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Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune
responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens
derived from bacteria, parasites, and fungi can be presented by CD1d molecules and
recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be
activated through recognition of self-lipids and/or pro-inflammatory cytokines generated
during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through
the lymph nodes under homeostatic conditions, with the largest NKT cell populations
localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by
differences in chemokine receptor expression profiles. However, the impact of infection on
the tissue localization and function of NKT remains largely unstudied. This review focuses
on themechanismsmediating the establishment of peripheral NKT cell populations during
homeostasis and how tissue localization of NKT cells is affected during infection.
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Introduction

The clearance of bacterial, viral, fungal, and protozoan infections depends upon the coordinated
activation of both the innate and adaptive arms of the immune system (1). Innate immune cells,
such as macrophages, dendritic cells (DCs), neutrophils, and natural killer (NK) cells, are critically
involved in the initial control and clearance of infectious organisms. However, adaptive immunity
mediated by T cells and B cells is also required to generate specific sterilizing responses and provide
long-lasting immunological memory. Natural killer T (NKT) cells are a subset of T cells that serve
as a bridge between innate and adaptive immunity. Upon activation, NKT cells rapidly generate and
secrete a diverse array of cytokines and chemokines (2–4), allowing them to shape the magnitude
and polarization of host immune responses in infection (5, 6), autoimmune disease (7, 8), allergy (9,
10), and cancer (11). Compared to conventional T cells, NKT cells exhibit altered patterns of tissue
localization, suggesting differences in the signals regulating homing and homeostasis. This review
examines pathways important in the trafficking and maintenance of NKT cell populations under
homeostatic conditions and during microbial infections. The impact of these mechanisms on NKT
cell-derived anti-microbial effector functions will be discussed in terms of their ability to orchestrate
both innate and adaptive immune responses.

Natural Killer T Cells

Natural killer T cells develop in the thymus from uncommitted thymic progenitors that undergo
T cell receptor (TCR) rearrangement and selection. However, unlike the diverse TCR repertoire
of conventional T cells that are selected via type I or type II major histocompatibility complex
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(MHC), NKT cells express a restricted repertoire of TCR
rearrangements that are selected via the MHC-like molecule
CD1d (12, 13). While the specific selecting antigen(s) in
the thymus remains unclear, several endogenous NKT cell
ligands have been proposed based on NKT cell activating
capacity. These include isoglobotrihexosylceramide (iGb3)
(14), lysophosphatidylcholine (LPC) and lysosphingomyelin
(LSM) (15), the peroxisome-derived ether-bonded compounds
lysophosphatidylethanolamine (pLPE) and lysophosphatidic
acid (eLPA) (16), β-glucosylceramide (β-GluCer) (17), and
α-glycosylceramides (18). However, the relative roles of these
candidate ligands during intrathymic NKT cell development
in mouse versus human as well as their capacities to influence
NKT cell functional regulation and/or tissue localization in the
periphery remain undefined.

Isoglobotrihexosylceramide, which appeared to be a promising
candidate for an endogenous NKT cell selecting antigen in mice,
is unlikely to be an endogenous ligand for human NKT cells due
to the lack of the relevant iGb3 synthase enzymes in humans
(19). Furthermore, the contamination of commercial β-GluCer
with α-linked species has brought into question the role of this
compound. Indeed, two groups have demonstrated that highly
purified preparations of β-GluCer lack NKT cell stimulatory
activity (18, 20). However, Kain and colleagues (18) identified
the presence of small quantities of endogenous α-linked glyco-
sylceramides [α-GluCer and α-galactosylceramide (α-GalCer)],
a class of glycolipids that were thought to be absent inmammalian
cells, and identified them as possible endogenous ligands for
NKT cell selection and activation. Our understanding of NKT cell
development and function will continue to improve as ongoing
efforts further characterize the self-lipid antigens that select NKT
cells in the thymus.

Two major subsets of NKT cells can be distinguished based
on their TCR repertoire and lipid reactivity. Type I or invariant
NKT (iNKT) cells express an invariant TCRα chain composed of
Vα14–Jα18 rearrangements in mice and Vα24–Jα18 in humans,
paired with a restricted repertoire of Vβ chains (Vβ8.2, Vβ7, or
Vβ2 in mice, and Vβ11 in humans) (21, 22). Specific detection of
iNKT cells is possible through the use of CD1d tetramers loaded
with α-GalCer (23, 24). Analogs of α-GalCer are potent activators
of iNKTcells and can influence immune responses inmany patho-
logical states, including microbial infection (25, 26), autoimmune
disease (7), allergy (27), and cancer (28). Type II NKT cells are
CD1d-restricted but do not recognize α-GalCer (29). This is a
more heterogeneous population of cells, expressing oligoclonal
TCRs that utilize a limited collection of Vα (Vα1, Vα3, Vα8)
and Vβ-rearrangements (29–31). Comparisons of Jα18−/− mice
lacking type I NKT cells with CD1d−/− mice lacking type I and
type II NKT cells suggest that the type II NKT cells are regulatory
cells that can suppress anti-tumor immunity (32–34). The best
characterized subset of type II NKT cells expresses a TCR that
recognizes sulfatide (3-sulfated galactosylceramide) (29, 31, 35).
These cells serve as an important regulatory population during
inflammatory responses and can be activated by sulfatide to sup-
press autoimmunity (36–40). Type II NKT cells can also regulate
iNKT cell responses. For example, activation of type II NKT cells
by sulfatide suppresses the proliferative and cytokine responses of

iNKTcells activatedwith α-GalCer (33). Furthermore, in aConA-
induced hepatic injury model, sulfatide-activated type II NKT
cells induced iNKT cell anergy and prevented inflammatory liver
disease (37). However, dysregulated responses of type II NKT cells
have also been shown to play a role in the pathogenesis of inflam-
matory bowel disease in both mice and humans (41, 42). While
iNKT cells are more prevalent than type II NKT cells in mice, type
II NKT cells appear to be the predominant subset in humans (43).
This review focuses on responses of iNKT cells, and the termNKT
cell will be used throughout to refer to this population.

In addition to TCR–CD1d interactions, NKT cells are also
stimulated by inflammatory cytokines (44–46), neurotransmit-
ters (47), and toll-like receptor (TLR) ligands (48–50). Follow-
ing activation, NKT cells are able to produce a wide range of
cytokines including interferon-γ (IFN-γ), tumor necrosis factor
(TNF), interleukin-2 (IL-2), IL-4, IL-10, IL-13, IL-17, IL-21, IL-
22, and granulocyte-macrophage colony-stimulating factor (GM-
CSF) (2–4, 51). However, the cytokine profile is influenced by the
nature of the stimulation and the subset of NKT cells that are acti-
vated. Indeed, recent studies have identified a number of distinct
lineages of NKT cells that emerge during development, each with
a unique profile of transcription factors and cytokine production
(52–59). Based on these profiles, NKT cells can be subdivided into
NKT-1, NKT-2, NKT-17, and NKT-10 subsets, analogous to the
T helper type 1 (Th1), Th2, Th17, and IL-10 producing subsets of
conventional T cells. Through their secretion of various cytokines,
NKT cells are able to activate other immune cells, contributing
to NK cell transactivation (60), DC maturation (61, 62), T cell
polarization (63, 64), and B cell antibody responses (65).

NKT Cell Homeostasis

Natural killer T cells require a number of growth factors and
survival signals for their maintenance in the periphery. In contrast
to the requirement for CD1d during thymic NKT cell selection
and initial maturation, mature NKT cells do not require continual
CD1d interactions in the periphery to support homeostatic prolif-
eration, long-term survival, or tomaintain tissue distribution (66).
Instead, NKT cells rely more on signaling elicited by cytokines
such as IL-15, and to a lesser extent IL-7 (66–69). However, while
thymic NKT cell development and homeostatic NKT cell prolifer-
ation are impaired in IL-15-deficient mice, these populations are
not abolished (67, 70). It is possible that this is due to differences
in the requirement for IL-15 during development of distinct NKT
cell lineages. For example, NKT-1 cells express CD122 (the IL-
2/IL-15 receptor β-chain) and require IL-15 for development and
homeostasis, while NKT-2/NKT-17 cells (marked by the expres-
sion of IL-17RB, a receptor for IL-25) develop normally in the
absence of IL-15 (58). Accordingly, CD122 is moderately to highly
expressed on NKT cells in the mouse liver and spleen, where the
NKT-1 lineage constitutes the majority of the NKT population,
but is not expressed on lymphnodeNKT cells, whereNKT-17 cells
are enriched (52, 54). ICOS/ICOSL interactions are also required
for NKT cell homeostasis and function as survival of wild-type
NKT cells transferred into ICOSL−/− mice was reduced, and
ICOS−/− NKT cells were impaired in their ability to produce
IL-4 and IL-13 (71). Many studies have highlighted roles for a
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variety of signaling molecules and transcription factors in NKT
cell development and homeostasis, including NF-κB (72), T-bet
(73, 74), c-Myc (75, 76), mTORC2 (77), calcineurin (78), Egr-
2 (78), Id2 (79), Bcl-2 (80), Bcl-XL (81), in addition to cytokine
receptor subunits IL-2Rβ (82), IL-7Rα (83), IL-15Rα (84, 85), and
the common gamma chain (83).

