adopt the same three dimensional structure in solution and
to be functional in that they were able to bind fatty acids. The
M20 isoform was found to exhibit superior stability, however,
and was adopted for further vaccine development. A variety of
approaches to vaccine formulation were explored in which it was
demonstrated that short peptides derived from the C-terminal of
sm14 were capable of conferring equivalent levels of protective
immunity to experimental animals as intact rSm14 (22). rSm14
was found to be protective when presented in a live vaccine
form within recombinantMycobacterium bovis BCG (23, 24), and
that rSm14 expressed as a fusion with tetanus toxin fragment C
induced immunoprotection against schistosomiasis in mice (25).
Last, a modified version of the protein with improved stability due
to the avoidance of dimerization and subsequent aggregation was
engineered by Cys62 replacement. The latter version was adopted
as the lead compound for vaccine development (19).

The final steps toward a clinically applicable formulation of
rSm14were taken by developing aPichia pastoris based expression
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FIGURE 1 | Expression of Sm14 in Escherichia coli. (A) Steps taken to improve the production process of Sm14 in E. coli. (B) Induction/expression systems with
lactose (left) and salt (right). (C) Final purification steps involving ion exchange chromatography or gel filtration.

system for the protein (26), and further process development
resulted in modifications that avoided any proprietary genetic
structures or media requirements enabling low-cost manufactur-
ing. In addition, the synthetic adjuvant GLA-SE was selected for
incorporation into the final product, which has now been utilized
in Phase I clinical trials since this adjuvant enhances the Th-1
type responses such as gamma-interferon production that have
been identified as representing the basis of Sm-14 mediated pro-
tective immunity both in human patients and animal models (see
below) (27). The goodmanufacturing practice (GMP) production
of rSm14 for clinical trials was undertaken at the LICR protein
production facility at Cornell University in Ithaca, NY.

Immune Response to Sm14

The collaborative research group based at the Fundação Oswaldo
Cruz has focused exclusively on the stepwise development of
schistosomiasis vaccine guided solely bymolecular considerations

together with assays of protective immunity in animal models.
On the other hand, other groups have investigated the nature
of the immune response elicited by the antigen particularly in
the context of natural human infection and the development of
resistance to infection. As a first step, it was demonstrated that
the sera of schistosomasis patients contain significant amounts of
IgG1 and IgG3 subclass antibodies, whereas low levels of IgM,
IgA, or IgE were measurable (28, 29). Specifically, the cellular
immune responses to rSm14 were examined in chronic, treated
patients and uninfected individuals living in an endemic area
for schistosomiasis. Lymphocyte proliferative responses to rSm14
were detectable in the peripheral blood mononuclear cells of all
groups studiedwith the highest proliferation index to rSm14 being
detected in uninfected endemic normal (EN) individuals who are
naturally resistant to schistosomiasis (28). This result provides
direct evidence that the immune response to Sm14may contribute
to protective immunity in man. Moreover, it was determined that
lymphocyte proliferation in the uninfected group was dependent
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FIGURE 2 | Expression of Sm14 in Pichia pastoris. (A) Purification and detection of Sm14 expressed in P. pastoris. (B) Comparison between Sm14 protein
batches purified using both platforms; E. coli (Ec) versus P. pastoris (Pp).

on IFN-gamma suggesting that the Th1 might be associated with
resistance to infection. Furthermore, analyses in mice suggested
that the same immune effector mechanism may be responsible
for the protective immunity stimulated by rSm14 vaccination, i.e.,
that the schistosome vaccine based on Sm14 may reproduce natu-
rally occurring protective immunity inman (30). Interestingly, the
strong parallel relationship between naturally occurring immu-
nity and rSm14 vaccination could be extrapolated to themolecular
level. T-cell epitopes were identified within the molecule that are
recognized by T-cells producing gamma interferon from resistant
individuals. Furthermore, the peptide epitopes from Sm14, but
not from another schistosome antigen (paramyosin), stimulated
protective immunity and gamma-interferon producing T-cells in
vaccinated mice (31, 32).

