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Intestinal mononuclear phagocytes find themselves in a unique environment, most
prominently characterized by its constant exposure to commensal microbiota and food
antigens. This anatomic setting has resulted in a number of specializations of the intestinal
mononuclear phagocyte compartment that collectively contribute the unique steady state
immune landscape of the healthy gut, including homeostatic innate lymphoid cells, B,
and T cell compartments. As in other organs, macrophages and dendritic cells (DCs)
orchestrate in addition the immune defense against pathogens, both in lymph nodes
and mucosa-associated lymphoid tissue. Here, we will discuss origins and functions of
intestinal DCs and macrophages and their respective subsets, focusing largely on the
mouse and cells residing in the lamina propria.
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The Unique Characteristics of the Gut Landscape

Intestinal mononuclear phagocytes are located in a unique anatomic environment that necessitated
the evolution of special functional adaptations of these cells. Exposure to commensal bacteria and
harmful pathogens, as well as nutrients and food antigens, in the intestinal lumen force the immune
system to continuously weigh tolerogenic and protective immune response. Disruption of this
critical and delicate balance can result in devastating inflammatory reactions, e.g., hyper-reactivity
to food components (1) or inflammatory bowel diseases (IBD), such as Crohn’s disease or ulcerative
colitis (2).

Both dendritic cells (DC) and macrophages are found spread throughout the connective tissue
that underlies the epithelial layer of the gut, the lamina propria. Moreover, representatives of the
two main mononuclear phagocyte families are also located in mucosa-associated lymphoid tissue
(MALT), including Peyers’ Patches and isolated lymphoid follicles (ILFs) (3). DC and macrophages
have distinct, yet complementary roles in maintaining gut homeostasis and immune defense. In
keeping with their migratory capacity, DC translocate from the lamina propria via the lymphatics
to the gut-draining mesenteric lymph nodes (MsnLNs), where they present antigens to naïve T
cells, polarize them toward effector fates, and thus establish the adaptive branch of the immune
system (4).

Macrophages, on the other hand, are believed to contribute to the local clearance of bacteria
from the tissue, translate alert signals to other immune cells, secrete cytokines to establish the local
homeostatic immune cell network, and participate in T cell re-stimulation and maintenance within
the lamina propria (5).

DC and macrophages can, as discussed in detail below, be divided into several subpopu-
lations with defined origins, overlapping and distinct surface marker profiles, functions and

Frontiers in Immunology | www.frontiersin.org June 2015 | Volume 6 | Article 2541

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2015.00254
https://creativecommons.org/licenses/by/4.0/
mailto:s.jung@weizmann.ac.il
http://dx.doi.org/10.3389/fimmu.2015.00254
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00254/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00254/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2015.00254/abstract
http://loop.frontiersin.org/people/237791/overview
http://loop.frontiersin.org/people/30728/overview
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Gross et al. Intestinal macrophages and dendritic cells

TABLE 1 | Mononuclear phagocytes and their respective subsets in the lamina propria of the mouse intestine.

Intestinal
mononuclear
phagocyte

Main markers
(additional
markers)

Location Precursor Growth/transcription/
environmental factor

dependence

Functional
specialization

Additional
comments

Selected references
SI, LI indicate organ of study:

small or large intestine

DC CD103+ CD11b−
(CD24+, XCR1+)

Lamina
propria,
MALT

preDC Flt-3L Irf8, Id2, Batf-3 Cross-
presentation

Equivalent
of splenic
XCR1+
CD8a+ DC

Edelson et al. (6) SI
Ginhoux et al. (7) SI
Becker et al. (8) SI
Crozat et al. (9) SI
Schlitzer et al. (10) SI

CD103+ CD11b+
(CD24+, Sirpα+)

Lamina
propria,
MALT

preDC Flt-3L (partially) Csf-2
(GM-CSF), Irf-4,
Notch2, Retinoic
acid (ileum)

Required for
generation and
priming of
TH17 cells

More
prevalent
in ileum

Bogunovic et al. (11) SI, LI
Lewis et al. (12) SI, LI
Welty et al. (13) SI, LI
Schlitzer et al. (10) SI
Persson et al. (14) SI, LI
Klebanoff et al. (15) SI