In addition to these factors, chemokine receptor signaling
has also been implicated in regulating NKT cell homeostasis in
the periphery. NKT cells express high levels of CXC chemokine
receptor 6 (CXCR6) (86–89), and NKT cells in the liver and
lungs are depleted in mice lacking CXCR6 or its ligand CXCL16
(90–92). Geissmann et al. (90) reported that NKT cells from
CXCR6−/− mice underwent apoptosis more rapidly in culture
than NKT cells from CXCR6−/+ mice. In vivo however,
CXCR6−/− and CXCR6−/+ mice exhibited a similar frequency
of apoptotic CD1d-reactive cells in liver sections and freshly
isolated liver lymphocytes (90). We found no difference in the
apoptosis rates of cultured NKT cells purified from the livers
of CXCR6+/+ and CXCR6−/− mice (91), but observed an
accumulation of NKT cells in the bone marrow, suggesting an
alteration in homing. Interestingly, mice deficient in Id2 exhibit
impaired survival of liver NKT cells, which is associated with
reduced expression of CXCR6 and the survival factors Bcl-2 and
Bcl-XL (79). Similarly, hepatic NKT cells from CXCR6-deficient
mice expressed lower levels of Bcl-2, suggesting a role in survival
(79). Despite the conflicting reports, it seems likely that CXCR6
plays a role in regulating survival of NKT cells within certain
tissue environments [since NKT cell numbers are normal in most
tissues (90–92)], or under specific culture conditions.

A separate study found that NKT cells in CC chemokine recep-
tor 5 (CCR5)-deficient mice were resistant to activation-induced
apoptosis, and produced more IL-4, resulting in enhanced liver
injury in a model of ConA-induced hepatitis (93). Interestingly,
despite an impairment of activation-induced cell death, there
were no defects in Fas-mediated apoptosis in these NKT cells. In
human T cells, CCR5-dependent apoptosis has been reported in
response to high concentrations of the chemokine ligand CCL5
(94), or ligation of CCR5 by the human immunodeficiency virus
(HIV) envelope protein gp160 (95). In these cases however, there
was enhanced susceptibility to caspase-8-dependent cell death
through induction of FasL (95). These studies point to a role
for chemokine receptors in influencing lymphocyte survival and
add to a growing body of literature demonstrating the ability
of chemokine receptors to regulate a number of cellular func-
tions in addition to their traditional roles in regulating leukocyte
recruitment and positioning.

Natural killer T cell homeostasis is also regulated by the micro-
biome. Germ-free Swiss-Webster and C57BL/6 mice exhibit vari-
able alterations in thymic, spleen, and liver NKT cell populations
compared to conventionally housed animals (96–98). This vari-
ability may reflect differences in the conventional microbiota in
control mice housed in different facilities (98). However, germ-
free mice consistently exhibited increased numbers of NKT cells
in the intestinal lamina propria and lungs (96, 98). NKT cell accu-
mulation appears to result from dysregulated CXCL16 expres-
sion, and could be reversed by CXCL16 blockade or neonatal
exposure to conventional microbiota (96). Bacteria of the genera
Bacteroides comprise>50% of the bacteria in the human gut (99),

and B. fragilis has been shown to generate α-GalCer derivatives
capable of regulating NKT cells (100, 101). One such compound,
α-GalCerBf, binds to CD1d and activates NKT cells in vitro and
in vivo, albeit to a lesser degree than synthetic α-GalCer (100).
However, colonization of germ-free mice with B. fragilis led to
variable expansion of NKT cells (100). B. fragilis also generates
GSL-Bf717, an α-GalCer analog that inhibits NKT cell activity
and restored NKT cell homeostasis in germ-free mice (101).
Therefore, it appears that the composition of the intestinal micro-
biota influences the homeostasis of NKT cells within the colon
and lungs, and may also exert influences on NKT cells within
other tissues. Adding further complexity, NKT cells also influence
bacterial colonization in the intestine (102), and engagement of
epithelial CD1d contributes to intestinal epithelial cell-dependent
regulation of mucosal homeostasis via IL-10 production (103),
highlighting the intricate interactions which take place between
host cells and the microbiota.

NKT Cell Tissue Localization Patterns

In mice, NKT cells are first detected in the thymus at day 5–6 after
birth, and in the periphery after day 8 (12, 104). They populate
multiple tissues and reach steady state levels by 5–6weeks of
age. In the adult mouse, NKT cell frequency is highest in the
liver (12–30% of liver lymphocytes), with lower frequencies in
the spleen (1–3%), lungs (5–10%), thymus (0.5–1%), bone mar-
row (0.4–8%), lymph nodes (0.2–1%), intestines (0.05–0.6%), and
blood (0.2%) (23, 24, 98, 105–110).

In contrast to the post-natal NKT cell ontogeny in mice, NKT
cells are detected in the human fetal thymus at the start of the
second trimester, but the frequency declines with gestational age
to reach low levels in the post-natal thymus (111, 112). Human
NKT cells also distribute to the periphery during the second
trimester, with a prominent distribution to the small intestine
which may act as a maturation site (113). Overall, the tissue
distribution of NKT cells in the periphery appears to be similar
between adult humans and mice. However, the frequency of NKT
cells in humans is significantly lower and is subject to considerable
variability among individuals. For example, frequencies of NKT
cells range from 0.05 to 1% of liver lymphocytes in humans (114,
115), and generally account for 0.01–0.1% of human peripheral
blood mononuclear cells, but have been observed to constitute
upwards of 3% of peripheral blood mononuclear cells in some
individuals (112, 116–118). The variability in NKT cell frequency
between individuals appears to be influenced by genetic factors
as evidenced by identical twin studies (118). Despite these dif-
ferences, NKT cells play important roles in human health and
disease. Indeed, dysfunctional NKT cell responses and reduced
circulating numbers of NKT cells have been reported in patients
with autoimmune disorders (8) and malignancies (119–122), sug-
gesting a role for NKT cells in maintaining immune homeostasis.

Phenotypic and Functional Differences in
NKT Cell Subsets

Even though NKT cells have a restricted TCR profile, they
contain phenotypically and functionally diverse subpopulations
characterized by differences in surface marker expression, tissue
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TABLE 1 | Chemokine receptor expression and ligand responses on circu-
lating human NKT cells.