Phase I Clinical Trials

Following approval by the local Ethics Committee and the
Brazilian Regulatory Agency, ANVISA, two separate Phase I
clinical trials of the rSm14/GLA-SE vaccine have been undertaken
with healthy volunteers. The first trial involved 20 males and the
second involved 10 females (www.clinicaltrials.gov) (Number
NCT01154049). These trials demonstrated that the vaccine is safe
and immunogenic. The vaccinewas administered intramuscularly

in three 0.5mL doses, each containing 50 µg of both rSm14 and
GLA-SE. The second dose was administered 8weeks after the first
one, while the third dose was given 1–2months later. There were
no serious adverse events reported with the only side effects being
mild local pain at the site of vaccination in some individuals.
With the support of Infectious Disease Research (IDRI, Seattle,
USA) clinical trial team, cells and sera from Brazilian volunteers
were shipped to Seattle and extensively screened for the immune
response generated by vaccination with Sm14+GLA-SE toward
the identification of the immunological signature of human
immunization. Vaccination stimulated anti-Sm14 IgG antibodies
as well as a Th1 T-cell response, resulting in gamma-interferon
production in the vaccinated individuals. (manuscript submitted
to Vaccine).

rSm14 as a Multi-Specific Anti-Helminth
Vaccine

It has long been known that there is cross reactive protective
immunity between the animal parasite Fasciola hepatica and
schistosomes. Analysis of the molecular basis of this protective
response identified a cross reactive antigen present in F. hep-
atica, termed Fh15 (33). The cloning and sequencing of Sm14
revealed this to be the corresponding protein in S. mansoni.
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Molecular models showed that Fh15 and Sm14 adopt the same
basic three-dimensional structure, consisting of a barrel-shaped
molecule, and also identified shared discontinuous epitopes prin-
cipally derived from amino acids in the C-terminal portions
of the molecules. Moreover, rSm14 provided complete protec-
tion against challenge with F. hepatica metacercariae in a mouse
model, suggesting that it may be possible to produce a single
vaccine that would be effective against at least two parasites, F.
hepatica and S. mansoni, of veterinary and human importance,
respectively (18). Further analysis confirmed these initial find-
ings and also demonstrated that vaccination with rSm14 can
protect the natural host of F. hepatica, the sheep, against exper-
imental parasite challenge resulting in complete abolition of liver
pathology (34). In independent experiments undertaken in Spain,
protection against fasciola infection was later also achieved in
goats immunized with rSm14, where again significantly reduced
liver damage was recorded (35). Several groups around the world
have been undertaking studies to evaluate the potential of FABPs
homologous to Sm14 derived from various organisms as vaccines
against a number of different helminth diseases. Those include
diseases caused by F. hepatica (18, 36–41), S. mansoni (18, 42),
Schistosoma japonicum (43, 44), Echinoccus granulosus (45), and
Clonorchis sinensis (46) in both experimental and natural vet-
erinary hosts. The published reports from these groups provide
a robust dataset, indicating the widespread potential efficacy of
vaccines based on Sm14. Although experimental work has been
undertaken with the FABPs from many parasites, only Sm14 has
reached the stage of GMP production and clinical trials.

Future Perspectives

To conclude all pre-clinical stages, Sm14 project has over-
come bottlenecks of a vaccine development, scaled-up the

production, formulated the product, and fulfilled all regulatory
requirements to start clinical study phase. The national reg-
ulatory authority (ANVISA) approved the results of phase 1
clinical studies, and Fiocruz has licensed Sm14 technology to a
Brazilian company, Ourofino, for final development and com-
mercialization of Sm14 vaccine for use in cattle herds against
fasciola.

Field based immunogenicity and safety phase 2 trials of
the Brazilian Sm14+GLA-SE anti schistosomiasis vaccine are
planned to start in 2015 in endemic areas (Brazil and Africa).
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