CD103− CD11b+ preDC Flt-3L, Csf-1
(M-CSF)

Priming of
IL-17 and
INFγ-producing
T cells

Bogunovic et al. (11) SI, LI
Cerovic et al. (16) SI
Scott et al. (17) SI, LI

CD103− CD11b- preDC Ftl3L Priming of
TH17 (in vitro)

Cerovic et al. (16)

Macrophages CD64+ CX3CR1+
CD11c+ (F4/80+
CD11b+)

Lamina
propria

Ly6C+
monocytes

Csf-1 (M-CSF)
Csf-2 (GM-CSF)
(in colon)

Niess et al. (18) SI
Varol et al. (19) SI
Bogunovic et al. (11) SI
Mortha et al. (20)
Cecchini et al. (38)

CD64+ CX3CR1+
CD11c− (F4/80+
CD11b+)

Lamina
propria

Ly6C+
monocytes

Csf-1 (M-CSF)
Notch 1/2

Ishifune et al. (21) SI
Cecchini et al. (38), SI LI

CD64+ CX3CR1+
CD169+ (F4/80+
CD11b+)

Crypt
proximity

Ly6C+
monocytes

Csf-1 (M-CSF) Hiemstra et al. (22) LI
Cecchini et al. (38), SI LI

CD64+ CX3CR1+
(F4/80+ CD11b+)

Muscularis
layer

Ly6C+
monocytes

Csf-1 (M-CSF) Communication
with neurons

Muller et al. (23) SI, LI
Cecchini et al. (38), SI LI

locations. The best characterizedDC andmacrophage subsets and
their key features are summarized in Table 1.

With this review, we provide an overview on the character-
istics and function of intestinal macrophages and DC in the
mouse, including specific roles of their subpopulations. We will
discuss distinct origins, roles in maintaining gut homeostasis,
and the interactions between these cells and other immune cells.
Finally, we will review their communication with their non-
immune microenvironment and elaborate on emerging roles of
macrophages and DC in inflammation.

Intestinal Macrophages

Macrophages are the most abundant mononuclear phagocytes in
the steady-state gut lamina propria (3, 24). Intestinalmacrophages
are currently best characterized by their expression of CD64, the
Fcγ receptor 1 (FcγRI) (25), and the chemokine receptor CX3CR1
(18), as well as the F4/80 antigen (EGF-like module containing
mucin-like hormone receptor-like 1-EMR1) and the integrins
CD11b and CD11c (26). Due to the high surface expression levels
of the chemokine receptor CX3CR1 by gut macrophages, these
cells can also be readily detected, isolated, and studied in situ using
intra-vital microscopy on mice harboring a GFP reporter gene
inserted into the CX3CR1 locus (27).

Ontogeny

Like other tissue macrophages (28), also intestinal macrophages
are first established before birth from precursors originating in
the yolk sac or fetal liver (29). However, unlike macrophages
in most other tissues, these embryo-derived cells are replaced
in the gut shortly after birth by cells that derive from Ly6C+

blood monocytes (29). The adult monocyte-derived cells dis-
play a uniquely short half-life for macrophages (30) indicating
their continuous renewal. The monocytic origin of intestinal
macrophages was first established in adoptive transfer experi-
ments, involving the transfer of CX3CR1gfp monocyte-precursors
and monocytes into CD11c-DTR transgenic mice, whose CD11c-
expressing cells, including intestinal macrophages, were depleted
by a diphtheria toxin challenge (11, 19, 31). During their dif-
ferentiation into gut macrophages, monocytes lose Ly6C expres-
sion, while other surface markers, such as MHCII, F4/80, CD64,
CD11c, and CX3CR1 are up-regulated (25, 32, 33). Moreover,
the cells acquire a characteristic anti-inflammatory gene expres-
sion profile (32, 34), whose timely establishment and mainte-
nance are critical for gut homeostasis (35). This includes the
expression of IL-10, TREM-2, IRAK-M, and tumor necrosis fac-
tor (TNF)AIP3 genes, but also of TNFα, which has both pro-
and -anti-inflammatory activity (32). Of note, this expression
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profile is robust, as it seems to withstand acute challenges, such
as the ones associated with oral dextran sulfate sodium (DSS)
exposure (32). The molecular cues that drive the “education”
of the macrophages in various regions of the gut remain to be
defined, but the epithelium is likely to play a role in this pro-
cess. Epithelial cells could control macrophage differentiation by
secretion of immune-regulatory factors, such as thymic stromal
lymphopoietin (TSLP), transforming growth factor-β (TGF-β),
and prostaglandin E-2 (PGE-2) (36). In addition, recent findings
suggested that semaphorin 7A,which is secreted by epithelial cells,
contributes to the induction of IL-10 expression by CX3CR1+
intestinal macrophages (37). Also, colony-stimulating factor 2
(Csf-1; previously named macrophage colony-stimulating fac-
tor, M-CSF) and colony-stimulating factor 2 (Csf-2; previously
named granulocyte-macrophage colony-stimulating factor, GM-
CSF) play a role in the development of macrophages. Csf-1 is
a crucial factor for monocyte development, as Csf-1-deficient
osteopetrotic (op/op) mice display reduced levels of F4/80+ cells
in the small and large intestine after the first few days of life (28,
38, 39). Csf-2-depleted mice were shown have reduced numbers
of CD11c+ colonic macrophages (20).