Receptor Expression (%)a Chemotactic
responsec

Reference

CD4+ DNb CD8+

CCR1d 2–25 55–85 30–80 CD4+; DN++;
CD8++

(87, 89)

CCR2d 60–80 95–99 65–99 +++ (87, 89)

CCR3 0–4 0–4 0–4 n.d. (87, 89)

CCR4 12–40 4–18 2–10 CD4++; DN+;
CD8−

(87, 89)

CCR5 45–80 90–99 70–99 + (4, 87, 89, 116)

CCR6 10–68 72–95 50–85 CD4+; DN+++;
CD8+++

(87, 89, 116)

CCR7 11–28 7–32 2–25 ++ (4, 87, 89)

CCR8 11–55% total NKT cells − (89, 140)

CCR9 0–4 0–4 0–4 − (87, 89)

CCR10e n.d. n.d. n.d. − (89)

CXCR1 5–10 3–8 n.d. − (89)

CXCR2 0–2 0–1 n.d. − (89)

CXCR3 75–90 95–99 80–90 +++ (4, 87, 89)

CXCR4 90–99 98–99 95–99 +++ (4, 87, 89)

CXCR5 0–4 0–4 0–4 − (87, 89)

CXCR6 22–45 85–99 60–98 ++ (87, 89, 116)

CX3CR1 4–12 4–12 n.d. − (89)

aRange in reported frequency of receptor positive NKT cells.
bDN=CD4−CD8− double negative NKT cells.
cNet chemotactic migration: − (did not respond), + (2–10%), ++ (11–30%), and +++

(>30%).
dOthers report CCR1 and CCR2 on <2% of NKT cells (89, 116).
eCCR8 and CCR10 mRNA detected in NKT cell subsets (89).
n.d. – not determined.

localization, and effector functions. NKT cells in humans can be
divided into CD4+ (12–36%), CD4−CD8− (DN; 60–85%), or
CD4−CD8α+ (1–5%) subsets (123). While the DN and CD8α+

subsets in human blood are phenotypically and functionally sim-
ilar, the CD4+ subset represents a functionally distinct lineage
with marked differences in cytokine profile and homing receptor
expression (see Table 1) (4, 87, 116). For example, CD4− NKT
cells produce primarily Th1 cytokines such as IFN-γ and TNF,
while CD4+ NKT cells generate both Th1 and Th2 cytokines
(IFN-γ, TNF, IL-4, IL-5, IL-10, and IL-13) (4, 87, 116). However,
tissue-resident NKT cells may have differences in surface marker
expression and cytokine profiles (115, 124).

Natural killer T cells in mice are comprised of CD4+ (60–80%,
depending on the tissue) and DN subsets, while CD8+ CD1d-
restricted NKT cells are absent (24, 105, 125). A Th2-like subset of
CD4+ NKT cells localizes to the lungs and contributes to airway
hyperreactivity and asthma (126, 127), while a subset of DN IL-
17-producingNKT cells localize preferentially to the lymph nodes
and skin (54). Although there is little evidence for differences in
cytokine profiles of CD4+ and DN NKT cell subsets in the liver
and spleen, functional differences have been reported. For exam-
ple, DN NKT cells from the liver are able to control tumors better
than CD4+ NKT cells from the liver or NKT cells from other
tissues (128). NKT-1, NKT-2, NKT-10, NKT-17, and follicular

helper-type NKT (NKTFH) subsets of NKT cells have recently
been identified on the basis of transcription factor profiles and
select surface marker expression (52–59, 129). However, more
work is needed to determine the maintenance and plasticity of
these profiles since the population ratios in mice seem to change
significantly over time (55). Although NKT-1, NKT-2, and NKT-
17 subsets emerge in the thymus, it is likely that tissue-specific
factors and microenvironmental influences act to shape the phe-
notype and function of NKT cells after recruitment to specific
tissue sites.

Expression of Homing Receptors on NKT
Cells

The trafficking behaviors of naïve and effector/memory lym-
phocyte subsets are a function of the specific combinations of
adhesion molecules and chemokine receptors that they express.
For example, naïve T lymphocytes use -selectin (CD62L), the
αLβ2-integrin (CD11a/CD18; LFA-1), andCCR7 to enter periph-
eral lymph nodes at high endothelial venules (130–132), while
gut homing memory lymphocytes express the α4β7-integrin and
CCR9 (133, 134), and memory lymphocytes targeted to the skin
express the cutaneous lymphocyte antigen (CLA) and CCR4
(135). Cells capable of migrating to sites of inflammation dis-
play varying levels of CCR1, CCR2, CCR5, CXCR3, or other
chemokine receptors on their surface (130, 136, 137).

Human NKT Cells
Generally, human NKT cells express homing receptors for extra-
lymphoid tissues (Table 1), with only 10–20% of circulating NKT
cells expressing the lymph node homing receptor CCR7 (87, 89).
Few blood NKT cells express the chemokine receptors CCR3,
CCR9, CXCR1, CXCR2, CXCR5, or CX3CR1 (87, 89). In con-
trast, a majority (>60%) of NKT cells express CCR2, CCR5,
CXCR3, andCXCR4, with differential expression of CCR1, CCR4,
CCR6, and CXCR6 depending on the specific NKT cell subset
or their tissue distribution (87, 88, 138). Multiple studies exam-
ining chemokine receptor expression on human NKT cells have
observed greater frequencies of DN andCD8+ NKT cells express-
ing CCR1, CCR2, CCR5, CCR6, CXCR6, and the integrin CD49a,
while CCR4 was expressed by a greater proportion of CD4+ NKT
cells (4, 87, 89, 116, 138). The frequency of circulating NKT
cells that express CCR8, a skin homing receptor expressed on the
majority of human T cells in healthy skin (139), ranges from 11 to
55% (140). Adhesion molecules such as CLA, CD62L, and α4β7-
integrin are present on blood NKT cells to varying levels, with few
CLA+ NKT cells (6–19%), or CD62L+ NKT cells (11–24%), and
a larger proportion expressing α4β7 (30–75%) (4, 87). However,
the co-expression of specific adhesion molecules and chemokine
receptors on NKT cells is required for homing into certain tissues.
The frequency of NKT cells expressing both CD62L and CCR7 is
much lower than the fraction of cells expressing either receptor
alone (87). This is likely to explain the low frequency of NKT cells
in peripheral lymph nodes. The identification of distinct NKT cell
subsets that exhibit differential cytokine production and unique
patterns of homing receptors suggests that different NKT cell
subsets can be targeted to different tissues or sites of inflammation.
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Mouse NKT Cells
Mouse NKT cells display significant differences in their
chemokine receptor profiles and responsiveness to chemotactic
ligands compared to human blood NKT cells. A majority of
splenic mouse NKT cells express the receptors CCR9, CXCR3,
CXCR4, and CXCR6 (88, 98), and TCRβ+NK1.1+ cells in Vα14
transgenic mice have elevated surface expression of CCR2, CCR5,
and CCR9 (141). In contrast to human blood NKT cells, mouse
blood, liver, spleen, and bone marrow NKT cells lack chemotactic
responsiveness to ligands for CCR1, CCR2, CCR5, and CCR6
(88). Mouse NKT cells exhibited robust migration to the CXCR3
ligand monokine induced by gamma interferon (MIG; CXCL9)
and the CXCR4 ligand stromal cell-derived factor 1 (SDF-1;
CXCL12), while the CXCR6 ligand, CXCL16, only induced
modest migration of NKT cells despite a large proportion of these
cells expressing CXCR6 (Table 2) (88). This suggests that NKT
cell responsiveness to CXCL16 and other chemokines is regulated.
Consistent with this, responsiveness of CD8+ T cells to CXCL16
is dependent on activation (86), and increased chemotactic
responsiveness to CXCL16 was observed in thymic NKT cells
(91). Other tissue-specific differences among NKT cell subsets in
terms of their chemokine receptor expression patterns or their
chemotactic activity include the findings that a subset of NKT
cells in the spleen, bone marrow, and blood, but not the liver,
were responsive to the CCR7 ligand secondary lymphoid-tissue
chemokine (SLC; CCL21), while a subset of CXCR5+ NKT cells
were only present in the spleen and migrated in response to the
CXCR5 ligand B cell-attracting chemokine 1 (BCA-1; CXCL13)
(88). Ligands for CCR4 could mobilize lung NKT cells into the
airways (108), but did not elicit chemotaxis of NKT cells derived
from the spleen, liver, bone marrow, or blood (88), suggesting
differences in CCR4 expression or regulation. Similarly, NKT
cells in skin and peripheral lymph nodes express CCR6 and
migrate in response to the ligand macrophage inflammatory

protein 3α (MIP-3α; CCL20) (54), while spleen, liver, bone
marrow, and blood NKT cells do not (88). As CCR6 expression
on peripheral lymph node NKT cells correlates with a NKT-17
transcription profile, it will be interesting to correlate NKT cell
localization and homing receptor expression in other tissues with
the transcription factor expression patterns that have recently
been used to classify NKT cell subsets.

Differential chemokine receptor expression on distinct NKT
cell subsets suggests the potential to regulate homing to different
tissue sites. However, the lack of functional chemotactic responses
to many chemokine ligands suggests that chemokine receptor
signaling is altered or regulated. Rather than contributing to tissue
localization, some chemokines may play important roles in regu-
lating NKT cell survival or effector functions. There is currently
little known about the chemokine receptor profiles on activated
NKT cells in comparison to resting NKT cells. In vitro activation
of human NKT cells with α-GalCer upregulated CCR6 protein
expression onDNNKTcells relative toCD4+ NKTcells, while the
CD8+ NKT cell subset displayed increased mRNA for CX3CR1
(142). Whether these changes mediate alterations in NKT cell
localization and/or activity remain to be seen.