Of note, Ly6C+ monocytes fail to acquire the characteris-
tic macrophage quiescence during intestinal inflammation, but
under this condition respond to local factors that trigger pattern
recognition receptors, such as TLRs and NLRs, giving rise to pro-
inflammatory macrophages (32). These pro-inflammatory cells,
which in acute inflammation outnumber the residentmacrophage
population, secrete IL-12, IL-23, TNF-α, and inducible nitric
oxide synthase (iNOS) (32).

A key suppressor of macrophage-associated inflammation is
the IL-10/IL-10 receptor (IL-10R) axis, as mice bearing muta-
tions in IL10-Ra in intestinal CX3CR1+ macrophages developed
severe colitis (35) comparable to the pathology reported for IL-
10-deficient animals (40). This central critical role of IL-10 in
maintaining the non-inflammatory state of macrophages, and
thereby, gut homeostasis is also supported by research conducted
on samples from humans with loss of function mutations in IL-
10R (41). The latter provides an explanation for the severe early
onset of colitis observed in pediatric patients harboring non-
sense and missense mutations in IL-10R, which reduce IL-10R
expression and hamper its signaling cascades (42). Interestingly
though, IL-10 production by intestinal macrophages, although
also prominent, seems to be redundant for the maintenance of gut
homeostasis (35); rather the system seems to rely on alternative
IL-10 sources, such as Treg cells (43).

Homeostatic monocyte recruitment to the gut is thought to
depend on the chemokine receptorCCR2, asCCR2-deficientmice
display less intestinal macrophages and CCR2-deficient intesti-
nal macrophages are underrepresented in mixed bone marrow
chimeras (24, 25). The exact factors and mechanisms that ensure
homeostatic Ly6C+ monocyte recruitment to the steady state gut
are, however, still unknown. While they are likely related to the
microbiota exposure of the tissue, analysis of germ-free animals
has yielded conflicting results (29, 34, 44, 45). The latter could
be due to intestinal embryo-derived macrophages that might per-
sist in the absence of arising competition by an adult monocyte
influx.

Macrophage Heterogeneity

Interestingly, emerging evidence suggests that intestinal
macrophages are more heterogeneous than previously thought.
Monocyte-derived CD11b+ CX3CR1+ cells in the gut comprise
both CD11c+ and CD11c− cells. While differential functions of
these cells remain to be established, studies into this matter might
profit from the recent finding that generation of CD11c+, but
not CD11c− CX3CR1+ intestinal macrophages requires Notch
signaling (21). A subpopulation of CD169-expressing CX3CR1+
macrophages has been reported to be associatedwith the intestinal
crypts (22), although these cells will require further functional
characterization. Bogunovic and colleagues recently reported an
intriguing CX3CR1+ macrophage subpopulation that resides in
the muscularis layer and communicates with enteric neurons to
regulate gastrointestinal motility (23). Importantly, we and others
have recently shown that macrophages isolated from distinct
tissues, such as the liver, lung, brain, and peritoneum, differ
considerably with respect to their gene expression profile (46,
47). As expected, this diversity is also prominently reflected in the
differential enhancer usage of these cells, as inferred from highly
divergent histone modifications (47). Moreover, given that the
number of regulatory elements by far exceeds the number of genes
(48, 49), this heterogeneity is even more pronounced, including
both active and poised enhancer states (47). This applies, albeit
to a lesser extent, also to macrophages located in proximal
and distal segments of the gut (47). Epigenetic heterogeneity
of intestinal macrophages likely reflects monocyte exposure
to distinct environmental cues in ileum and colon during
their local differentiation (32, 47). In-depth understanding
of how these macrophage identities are established, including
the hierarchy of induced transcription factors, could yield
valuable insights into monocyte differentiation that might be
applicable to other tissues and inflammatory settings. PU.1 is
a pioneering factor, which induces c-fms transcription and is
hence required for macrophage differentiation (50). Intestinal
macrophages are furthermore characterized by prominent
expression of the Runt-related transcription factor 3 (Runx-3)
(47). Interestingly, mice that harbor Runx3 deficiency develop
spontaneous colitis (51). Other candidates that might be involved
in the establishment of the intestinal macrophage signature are
the interferon regulatory factors 4 and 5 (Irf-4, Irf-5), shown to be
associated with classical and alternative macrophage activation,
respectively (52–54).

Macrophage Interactions with Their
Environment

Macrophage Communication with the Epithelial
Cell Layer
Pioneering studies by Rescignio and colleagues revealed that
certain intestinal mononuclear phagocytes can penetrate the
intestinal epithelium by virtue of expression of tight junction
proteins and formations of dendritic projections (55). These struc-
tures, later termed trans-epithelial dendrites (TEDs) (56), were
subsequently ascribed to macrophages expressing CX3CR1 (18)

Frontiers in Immunology | www.frontiersin.org June 2015 | Volume 6 | Article 2543

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Gross et al. Intestinal macrophages and dendritic cells

and allegedly allow these non-migratory cells to sense, and poten-
tially sample, the luminal content (18, 56). TED formation by
macrophages in the terminal region of the ileum was found to
be dependent on expression of both CX3CR1 macrophages and
its membrane-tethered ligand CX3CL1/Fractalkine by selected
epithelial cells (57). CX3CR1-deficient and CX3CL1-deficient
mice were reported to be relatively protected from acute, DSS-
induced colitis (58) – a phenotype that might be related to TED
formation (57). Likewise, CX3CR1-deficient mice were shown to
display impaired oral tolerance, which was related to impaired IL-
10 production by intestinal macrophages, though not their TED
formation (59). Finally, there is evidence for a potential role of
CX3CR1+ macrophages in the capture of luminal bacteria (60)
and even the transport of the latter to lymph nodes, at least under
conditions of dysbiosis (61). However, the exact definition of
macrophage contributions in their native tissue context remains
challenging, because it requires their accurate discrimination from
closely related and phenotypically similar monocyte-derived DC.

Apart from their role in maintaining intestinal immune home-
ostasis, gut macrophages also contribute critically to epithe-
lial wound healing. Macrophages associated with the crypts of
Lieberkuehn in the colon were reported to assist, following tis-
sue damage, the proliferation and survival of epithelial progen-
itor cells in a Myd88-dependent manner (62–64). Moreover, in
a murine model of acute epithelial regeneration in the colon,
activated macrophages supported tissue repair by up-regulating
expression of IL-3 and IL-4, while inhibiting secretion of TNF and
interferon-γ (IFN-γ) in the lamina propria (3, 65). Macrophages
also appear to be able to influence the permeability of the epithe-
lium barrier via the secretion of IL-6 and NO, thereby potentially
increasing the invasion of pathogens (66).