NKT Cell Homing and Maturation

During the developmental progression of thymocytes from imma-
ture DN precursors through the CD4+CD8+ double positive
(DP) stage to mature conventional single positive cells, a subset
of chemokine receptors regulate cellular trafficking and position-
ing through the cortex (CXCR4), subcapsular zone (CCR9), and
medulla (CCR4, CCR7) (143–146). It is unclear whether posi-
tioning is similar during NKT cell development, as these cells are
selected via DP thymocytes rather than thymic stromal cells (68,
147). However, while CCR4 is not expressed on thymic NKT cells,
CCR7 controls NKT cell development by enabling access to IL-15

TABLE 2 | Chemokine receptor expression and ligand responses on mouse NKT cells.

Receptor Expression (%)a Chemotactic responseb Reference

Spleen Liver Bone Marrow Blood Other

CCR1 n.d. − − − − (88)
CCR2 23 − − − − (88, 141)
CCR3 n.d. − − − − (88)
CCR4 n.d. − − − − Lung: ++ (88, 108)
CCR5 20–60 − − − − (88, 93, 141)
CCR6 PLN: 70–80 − − − − PLN: ++ (54, 88)
CCR7 Thymus: 15–60 + − + + (88)
CCR8 n.d. − (88)
CCR9 18–80 − (88, 98, 141)
CCR10 n.d. − (88)
CXCR2 n.d. − − − − (88)
CXCR3 80–96 ++ ++ ++ ++ (88)
CXCR4 55–58 + + ++ ++ (88)
CXCR5 Spleen: 35–38 + − − − (88)
CXCR6 92–94 + n.d. n.d. n.d. Thymus: + (88, 91)
CX3CR1 n.d. − − − − (88)
XCR1 n.d. − − − − (88)

aRange in reported frequency of receptor positive NKT cells.
bNet chemotactic migration: − (did not respond), + (<25%), and ++ (>25%).
n.d., not determined; PLN, peripheral lymph nodes.
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trans-presentation in the thymic medulla (148, 149). NKT cells
upregulate the chemokine receptor CXCR6 during/after positive
selection (91), which could also facilitate positioning within the
medulla where the ligand CXCL16 is expressed (86).

Interestingly, the NKT cell pool in the thymus contains both
“immature” NK1.1− and mature NK1.1+ subsets (150). The
expression of T-bet during maturation of NK1.1− NKT cells
induces the expression of CCR5 and CXCR3 (74). The inter-
action of CXCR3 with interferon-γ-induced protein 10 (IP-10;
CXCL10) expressed by medullary thymic epithelial cells retains
mature NK1.1+ NKT cells in the thymus as a long-lived resident
population (151) (Figure 1). However, it remains unclear what
role these retainedmatureNKT cellsmight playwithin the thymus
as they appear to be absent in humans (112), and conventional T
cell development is unaffected in NKT-cell deficient (CD1d−/−)
mice (152).

We have shown that NKT cells begin expressing high levels of
CXCR6 in the thymus during the transition from CD4+CD8+
NKT cells to CD4+ andDNNKT cells following positive selection
(91). CXCR6-deficiency does not affect thymic NKT cell develop-
ment, but CXCR6−/− mice exhibited a defect in the accumulation
of mature CD1d-restricted NK1.1+ NKT cells in the periphery.
Similarly, treatment of mice with a blocking antibody against
CXCL16 did not inhibit accumulation of NK1.1− recent thymic
emigrants in the liver, but led to a defect in the accumulation
of mature NK1.1+ NKT cells (91). These data point to a poten-
tial role for CXCR6 and CXCL16 in mediating maturation of
NK1.1− recent emigrant NKT cells, and retention and/or survival
of mature NKT cells in the liver. A role for CXCR6 in retention
is supported by the redistribution of NKT cells to the bone mar-
row in CXCR6−/− mice (91), while others have also implicated
CXCR6 in NKT cell survival (79, 90).

CXCR6−/− mice also exhibited impaired cytokine production
by liver and spleen NKT cells following activation with α-GalCer

FIGURE 1 | Chemokine receptors involved in tissue-dependent NKT
cell homing. Following their development in the thymus, NKT cells emigrate
to peripheral tissues (including liver, spleen, lung, bone marrow, lymph nodes,
skin, and the peritoneum) where their accumulation and/or retention is
regulated by adhesion molecules and chemokine–chemokine receptor
interactions. Chemokine receptors and adhesion molecules associated with
NKT cell redistribution within these tissues are indicated.

(2, 91). It is likely that CXCR6 delivers co-stimulatory signals to
NKT cells as CXCL16 is expressed as a transmembrane protein
on antigen-presenting cells (86, 153), and DCs from CXCL16−/−

mice are impaired in their ability to stimulate IFN-γ production
from wild-type NKT cells (92). A reduction in IL-4 production
by CXCR6−/− NKT cells results from decreases in preformed
IL-4 mRNA transcripts (91). Therefore, CXCR6 is critical for
normal NKT cell development and function in addition to NKT
cell homing and homeostasis. In addition to NKT cells, CXCR6
plays a role in regulating cytokine polarization in conventional T
cell subsets. CXCR6 expression defines polarized subsets of Th1
and Th17 effector T cells in vivo (154, 155), and T cells from
CXCR6−/− mice exhibit impaired IFN-γ and IL-17 production in
response to antigen restimulation in vitro (156).

Reporter mice in which the Cxcr6 coding region was replaced
with green fluorescent protein (Cxcr6gfp/+) have been used to
show that liver NKT cells are localized within the vasculature,
crawling along the luminal surface of liver sinusoids. Interestingly,
although CXCR6-deficiency resulted in a significant reduction
in NKT cell accumulation within the liver, it did not alter the
crawling behavior of hepatic NKT cells (90), suggesting that other
signals contribute to this behavior. The αLβ2-integrin (LFA-1)
also appears to be important for the accumulation or retention of
NKT cells within the liver, as mice deficient in LFA-1 have signif-
icantly reduced numbers of liver NKT cells (157, 158). Moreover,
blockade of LFA-1 and intercellular adhesion molecule 1 (ICAM-
1) interactions resulted in a marked reduction in hepatic NKT
cell numbers with a concomitant increase in NKT cell frequency
within the peripheral blood (110).

Similar to the liver, NKT cells accumulate in the lung via
CXCR6 (91), and reside as an intravascular population (108,
110). This strategic positioning may facilitate sensing of airborne
antigens or infection as airway exposure to glycolipids or micro-
bial cell wall components induced accumulation of NKT cells
in the lung interstitium and bronchoalveolar space (108). This
rapid redistribution of NKT cells preceded local expansion of the
intravascular cells and did not appear to involve recruitment of
NKT cells from the periphery. Multiple chemokines were induced
in the lung after exposure to airborne NKT cell ligands (108),
including known NKT cell attractants such as thymus and acti-
vation regulated chemokine (TARC; CCL17), MIG/CXCL9, and
BCA-1/CXCL13 (88, 89, 159). It was suggested that CCR4 may be
important in regulating NKT cell redistribution in the lung, since
aerosolized delivery of exogenous TARC/CCL17 was sufficient to
drive extravasation of NKT cells into the lung parenchyma (108).
These findings are consistent with previous work demonstrating
that CCR4 mediates localization of NKT cells to the airways
following aerosolized antigen challenge or delivery of α-GalCer
to the lungs (160).

In contrast to circulating naïve conventional T lymphocytes,
few NKT cells in mouse or human blood express both CD62L
and CCR7 (87, 88), which is consistent with the relative scarcity of
NKT cells within the lymph nodes. However, a subset of “imma-
ture” NK1.1− NKT cells exhibited chemotaxis in response to
CCR7 ligands in vitro (88). This was initially interpreted as a role
for CCR7 in mediating the exit of immature NKT cells from the
thymus, since chemotactic responsiveness to CCR7 ligands was
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not detected within mature NK1.1+ NKT cell subsets. However,
this is also consistent with observations that a small subset of
IL-17-generating NK1.1− NKT cells accumulates preferentially
within lymph nodes (3, 54). Within the lymph nodes, NKT cells
are highly motile and are located mainly in the interfollicular
region and in the medulla, but are absent in the paracortex where
most naïve conventional T cells reside (161). In contrast to this
in situ distribution under resting conditions, adoptively trans-
ferred NKT cells derived from the liver, spleen, or lymph nodes
of TCR transgenic mice localized primarily to the lymph node
paracortex (162). While the basis for these distinct distribution
patterns was not investigated, it is possible that alterations in
homing properties were induced by the manipulations involved
in isolation, purification, and transfer of NKT cells.