Communication with Immune Cells

Macrophages are inferior to DC in their ability to prime naïve
T cells (67). This might be due to their rapid degradation of
ingested proteins, which impairs their ability to retain antigens
for presentation (68). Moreover, at least in steady state, intesti-
nal CX3CR1+ macrophages lack expression of CCR7, i.e., the
chemokine receptor required for migration to the MsnLNs (25,
69). Rather, the cells that reside in the lamina propria have been
proposed to maintain the functionality of FoxP-3+ T regulatory
cells that migrated back from the MsnLNs into the tissue (59).
Thus, while Treg cell generation of CX3CR1-deficient mice is
unimpaired, these animals harbor reduced Treg cell numbers in
the lamina propria, a phenotype that is associated with impaired
oral tolerance (59). In light of other data (70), the authors of this
study linked the reduced FoxP-3+ Treg cell numbers to impaired
production of IL-10 by CX3CR1+ macrophages (59). However,
the latter might have to be revised, since CX3CR1Cre:IL10fl/fl mice
were shown to harbor unimpaired FoxP-3+ Treg cell numbers
(35). Also, interactions between CX3CR1+ macrophages and
Th17 cells, which are rarely found in intestinal lymphoid tissues
and, though primed in the MsnLN, might terminally differentiate
in the lamina propria, remain incompletely defined. On one
hand, it was shown that intestinal CD70hi CX3CR1+ macrophages
are activated by commensal-derived ATP and drive the in vitro

differentiation of Th17 cells (71, 72). On the other hand, intesti-
nal macrophages were reported to counteract Th17 generation
that is promoted by CD103+CD11b+ DC (73, 74). Of note,
CD103+CD11b+ DCs and Th17 cells co-localize in the intestinal
tract, as the number of both cells drop from the duodenum to the
ileum, and they are scarce in the colon. By contrast, CX3CR1+
macrophages and FoxP3+ Treg cells are most abundant in the
colon (74).

Recent findings revealed an intriguing cross-talk between
intestinal macrophages and innate lymphoid cells (ILC). Thus,
in response to luminal stimuli and using a signaling pathway
involving the TLR adaptor Myd88, macrophages were shown to
secrete IL-1β and in turn induce production of csf-2 by RORγt+
type 3 ILC (20). Mice lacking Csf-2 display reduced numbers of
colonic macrophages and DC, associated with a hampered Treg
cell compartment (20).Moreover, in aCitrobacter infectionmodel
CX3CR1+ macrophages were shown to promote ILC produc-
tion of IL-22 via secretion of IL-23 (75), in line with another
report (76). Interestingly, CX3CR1+ macrophage-derived IL-23
not only induces IL-22 but also seems to concomitantly suppress
IL-12 production by CD103+ CD11b− DC and thereby prevents
otherwise detrimental immunopathology (77). Notably, the latter
finding provides first evidence for the existence of a direct cross-
talk among intestinal mononuclear phagocytes in tissue context, a
topic that clearly deserves further study.

Intestinal Dendritic Cells

Dendritic cells are specialized in communicating with T cells,
curbing autoreactivity and activating T cell immunity in response
to threats. Specifically, DC provide T cells with antigenic peptides
that are presented inMHCcontext, co-stimulation and instructing
cytokines that govern T cell polarization into effector cells (67). In
order to maintain homeostasis and avoid inflammatory responses
toward innocuous antigens, gut DC employ tolerogenic mecha-
nisms that allow them to dampen adaptive immunity. MsnLN-
and lamina propria-resident CD103+ DC secrete, for example,
retinoic acid (RA) and transforming growth factor-β (TGF-β),
which promote the generation of Foxp3+ Treg cells and contribute
to the differentiation of plasma cells, which secrete IgA (78, 79).

Classification and Ontogeny

Intestinal DC in mice are characterized by the surface expression
of the integrins CD11c (αX) and CD103 (αEβ7) (11, 19, 69).
More recently, CD24 and Sirpα have been introduced for the
better discrimination of DC from macrophages (8, 10). CD103+
DC in the gut arise from dedicated DC precursors, or preDC,
and accordingly, mice deficient for fms-related tyrosine kinase-
3 receptor (Flt-3) or its ligand Flt-3L have significantly decreased
levels of intestinal DC (7, 19). Other, currently though less well-
characterized DC progenitors are α4β7+ so-called “pre-µDC,”
which are generated in the bone marrow and were shown to give
rise to classical CD103+ DC and CCR9+ plasmacytoid DC (80).

Classical CD103+ DC are divided into two major subpopula-
tions according to their expression of CD11b (αM) (81). CD103+
CD11b+ DC and CD103+ CD11b− DC display distinct abun-
dance in small and large intestine, present different additional

Frontiers in Immunology | www.frontiersin.org June 2015 | Volume 6 | Article 2544

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Gross et al. Intestinal macrophages and dendritic cells

surface markers, and require different growth factors for their
development (82, 83).

CD103+ CD11b+ DC are developmentally related to CD11b+
CD8α− splenic DCs (15) and found in the lamina propria of the
small and large intestine. They can migrate in CCR7-dependent
manner (84) to the MsnLNs, where they present luminal antigens
to T cells. CD103+ CD11b+ DCs likely represent a heterogeneous
population, as a fraction of them is Csf-2-dependent (3). Develop-
ment of CD103+ CD11b+ DC, but not of CD103+ CD11b− DC,
is hampered in Csf-2R-deficient mice (85) and when expression
of Notch-2 (12, 76) or IRF-4 (14) is impaired. Moreover, CD103+
CD11b+ DC numbers are also reduced in absence of RA and
under conditions of vitamin A deprivation (15).

CD103+ CD11b− DCaremore prevalent in lymphoid organs –
the Peyer’s Patches, MsnLNs, and ILFs (7, 69). However, they can
be found also in animals lacking these structures, and are hence
not limited to lymphoid tissues (3). Similar to classical CD8α+

DC in the spleen, CD103+ CD11b− DCdepend on the expression
of the transcription factors BatF-3 and Irf-8 (6, 15). Like the
former, they also express the chemokine receptor XCR1 that has
emerged as a universal marker for this DC subset in mouse and
human (8, 9). The connection between CD103+ CD11b− DC
and CD8α+ DC is also supported by the fact that the number
of CD103+ CD11b− DC was shown to increase, alongside with
splenic CD8α+ DC, in mice that display constitutive β-catenin
activation (86). Moreover, like splenic CD8α+ DC (87), also
CD103+ CD11b− DC are specialized in cross-presentation (88).

The exact definition of intestinal DC is complicated,
since monocyte-derived cells can acquire phenotypic and
functional DC hallmarks. Studies have described a population
of CD103−CX3CR1+CD11b+ DC, which resides in the lamina
propria (11, 16). These cells are CSFR-1 dependent and appear
to be derived from Ly6Chigh monocytes (11). Recent studies
also reported that under inflammatory conditions, these
CD103−CX3CR1+CD11b+ DC expressed CCR7 and migrated
in the intestinal lymph, similar to classical intestinal DC, and
induced the differentiation of IL-17 and IFN-γ producing T cells
(16, 17).

Antigen Sensing and Uptake

CD103+ DC, present in the lamina propria and associated with
the intestinal epithelium lining the villi, provide surveillance of the
luminal environment (30). They detect foreign and inflammatory
signals, acquire and present antigens and interact with T cells
by migrating to secondary lymphoid organs (3). Located deep
in the core of the villous lamina propria, CD103+CD11b+ DC
would seemingly have limited access to luminal signals, unless
antigens or bacteria cross the epithelium or are imported into
the lamina propria by other cells, e.g., macrophages, epithelial M
cells, or small intestine goblet cells (36, 89, 90). However, lamina
propria-resident CD103+ DC were shown to migrate into the
epithelial cell layer and capture bacterial antigens (90).

DC Migration

Mucosal T cell priming, arguably one of the primary roles of
gut DC, is believed to be restricted to lymphoid tissues (3).

Intestinal DC are hence bound to migrate from the lamina pro-
pria to the MsnLNs, or within Peyer’s Patches into T cell zones.
Indeed, CD103+ DC were detected in the intestinal lymph under
homeostatic conditions (69, 84). In addition, after systemic BrdU
administration, labeled CD103+ DC were found in the lamina
propria before they could be discerned in the MsnLNs (30). LN-
resident CD103+ DC are thus derived from the tissue and con-
stantly immigrate (30, 91). Interestingly, steady state migration
of intestinal CD103+ DC does not appear to be induced by the
microbiota or by TLR signaling (92), but may rather depend on
a low, tonic release of inflammatory cytokines, or result from
spontaneous DC maturation. Nevertheless, entry of CD103+ DC
into the MsnLNs is of course considerably enhanced by pro-
inflammatory cytokines or TLR ligands (93, 94). Migration of
intestinal DC depends on CCR7, both in steady state and under
inflammatory conditions. Accordingly, CCR7 expression is up-
regulated in DC before their migration from the tissue into the
MsnLN (84) and CCR7 deficient DC fail to migrate (69, 84, 95).
Moreover, it was recently shown that DC can also migrate from
the lamina propria into the epithelial layer (90) and can thus gain
direct access to antigen and luminal bacteria. Hence, following
challenge with Salmonella, accumulation of the bacteria was first
observed in DC of the epithelial fraction and only subsequently in
DC in the lamina propria (90).