Natural killer T cell populations resident in peripheral lymph
nodes and skin exhibit an NK1.1−CD4− phenotype, associated
with expression of the retinoic acid receptor-related orphan recep-
tor γτ (RORγτ) transcription factor, and generate IL-17 follow-
ing activation (3, 54, 163, 164). Similar to Th17 cells, IL-17-
producing NKT cells within the peripheral lymph nodes and skin
in mice express CCR6 and migrate in response to the ligand MIP-
3α/CCL20 (54), which has been shown to be involved in the
recruitment of pathogenic Th17 cells to inflammatory sites in
models of autoimmunity (165, 166). While it is unclear whether
NKT-17 cells in the skin are distinct from those in the periph-
eral lymph nodes, it is thought that these cells are recruited via
CCR6 and retained at epithelial sites by interactions between
the αE-integrin (CD103) and E-cadherin (54). An NK1.1− NKT
cell population that produces IL-17 was also identified within
the lung and shown to contribute to airway neutrophilia upon
activation (56). While it is suggested that the NKT-17 lineage
develops in the thymus of mice (55, 164), human and murine
NKT cells can be differentiated into IL-17-producing cells in
the presence of proinflammatory cytokines, such as IL-1β and
IL-23, along with transforming growth factor-β (TGF-β) (167,
168). Furthermore, both CCR6+ and CCR6− NKT cells from
human blood contained cells that could produce IL-17 (167).
This suggests plasticity in NKT cell populations, with the abil-
ity to be reprogramed in response to factors in the local tissue
environment.

A subset of NKT cells in the spleen, but not in other tissues,
expresses CXCR5 and actively migrates in response to BCA-
1/CXCL13 (88), a chemokine that mediates homing to B cell
zones in lymphoid tissues (169–172). Subsequent studies demon-
strated that NKTFH cells (CXCR5+PD-1hi) could provide cognate
help to B cells, leading to the formation of antibody-producing
plasma cells (65, 129, 173, 174). In contrast to the intravascular
localization of NKT cells in the liver and lungs (90, 110), NKT
cells in the spleen are widely distributed under basal conditions,
dispersed throughout the red and white pulp (175), the periarteri-
olar lymphoid sheath (110), the marginal zone (176), and occa-
sionally in close proximity to the vasculature (177). Exogenous
glycolipid antigens or infection with Streptococcus pneumoniae
induced rapid accumulation and immobilization of splenic NKT
cells in close proximity to marginal zone DCs and macrophages
(175, 176). Importantly, the number of splenic CD1d-tetramer+
NKT cells were not significantly altered, suggesting that the accu-
mulation in these areas of the spleen is due to redistribution

and not enhanced recruitment of NKT cells from the peripheral
blood (175).

Role of NKT Cells in Microbial Host
Defense

Many studies have implicated roles for NKT cells in the
immune responses elicited by microbial pathogens (6, 178–
180). NKT cells respond to a range of infectious organ-
isms through the recognition of microbial lipids presented via
CD1d+ antigen presenting cells (181–187). For example, α-
galactosyldiacylglycerol from Borrelia burgdorferi (the causative
agent of Lyme disease) (185), lipophosphoglycan from Leishma-
nia donovani (188), α-glucosyldiacylglycerol from S. pneumoniae
(189), α-glucuronosylceramide and α-galacturonosylceramide
from Sphingomonas species (182–185), and a cholesteryl α-
glucoside from Helicobacter pylori (186) are all recognized by the
invariant TCR of NKT cells within the context of CD1d.

However, NKT cell activation is not restricted to microbes that
contain lipid antigens recognized directly by the Vα14–Jα18 TCR
on iNKT cells. Other microbial products stimulate antigen pre-
senting cells via pattern recognition receptors (TLRs, NOD-like
receptors, etc.), causing enhanced accumulation of weak self-lipid
antigens and the production of NKT cell-stimulating cytokines
(IL-12, IL-18, and type I IFNs) (46, 184, 190–193). Endogenous
lipid ligands induceweak signaling through theNKTcell TCR that
is not sufficient for full NKT cell activation, but primes NKT cells
to produce IFN-γ upon exposure to the cytokines IL-12 and IL-18
(194). Moreover, there is evidence that CD1d-presented antigens
may not be required and IL-12, IL-18, or type I IFNs alone or in
combination may be sufficient to drive NKT cell activation and
IFN-γ production (193, 195).

The mode of activation may have implications for NKT cell
localization and effector functions. In vitro, NKT cells form sta-
ble conjugates with α-GalCer-pulsed DCs and subsequently lose
motility, whereas NKT cells incubated withDCs in the presence of
exogenous IL-12 and IL-18, or LPS-treated DCs, exhibit unaltered
migration patterns (194). Consistent with this, NKT cell activa-
tion through intravenous delivery of exogenous glycolipid caused
CD1d-dependent NKT cell arrest within liver sinusoids (90, 196)
and induced rapid accumulation of NKT cells in the marginal
zone of the spleen (175, 176). In contrast, while IL-12 and IL-
18 treatment induced CD1d-independent arrest in liver sinusoids
(196), these cytokines did not induce NKT cell redistribution to
the marginal zone within the spleen (175). This suggests a role for
CD1d engagement and cell–cell interactions in regulating the spe-
cific localization and redistribution of NKT cells, while cytokine
stimulated NKT cells likely adhere to local integrin ligands in
response to inside out signaling. There could also be differences
in the chemotactic signals and localization gradients elicited by
antigenic versus cytokine stimuli.

NKT Cells in Bacterial Infections

Borrelia burgdorferi
Lyme disease is caused by B. burgdorferi, a bacterial spirochete
that generates the NKT cell-stimulating glycolipid, α-
galactosyldiacylglycerol (185). NKT cell-deficient mice
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(CD1d−/− and Jα18−/−) exhibit increased bacterial burden
when infected with B. burgdorferi (197, 198). Under homeostatic
conditions, NKT cells actively crawl within hepatic sinusoids
(90). However, in mice systemically infected with B. burgdorferi,
the majority (~80%) of sinusoidal NKT cells arrested and formed
clusters in stable contact with B. burgdorferi-containing Kupffer
cells (197). Interestingly, antibody blockade of either CXCR3
or CD1d inhibited NKT cell arrest and cluster formation (197).
Kupffer cells release substantial amounts of MIG/CXCL9 early
following infection with B. burgdorferi (197), suggesting that a
chemotactic gradient facilitates recruitment and interaction of
CXCR3+ NKT cells with CD1d+ Kupffer cells. This response
reflected a redistribution of hepatic NKT cells as there was little
recruitment of additional NKT cells to the liver.

Intriguingly, the most prominent phenotype in B. burgdorferi-
infected NKT cell-deficient mice was a greater abundance of
bacteria in the joints (197, 198). This suggests that NKT cells
play a role in limiting the emigration of B. burgdorferi out of
the vasculature in Lyme disease-associated arthritis. In contrast
to the intravascular distribution and patrolling behavior of NKT
cells in the liver, Lee et al. (199) found that NKT cells in the
joint were distributed throughout the extravascular tissue with
the majority remaining stationary and in close contact with the
blood vessels. Following B. burgdorferi infection, the spirochetes
were found to adhere to the inner wall of joint blood vessels and
attempt to extravasate into the tissue. Extravascular NKT cells
in the vicinity of the adherent pathogen increased their crawling
activity, suggesting the release and recognition of pathogen- or
host-derived chemotactic factors, possibly complement-derived
anaphylatoxins (199). Moreover, NKT cells played a critical role
in clearance of B. burgdorferi from the joint tissue via direct
granzyme-dependent killing (199). In contrast to the CD1d-
dependent responses to B. burgdorferi in the liver, NKT cell-
mediated pathogen recognition and killing activity in the joint
was not dependent on CD1d interactions. This study highlights
the importance of NKT cell positioning with respect to their anti-
microbial function and identifies a functionally unique subset of
bactericidal NKT cells in the joint, since liver and spleen NKT
cells were unable to directly recognize and kill B. burgdorferi.
Interestingly, NKT cells were found to be present in the normal
joint under homeostatic conditions (199), and infection with B.
burgdorferi did not result in enhanced accumulation of NKT cells
within the joints in mice (198).

Extravascular NKT cells have also been detected in knee joints
of B. burgdorferi infected patients (199, 200). Although there are
fewer NKT cells in human joints compared to mice, synovial fluid
from patients with osteoarthritis, rheumatoid arthritis, and Lyme
arthritis contained increased numbers of activatedNKT cells (199,
200). It is unclear if this represents redistribution or expansion
of local NKT cells or recruitment of NKT cells from other sites.
While this appears to contrast with the lack of increased NKT
cell accumulation in mice with Lyme borreliosis, it could result
from differences in the time course of disease or differences in the
precise compartment within the joint from which samples were
collected. Lee et al. (199) demonstrated that NKT cells were not
uniformly distributed throughout the joint but rather were found
predominantly at the joint surface, outside of the joint capsule. The

increased number of NKT cells detected in synovial fluid samples
fromarthritis patients could represent a redistribution of extravas-
cular joint-resident NKT cells into the joint capsule, whichmay be
promoted by the presence of B. burgdorferi within synovial fluid.
Consistent with this, Katchar et al. (200) observed a significantly
higher proportion of NKT cells in the synovial fluid of patients
with antibiotic-responsive Lyme arthritis (B. burgdorferi present
in joint fluids in all patient samples) compared to the nearly
undetectable levels ofNKT cells in thosewith antibiotic-refractory
Lyme arthritis (10 of 15 patients lacked detectableB. burgdorferi in
joint fluids). T cells and NK cells were detected at similar levels in
the synovial fluid of both patient groups, further suggesting that
NKT cells play a key role in host defense against B. burgdorferi,
and their absence may contribute to excessive inflammation and
immune dysregulation in the joints of antibiotic-refractory Lyme
arthritis patients.

Chlamydia
Chlamydia species are obligate intracellular pathogens that can
cause numerous disease states in humans, including lung infec-
tion (201), gastrointestinal infection (202), urogenital infection
(203), and reactive arthritis (204). Using an animal model of
C. trachomatis-induced arthritis, Bharhani et al. (205) demon-
strated that NKT cells play a role in ameliorating joint inflamma-
tion. Mice deficient in NKT cells (CD1d−/−) exhibited enhanced
arthritis severity, while α-GalCer treatment of C. trachomatis-
infected wild-type mice increased the accumulation of NKT cells
within synovial tissues, reduced bacterial load, suppressed expres-
sion of inflammatory chemokines [macrophage inflammatory
protein-2 (MIP-2) and IP-10/CXCL10], and decreased infiltration
of inflammatory cells into the inflamed joint. Moreover, while
Bharhani et al. (205) could not detect NKT cells in synovial tissues
of control mice, synovial NKT cell populations were detected inC.
trachomatis-infected mice, suggesting active recruitment of NKT
cells to inflamed joints in these mice. However, since others have
identifiedNKT cells in the joints of controlmice (199), it is unclear
whether the increased proportion of synovial NKT cells following
α-GalCer treatment of C. trachomatis-infected mice was due to
further recruitment of NKT cells, or resulted from local NKT cell
expansion.

Natural killer T cells have been shown to respond rapidly
to infection and regulate microbial immunity in response to C.
muridarum infections in the lung and genital tract of mice (206,
207), where treatment with α-GalCer enhances IFN-γ produc-
tion to increase host resistance (207). Jiang et al. (208) reported
elevations in bacterial burden and inflammatory cell infiltrate in
the genital tract of CXCR5−/− mice infected with C. muridarum.
While CXCR5-deficiency did not alter NKT cell accumulation
in the genital tract, CXCR5−/− mice exhibited increased NKT
cell activation in vitro and in vivo in response to C. muridarum
infection. Enhanced production of IFN-γ by NKT cells from
CXCR5−/− mice suggests a possible role for CXCR5 in regulating
the activity of NKT cells. However, enhanced NKT cell activity
in CXCR5−/− mice did not provide greater protection against
C. muridarum genital tract infection in vivo (208), implicating
important roles for other CXCR5+ immune cells in mediating
protective responses.
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Streptococci/Cryptococci
CD1d-dependent activation of NKT cells in response to α-
glucosyldiacylglycerol has been demonstrated in mice infected
with S. pneumoniae and group B Streptococcus (causative agents of
neonatal infections in humans) (189). This supports earlier studies
implicating a critical role for NKT cells in early host defense
against S. pneumoniae infection via their production of IFN-γ and
recruitment of neutrophils to infected lungs (25, 209). Consistent
with a TCR-dependent activation mode, NKT cell activation and
cytokine production in response to S. pneumoniae was associated
with increased NKT cell GFP expression in Nur77-GFP mice, a
reporter strain that upregulates GFP in response to TCR-mediated
stimuli, but not TCR-independent inflammatory stimuli (210,
211). The frequency of lungNKTcells increased following S. pneu-
moniae infection, and following intratracheal infection with the
fungal pathogenCryptococcus neoformans (25, 212). In both cases,
the increased NKT cell frequency may be dependent upon CCR2
and monocyte chemotactic protein 1 (MCP-1)/CCL2 mediated
recruitment since the frequency of NKT cells was significantly
reduced in the lungs of infected CCL2−/− mice compared to
wild-type mice (25, 212). However, further studies are required
to elucidate the relative contributions of NKT cell expansion and
mobilization from lung parenchyma versus the recruitment of
circulating NKT cells from the blood.

Natural killer T cells were found to promote antibody iso-
type switch, affinity maturation, and long-term memory B cell
responses against pneumococcal capsular polysaccharides follow-
ing delivery of a liposome nanoparticle vaccine containing S.
pneumoniae capsular polysaccharide and a NKT cell-stimulating
lipid (213). Antibody responses elicited by the vaccine were
dependent upon cognate CD1d-restricted interactions between
NKT cells and B cells, a process that might be predicted to require
direct B cell help provided by NKTFH cells. However, very little
induction of CXCR5+PD-1hi NKTFH cells was observed in immu-
nized mice, suggesting a mostly extrafollicular response. These
findings suggest that the inclusion ofNKTcell ligands inmicrobial
antigen-presenting liposomal particlesmay represent a simple and
effective alternative to the conjugate vaccines currently used to
elicit strong cognate help to B cells to promote protective and long
lasting antibody responses.

Bacterial Sepsis
Chemokine receptor-mediated regulation of lymphocyte activa-
tion and homing has also been described during sepsis. In a
mouse model of sepsis caused by cecal ligation and puncture
(CLP), Herzig et al. (214) observed a CXCR3-dependent increase
in peritoneal NK cell and T cell accumulation, likely due to
increased concentrations of the chemokines MIG/CXCL9 and IP-
10/CXCL10 in the peritoneal cavity. In contrast, CLP did not
result in an increased accumulation of NKT cells within the peri-
toneal cavity, but did decrease CXCR3 expression on NKT cells
in the liver. The authors suggested this could be due to NKT cells
becoming activated during CLP, causing the internalization and
down-regulation of CXCR3 (214). Interestingly, the peritoneal
cavity of CXCR3−/− mice was nearly devoid of NKT cells prior
to and following induction of CLP, while CXCR3-deficiency had
no impact on the numbers of NKT cells in the spleen (214). This

suggests CXCR3 is important for the accumulation of NKT cells
within the peritoneum under normal physiological conditions.

The anaphylatoxins (C3a and C5a), generated during comple-
ment activation, are chemotactic molecules that may also influ-
ence NKT cell localization and activation. NKT cells express high
levels of mRNA, but not protein, for C5a receptor (C5aR) under
homeostatic conditions (215). However, upon Escherichia coli-
induced sepsis in mice, C5aR protein is rapidly expressed on
splenic NKT cells (215). Interestingly, NKT cells from C5aR−/−

mice infected with E. coli expressed lower levels of the acti-
vation marker CD69 and had reduced secretion of IFN-γ and
TNF, suggesting that C5aR signaling regulates the activation of
NKT cells in this model (215). Cognate C5a/C5aR interactions
on NKT cells were also identified as a critical factor for NKT
cell recruitment during sepsis based on the observations that
C5aR−/− mice hadmarkedly reduced numbers ofNKT cells in the
spleen and peritoneal cavity following infection (215). Further-
more, E. coli infection induced greater accumulation of C5aR+

versus C5aR− NKT cells in the spleen of mixed bone marrow
chimeras (215). The absence of C5aR and NKT cells were both
associated with increased survival following infection, suggest-
ing NKT cells contribute to the overwhelming inflammation in
sepsis.