DC and the Epithelium

DC intimately interact with the epithelial layer of the intestine
by a variety of mechanisms. Small intestinal goblet cells were
shown to transfer small soluble antigens from the intestinal lumen
to CD103+ DC (89). Chemokines secreted by enterocytes in
response to TLR ligand exposure can induce the above-mentioned
relocation of lamina propria DC to the epithelium (90). In addi-
tion, it is becoming more and more evident that epithelial cells
play a critical role in maintaining DC in a tolerogenic state,
compatible with gut homeostasis. Epithelial and stromal cells
secrete factors, which are thought to induce DC tolerance, such
as RA, TGF-β, PGE-2, and TSLP (3, 82, 96–99). In parallel to
ILC (20), intestinal epithelial cells regulate retinal dehydroge-
nase (RALDH) expression by CD103+ DC that the cells need to
metabolize retinoids. Specifically, epithelial cells express a critical
cytosolic retinoid chaperone, the cellular retinol binding protein
II, which is required for in vivo imprinting of gut DC by lume-
nal retinoids (99, 100). Supporting this notion, the in vitro co-
culture of bone marrow- or spleen-derived DC with epithelial
cells results in the up-regulation of CD103 and RALDH, together
with TGF-β imprinted homing potential on T cells (101–103).
These data establish the potential of intestinal epithelial cells to
educate intestinal DC, although further in vivo studies and higher
resolution, with respect to cell subsets, are required to better
elucidate the underlying mechanisms.

DC Communication with Intestinal T Cells

Intestinal CD103+ DC, found in lamina propria, Peyer’s Patches,
and theMsnLNsprogramTcells to express the gut-homing factors
CCR9 and α4β7 integrin (101, 104, 105). Concomitantly, DC can
also induce the development of FoxP-3+ and IL-10 producing
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Treg cells (106) and prime Th17 cells (17, 107, 108). The majority
of these DC-governed priming events require TGF-β signaling
and RA, which are generated in the DC by enzymatic conversion
of all-trans-retinal, a derivative of vitaminA, using RALDH2 (101,
109, 110). Indeed, RA has emerged as the critical conditioning
factor for intestinal DC, as vitamin A is crucial for the activity of
the enzyme RALDH in DC. Without RALDH, the ability of DC
to imprint T cells is hampered, and restored only after vitamin A
administration (111). The balance between RA and TGF-β levels

seems to determine the fate of Treg cells primedbyDC, as presence
of both RA and TGF-β favor the development of FoxP-3+ cells,
while RA induces the generation of IL-10 producing T cells (106).

Other enzymes that influence the outcome of T cell prim-
ing are indoleamine 2,3 dioxygenase (IDO) and TSLP. IDO is
expressed also by DC in other tissues and was shown to inhibit the
development of effector T cells and promote Treg cell generation
(112, 113). TSLP is, as mentioned above, secreted by epithelial
cells, but also by the intestinal DC, themselves. In the presence

FIGURE 1 | CyTOF analysis of CD45+ cells from murine colon. Cells
were isolated from colon of 6–9weeks old WT female C57Bl/6 mice and
stained with a panel of 26 cell surface markers. The results were gated for
live, single, CD45+ cells. Bh-SNE analysis and clustering were performed
by Accense (http://www.cellaccense.com/) and the results were processed
by GIMP. Colors indicate high levels of the following markers:

green – TCRβ, CD3e (T cells), Orange – B220 (B cells), light blue – Ly6G
(granulocytes), pink –Ly6C (monocytes), purple – CD64, F4/80
(macrophages), blue – clustered by Accence, different DC populations,
gray – non-identified or non-specific cells. Red populations in zoom-in black
squares indicate high levels of the marker written. Representative of at least
four separate, independent experiments.
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of TSLP, Th17 responses are restricted due to a reduced ability to
produce IL-17, and Treg cell differentiation is up-regulated (107).
The ability of the intestinal DC compartment to generate Th17
cells seems to be associated with CD103+ CD11b+ DC, as the
frequency of Th17 cells is reduced in mice lacking these DC due
to either IRF-4 or Notch-deficiency (10, 12, 14), or as a result of
conditional ablation of this DC subset (13). Interestingly though,
a recent study showed that also another subpopulation of DC,
i.e. CCR2+ CD103− CD11b+ DC can induce IL-17a production
in CD4+ T cells and effectively prime Th17 cells, probably via
IL-12/IL-23p40 secretion (17).

Intestinal DC, Inflammation, and Immune
Response

In steady state, intestinal DC are probably mainly tolerogenic.
Under inflammatory conditions, however, they can become
highly effective T cell activators (114). Induction of experimen-
tal colitis results in the accumulation of CD103+ DC with an
inflammatory profile in the MsnLNs (114). These DC express
less RALDH and TGF-β and instead of promoting Treg cell for-
mation, now induce Th1 inflammatory responses (114). While
Th17 polarization might be carried out by CD103+ CD11b+ DC
(12), differentiation of CD8+ effector T cells under inflammatory
conditions seems to be dependent on CD103+ CD11b− CD8α+

DC that migrated into the lymph (88).
Flagellin stimulation causes TLR-5+ CD103+ DC in the small

intestine to promote differentiation of Th17 cells and secrete IL-
23, which in turn induces IL-22 production by ILC3 and subse-
quent epithelial up-regulation of antibacterial peptides (115).

In summary, DC are major players in maintaining homeostasis
in the intestine. While tolerogenic at steady state, under inflam-
matory conditions they tip the scales and activate the immune
system. They can migrate between different compartments of the
intestine – from the lamina propria to the epithelium and into the
MsnLNs – and execute different immune responses in each tissue.
Further research regarding the location of DC, their functions and
characteristics should shed new light on the role of these cells in
the intestine.

Concluding Remarks and a Glimpse to the
Future

In summary, macrophages and DC critically contribute to
intestinal homeostasis and immune defense. Both cellular

compartments have been subdivided into discrete subpopulations,
which though currently mainly phenotypically defined, in some
cases have been assigned distinct activities. The challenge ahead
is to better define precise roles of these subsets both in health
and under inflammatory conditions, first in the mouse but
then also in the human. This task is complicated by the fact
that many of the used markers used to distinguish between
subpopulations of DC and macrophages are shared by the two
types of mononuclear phagocytes. Moreover, under inflammatory
conditions monocyte-derived cells further blur the picture.
Collectively, this highlights the need to define cells by multiple
parameters, including both surface and intracellular markers.
Single cell transcriptome analysis is likely to help with this
task (116, 117). However, classic flow cytometry analysis using
fluorescent dye-coupled antibodies allows only a very limited
simultaneous panel of markers due to the few dyes available and
the spectral overlap of their emission. This problem might, in
the near future, be solved by spectral cytometry systems that
use ultrafast optical spectroscopy combined with flow cytometry
to differentiate between the emission curves of different fluo-
rophores, thus enabling the use of dozens of antibodies in one
sample (118). Moreover, a new cell analyzer has been introduced,
which uses mass cytometry instead of flow cytometry and is
termed cytometry by Time-Of-Flight, or CyTOF (119). Instead
of conjugations to fluorophores, this machine uses conjugations
to heavy metal isotopes. Such metals do not exist naturally in
the cells, so background is insignificant. The stained cells are
injected into the CyTOF and are evaporated in a plasma chamber.
The metals are ionized, hit the TOF detector, and their mass is
measured, allowing the machine to determine the expression
levels of the markers on each cell. This multiple-parameter
approach enables to explore entire immune cell populations and
subpopulations from the same tissue. As exemplified in Figure 1,
such global analysis methods might well hold the key for the
better definition and understanding of the cellular make-up of
the intestine. No doubt, that with the recent development in the
fields of cell cytometry and RNA sequencing, more pieces of this
complex puzzle of the characteristics and roles of mononuclear
phagocytes in the gut will be detected and put in place.
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