Mycobacterium
Activation of NKT cells via α-GalCer has been shown to con-
tribute to protection against M. tuberculosis in mice (216). More-
over, adoptive transfer of NKT cells decreased mycobacterial
burden in the lung and spleen, and NKT cells were able to
inhibit intracellular replication of M. tuberculosis within infected
macrophages in vitro (217). CXCR6 on lung T cells has been
proposed as a marker for protective immunity to M. tuberculosis
after intranasal immunization in mice, with CXCR6 and CXCL16
playing a critical role inmediating the localization of T cells within
the airways (218). It is possible that the CXCR6–CXCL16 axis is
also important for NKT cell localization in these tissues as well,
since lung NKT cells are reduced under baseline conditions in
CXCR6−/− mice (91).

Phosphatidylinositol-mannosides (PIMs) are phospholipid
antigens located in the membranes of mycobacteria, some of
which activate human and murine NKT cells via CD1d (181).
Despite its inability to trigger expansion of NKT cells (181), PIM2
causes recruitment of NKT cells to the skin upon subcutaneous
injection (219). Although this recruitment is TCR-independent,
the mechanism is unclear. Intratracheal infection of mice withM.
bovis bacillus Calmette-Guérin (BCG) induced NKT cell mobi-
lization into the airways, which was profoundly impaired in
CCR6−/− mice (220). In this study, lung parenchymal NKT cells
inM. bovis BCG-infected wild-type mice were found to have high
expression of CCR6, likely imbuing them with responsiveness to
the high levels of MIP-3α/CCL20 induced in the lungs by M.
bovis BCG infection (220). The number of NKT cells in the lung
parenchyma did not differ betweenwild-type andCCR6−/− mice,
suggesting that the >90% reduction in mobilization of NKT cells
to the luminal airways in M. bovis BCG-infected CCR6−/− mice
was due to a requirement for CCR6 in the airway infiltration but
not lung localization of NKT cells (220).
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NKT Cells in Viral Infections

Hepatitis Viruses
In patients with chronic hepatitis B virus (HBV) infections, the
frequency of circulating CD4− NKT cells is lower than that in
asymptomatic carriers or healthy controls, but infection did not
impair the ability of peripheral NKT cells to produce IFN-γ or IL-
4 in response to activation with either α-GalCer or the mitogen
phorbol 12-myristate 13-acetate (PMA) (221). Interestingly, the
frequency of NKT cells increased significantly following antiviral
therapy (221). However, it is unclear whether this reflects changes
in proliferation, survival, or homing of NKT cells.

Although there has not been an exhaustive examination of
chemokine receptors on NKT cells in patients infected with HBV,
the frequency of NKT cells expressing CCR5 and CCR6 was
comparable between chronic HBV patients and healthy controls
(221). The migratory responses of NKT cells from chronic HBV
patients to CCR5 and CCR6 ligands were either very modest
(RANTES/CCL5) or not detectable (MIP-3α/CCL20) compared
to medium alone (221). However, the responses in this study were
not compared to chemotactic responses of NKT cells from healthy
controls.

A wide spectrum of clinical disease can occur following
HBV infection, ranging from an asymptomatic carrier state,
to self-limiting acute disease, chronic hepatitis, cirrhosis, liver
failure, and hepatocellular carcinoma (222). A study in India
reported a significantly increased frequency of circulating NKT
cells (CD3+CD56+CD16+) and higher levels of MIP-1β/CCL4
among patients with acute HBV infection, but not HBV-induced
liver failure, compared to healthy controls (223). However,
a separate study reported a decline in circulating NKT cell
(CD3+CD56+) frequencies in acute HBV patients in the first few
weeks following hospital admission, which the authors suggested
could be due to trafficking of NKT cells to the liver where they
play a role in local HBV immunity (224). These studies need to
be interpreted cautiously as CD3+CD56+/CD16+ populations
exhibit only partial overlap with the iNKT cell population.

Interestingly, Inoue et al. (225) reported higher surface expres-
sion (mean fluorescence intensity) of CXCR3 on circulating NKT
cells isolated from patients with chronic hepatitis C virus (HCV)
infection, while expression of CCR4, CCR7, or CD62L did not
differ compared to healthy donors. The enhanced expression of
CXCR3 may facilitate the trafficking of NKT cells to or within
the liver due to the increased hepatic levels of MIG/CXCL9
and IP-10/CXCL10 during HCV infection (226, 227). Whether
increased numbers of hepatic NKT cells during chronic HCV
infection would be beneficial is unclear since NKT cells from
HCV+ patients produce more IL-13 and other Th2 cytokines
(225), which could contribute to liver fibrosis during chronic viral
hepatitis (228).

Dengue Virus
A recent study examining the role of NKT cells in the pathogen-
esis of dengue virus infection in humans found that peripheral
NKT cell numbers were not altered over the course of dengue
virus infection (229). However, NKT cells displayed an activated
phenotype that correlated with increased disease severity (229).

Similarly, NKT cells exhibit an activated phenotype and appear
to play a detrimental role during dengue infection in mice (230).
NKT cell-deficient mice (Jα18−/−) exhibited resistance to lethal
infection, which was associated with decreased systemic and
local inflammatory responses, reduced production of inflamma-
tory cytokines (IL-6, IFN-γ, and IL-12p40), and reduced levels
of CXCL1, a chemokine known to rapidly mobilize and acti-
vate neutrophils (230). In wild-type mice, mast cells respond-
ing to dengue virus infection upregulated chemokine expression
(RANTES/CCL5, SDF-1/CXCL12, and fractalkine/CX3CL1), and
mediated recruitment of NKT cells (CD3+NK1.1+) into the skin
at sites of dengue virus infection (231). Taken together, these data
suggest NKT cells play a critical role in the pathogenesis of dengue
disease.

Influenza Virus
Influenza virus is a respiratory pathogen that can be the cause
of serious airway disease, particularly among children and the
elderly. The number of circulating NKT cells were reduced in
patients with severe cases of pandemic H1N1 influenza infection
(232), but it is unclear whether this impacted disease progression.
In rodent models, NKT cells play protective roles in influenza
infection through multiple mechanisms. They have been reported
to suppress excessivemonocytic infiltrate (233), influence the gen-
eration of virus-specific CD8+ T cell responses (234), enhance the
cytolytic activities of NK cells and virus-specific CD8+ T cells (via
IFN-γ production) (235), and selectively lyse virally infected cells
through a CD1d-dependentmechanism (233). Interestingly, NKT
cells were also found to reduce the expansion and immunosup-
pressive activity of influenza-inducedmyeloid-derived suppressor
cells (236), an immune modulatory activity of NKT cells that has
also been shown in cancer models (237).

Much of the research on NKT cells in influenza infection
focuses on the potential for NKT cell-stimulating glycolipid ago-
nists such as α-GalCer to act as vaccine adjuvants. Several studies
have shown that intranasal immunization of inactivated influenza
or a live attenuated influenza vaccine, together with α-GalCer
or its derivatives, induced high levels of influenza-specific sys-
temic IgG and mucosal IgA, influenza-specific CD8+ T cell
memory responses, and complete protection against influenza
viral challenge in mice (238–242). Intranasal administration of
α-GalCer was shown to increase the NKT cell populations in
nasopharyngeal-associated lymphoid tissue (NALT) and regional
cervical lymph nodes, but not the spleen, indicating that nasal
administration of α-GalCer influences the local NKT cell pop-
ulation size without altering the systemic NKT cell population
(242). Interestingly, expression of CXCL16 was upregulated in
NALT and cervical lymph nodes following vaccination. NKT cell
accumulation within these tissues and influenza-specific mucosal
IgA levels were reduced in CXCL16−/− mice (242). Therefore
CXCR6–CXCL16 interactions contribute to the increased popu-
lation of NKT cells following nasal influenza vaccination either by
regulating homing or expansion of these cells. It would be inter-
esting to determine whether influenza vaccination in conjunction
with intranasal α-GalCer administration also increases the NKT
cell population in the lung and/or airways, and if so, whether this
increase is also impaired in CXCL16−/− mice.
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Human Immunodeficiency Virus
Natural killer T cells are highly susceptible to infection with HIV-
1 due to the expression of multiple co-receptors for viral fusion
and entry, including CD4 and the chemokine receptors CCR5,
CXCR4, and CXCR6 (138, 243–248). Indeed, NKT cell frequency
is reduced in patients with HIV-1 infection, with a preferential
depletion of the CD4+ NKT cell subset prior to depletion of
conventional CD4+ T cells (243, 248–250). Interestingly, the
frequency of CCR5+ NKT cells was higher in HIV-1+ patients,
while CXCR6+, CCR2+, and CCR7+ NKT cell frequencies were
reduced compared to healthy individuals (251, 252). Circulating
NKT cell populations have been shown to recover early following
effective antiretroviral therapy, but treatment failed to restore
CXCR6 or CCR2 expression on NKT cells (252). Some have spec-
ulated that the rapid recovery ofNKT cells after treatment is partly
due to NKT cell redistribution from tissue sites to the circulation,
a phenomenon that has been observed for conventional T cells in
HIV-1+ patients following therapy (253, 254).

In addition to influencing circulating NKT cell numbers, HIV-
1 infection also impairs the proliferative and cytokine-producing
capacities of persisting NKT cells in chronic HIV-1+ patients
(255, 256). However, the role of NKT cells in HIV-1 infection
remains unclear since some studies report no correlation between
NKT cell numbers and HIV disease progression (249), while oth-
ers have suggested an association between higher levels of CD4+
NKT cells and lower plasma viremia (243). NKT cell activation
with α-GalCer has shown promise as a vaccine adjuvant in animal
models when combined with delivery of HIV-1 DNA and peptide
antigens (257, 258), suggesting that NKT cells have the potential
to play important roles during HIV-1 infection.

Natural killer T cells from HIV-1+ patients expand in vitro
following treatment with IL-15 and IL-12 (251), and a combi-
nation of antiretroviral therapy with exogenous IL-2 promotes a
greater increase in circulating NKT cell numbers than standard
therapy alone (259). Therefore, the reduced peripheral NKT cell
population in HIV-1-infected individuals is likely due to a com-
bination of factors, which include direct HIV-1 infection of NKT
cells and subsequent cell death, tissue redistribution of NKT cells,
and impaired generation and/or responsiveness to cytokines that
promote NKT cell survival. A better understanding of the mech-
anisms contributing to NKT cell depletion in HIV-1+ patients
could lead to the development of new therapeutic strategies to
restore NKT cell numbers and lead to better clinical outcomes
following HIV-1 infection.

Conclusion and Outstanding Questions

Our understanding of the distinct phenotypic and functional
subsets of NKT cells continues to improve, allowing for clearer
interpretations of how NKT cells contribute to health and disease.
Under homeostatic conditions, NKT cells can be found in many
tissues throughout the body, and NKT cell accumulation within
specific sites can be linked to the expression of specific chemokine
receptors and adhesion molecules that mediate tissue homing,
retention, and/or survival (e.g., liver accumulation via CXCR6
and LFA-1). Upon activation, local NKT cell populations can
expand and use chemotactic signals to relocalize within a tissue.

However, in most cases, there is little or no evidence that NKT
cells are recruited to sites of inflammation from the blood or
other tissues. Despite their low numbers, NKT cells influence the
magnitude and polarization of immune responses in a wide array
of contexts ranging from antimicrobial and antitumor responses
to autoimmunity. However, many questions remain regarding the
roles of NKT cells in these conditions.

Patients with chronic microbial infection, autoimmune disor-
ders, and malignancies often have alterations in the number and
functional activity of NKT cells (7, 119, 122, 260, 261). Some have
speculated that reducedNKT cell numbers in the peripheral blood
of these patients are linked to NKT cell trafficking to diseased
tissue sites associated with these disorders (120, 224, 262–264).
However, reduced NKT cell numbers or other NKT cell defects in
many disease states may be associated with the standard therapies
used to treat the disease rather than the disease itself. For exam-
ple, reduced NKT cell frequencies were not observed in patients
with myelodysplastic syndrome or multiple myeloma prior to
treatment, but defects in peripheral NKT cells emerged following
initiation of standard therapy (265, 266). Inmost diseases inwhich
NKT cell numbers are affected, further investigation is required to
track whether alterations in NKT cell numbers are due to altered
trafficking or redistribution of NKT cells to various tissue sites.
This will require that studies examine patients multiple times over
the course of disease development and ideally include multiple
tissues and treatment-naïve groups, rather than only examining
patients on a single occasion after disease onset as most studies
have done to date. Doing so will allow clearer correlations to be
made between altered NKT cell numbers/function (i.e., altered
subset frequencies and cytokine production) and disease progres-
sion, and ultimately provide evidence as to whether NKT cell
defects are a cause or consequence of the disease process.

Under homeostatic conditions, NKT cells appear to be tissue-
resident populations and exhibit very little exchange with NKT
cells in the circulation, as evidenced by studies using parabi-
otic congenic mice. NKT cells in the blood in these pairs reach
almost equal (50%) chimerism, while those in the lung, liver,
spleen, lymph nodes, bone marrow, and other tissues did not
recirculate, with nearly all NKT cells in these tissues originating
from the host (59, 108, 110). In contrast, conventional CD4+
and CD8+ T cells, B cells, and NK cells rapidly recirculate and
equilibrated in these tissues (110). This poses interesting ques-
tions regarding NKT cell redistribution during microbial infec-
tion.Multiple studies described above have observed greater NKT
cell accumulation in affected tissues in a variety of infections.
However, in many studies, the authors have not distinguished
between the possibilities of NKT cell recruitment into the tissue
versus expansion and relocalization of tissue resident NKT cells.
Regardless, their accumulation at sites of infection ensures NKT
cells are exposed to potential activating stimuli, either directly
through specific recognition of microbial lipid antigens or indi-
rectly through self-glycolipid and cytokine stimulation. Intrigu-
ingly, NKT cells may not need to be present in an affected tissue
site in order to respond and subsequently influence the immune
response within the host. For example, liver NKT cells responding
directly to noradrenergic neurotransmitters were shown to release
anti-inflammatory cytokines that induced a state of immune
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suppression that rendered mice susceptible to bacterial infection
following ischemic cerebral stroke (47). Similarly, NKT cells are
activated in the liver during the induction of contact hypersensi-
tivity reactions (267). Therefore, a lack of NKT cell accumulation
within inflamed peripheral tissues during infection may not pre-
clude effective (or deleterious) antimicrobial immune responses
mediated by tissue-resident NKT cells at a distant site.

A number of NKT cell subsets have been described that exhibit
distinct phenotypes and functions in terms of surface marker
expression and cytokine profiles. For example, lymph node res-
ident CCR6+CD4−NK1.1− NKT cells described earlier express
the transcription factor RORγτ and produce IL-17 in response to
inflammatory signals (54). Unique transcriptional programs have
been identified for NKT-1, NKT-2, NKT-10, and NKT-17 subsets
of NKT cells within the thymus (52–58). Recent data reveal that
NKT cell lineage fate is regulated by lethal-7 (let-7) microRNAs
(miRNAs), which target Zbtb16 mRNA (encoding PLZF) to post-
transcriptionally regulate the expression of PLZF protein (268).
The expression of let-7miRNAswas dynamically regulated during
NKT cell development, with IL-15 and other stimuli present in
the thymicmedulla contributing to upregulated let-7miRNAs and
reduced levels of PLZF protein during NKT cell differentiation.

NKT cells with downregulated levels of PLZF differentiated into
IFN-γ-producing NKT-1 cells. Conversely, reduced expression of
let-7 miRNAs resulted in greater levels of PLZF protein and a
thymic bias toward NKT-2 and NKT-17 differentiation. However,
this bias was less evident in the peripheral tissues (liver, spleen,
and lymph nodes) of mice with reduced let-7 miRNAs (268),
suggesting the relative frequencies of NKT cell effector subsets
are influenced by differential migration and expansion of certain
NKT cell effector lineages within specific tissue microenviron-
ments. Nevertheless, it will be important to determine whether
different NKT cell subsets in vivo represent committed lineages
of cells with distinct homing receptors or if these subsets exhibit
plasticity and are able to adopt various functional roles depending
upon soluble and cell-associated signals received within a given
tissue microenvironment. Furthermore, a focused research effort
is needed to investigate the relative roles of distinct NKT cell
subsets during microbial infection.
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