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Complement is a complex innate immune surveillance system, playing a key role 
in defense against pathogens and in host homeostasis. The complement system 
is initiated by conformational changes in recognition molecular complexes upon 
sensing danger signals. The subsequent cascade of enzymatic reactions is tightly 
regulated to assure that complement is activated only at specific locations requiring 
defense against pathogens, thus avoiding host tissue damage. Here, we discuss 
the recent advances describing the molecular and structural basis of activation 
and regulation of the complement pathways and their implication on physiology 
and pathology. This article will review the mechanisms of activation of alternative, 
classical, and lectin pathways, the formation of C3 and C5 convertases, the action 
of anaphylatoxins, and the membrane-attack-complex. We will also discuss the 
importance of structure–function relationships using the example of atypical hemolytic 
uremic syndrome. Lastly, we will discuss the development and benefits of therapies 
using complement inhibitors.

Keywords: complement system proteins, complement regulatory proteins, structure–function relationships, 
anaphylatoxins, membrane- attack-complex, classical complement pathway, alternative complement pathway, 
endothelial cells

introduction

Complement is a central part of the innate immunity that serves as a first line of defense against 
foreign and altered host cells (1). The complement system is composed of plasma proteins pro-
duced mainly by the liver or membrane proteins expressed on cell surface. Complement operates 
in plasma, in tissues, or within cells (2). Complement proteins collaborate as a cascade to opsonize 
pathogens and induce a series of inflammatory responses helping immune cells to fight infection 
and maintain homeostasis. The complement system can be initiated depending on the context by 
three distinct pathways – classical (CP), lectin (LP), and alternative (AP), each leading to a common 
terminal pathway. In a healthy individual, the AP is permanently active at low levels to survey for 
presence of pathogens (Figure 1A). Healthy host cells are protected against complement attack and 
are resistant to persistent low-grade activation. The three pathways are activated on the surface of 
apoptotic cells, which are constantly generated within the body during normal cellular homeostasis 
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(Figure 1B). This complement activation is tightly regulated to 
eliminate dying cells without further activation of other innate 
or adaptive immune components. Complement is only fully 
activated in cases of pathogen infection. During an infection, 
complement leads to inflammation, opsonization, phagocytosis, 
and destruction of the pathogen and ultimately results in activa-
tion of the adaptive immune response (Figure 2). Both inefficient 
and over stimulation of complement can be detrimental for the 
host and are associated with increased susceptibility to infections 
or non-infectious diseases, including autoimmunity, chronic 
inflammation, thrombotic microangiopathy, graft rejection, and 
cancer.

In this review, we discuss recent advances in the molecular and 
structural basis of activation and regulation of the complement 
pathways followed by the discussion of one complement-mediated 
disease – atypical hemolytic uremic syndrome (aHUS) to illustrate 
how the knowledge of the structure–function relationships between 
complement proteins helps to understand aHUS physiopathology 
and aid in the development of targeted therapy. In the second 
part of this review, published in the same issue of Frontiers in 
Immunology, we provide a detailed review of the literature related 
to the role of the complement system in immunity (3).

Complement Activation During Normal 
Homeostasis and Pathogen infection

The central component of the complement system is C3. The 
activation of each of the three pathways (CP, LP, and AP) results 
in cleavage of inactive C3 protein into the functional fragments C3a 
and C3b. C3a is an inflammation mediator and C3b is an opsonin, 
which can bind covalently and tag any surface in the immediate 
proximity to the site of its generation.

FiguRe 1 | Complement activation in physiological conditions. (A) The 
alternative pathway is permanently active due to spontaneous transformation of 
bio-inactive molecule C3 to bioactive C3(H2O). This allows generation of C3b, 
which is rapidly inactivated by FH and FI in fluid phase or is covalently bound to 
the surface and then inactivated on host cells. (B) Classical and lectin pathway 

recognition molecules bind to apoptotic cells and together with C3b from the 
alternative pathway induce a low level of complement activation. Apoptotic 
cells are not lysed, but rapidly cleared by phagocytes in an immunologically 
silent manner. Host cells and plasma contain multiple regulatory proteins to 
assure that complement activation will be limited in physiological conditions.

Complement Tick-Over in the Alternative 
Pathway
In the plasma, during normal physiological conditions, the 
dominant active complement pathway is the AP (Figure  1A). 
The AP monitors for pathogen invasion by maintaining a low 
level of constitutive activation by a process known as tick-over 
(4). Tick-over is the spontaneous hydrolysis of a labile thioester 
bond, which converts C3 to a bioactive form C3(H2O) in the 
fluid phase (5). The rate of hydrolysis of C3 to C3(H2O) can be 
accelerated by interactions between C3 and a number of biologi-
cal and artificial interfaces, including gas bubbles, biomaterial 
surfaces, and lipid surfaces and complexes (6). Upon hydrolysis, 
the thioester domain (TED) of C3 undergoes a dramatic structural 
change that exposes a binding site for another member of the 
AP called Factor B (FB). The C3(H2O)-bound FB is then cleaved 
by a serine protease (SP) Factor D (FD) allowing formation of 
a fluid phase C3 convertase complex C3(H2O)Bb. C3(H2O)Bb 
is able to interact and cleave native C3 molecules to C3a and 
C3b (5, 7–11). During normal physiological conditions, this C3 
convertase constantly generates small amounts of C3b, which is 
able to bind covalently via its TED domain to any adjacent surface 
containing hydroxyl groups. Nevertheless, not all hydroxyl groups 
attract equally C3b (12). The -OH in the 6th position appears to 
be more reactive than the average -OH group in sugars. Therefore, 
the particular sugars composition of the pathogen surface will 
determine the efficacy of complement activation. C3b will bind 
covalently to a surface that is located within about 60 nm from 
the convertase, due to the fact that the half-life of the thioester 
in C3b is ≈60 μs with a poor attachment efficiency of 10% (13). 
On host cells, bound C3b molecules are rapidly inactivated 
by an army of membrane-expressed or fluid phase-recruited 
complement regulators (described in detail below). A tick-over 
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FiguRe 2 | Complement during infection with a pathogen. The 
permanent activity of the alternative pathway allows it to immediately 
identify pathogens that are not specifically protected against complement. 
Danger-associated molecular patterns on its surface of pathogens are 
recognized by C1q, MBL, and ficolins allowing classical and lectin pathway 
activation, C3 convertase, C4b2a generation, and C3 cleavage. 
Opsonization due to covalent binding of C3b to the target is accelerated 
by the amplification loop of the complement pathways. The effector 

functions resulting from this complement activation are: pathogen lysis by 
C5b-9 membrane attack complex, opsonization and phagocytosis of the 
pathogen, activation of host immune and non-immune cells by 
complement anaphylatoxins, inflammation, stimulation of an adaptive 
immune response, and antibody generation. Secreted antibodies will bind 
to the pathogen and create immune complexes that will be recognized by 
C1q and will activate the classical pathway. Altogether these mechanisms 
contribute to pathogen elimination.
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mechanism for spontaneous activation of the CP has also been 
suggested, but the molecular interactions of this process are not 
well understood (14).

Clearance of Apoptotic Cells
Apoptosis, programed cellular death, is a process of normal cel-
lular homeostasis and in healthy individuals everyday billions 
of cells die by this mechanism. Complement activation occurs 
on apoptotic cells with low levels of C3b deposition to facilitate 
their elimination without releasing danger signals, which could 
lead to further immune responses (15, 16) (Figure  1B). This 
complement activation occurs by membrane alterations and by 
decreased expression of complement regulators on the membrane 
of apoptotic compared to resting cells. The silent clearance of the 
apoptotic cells is assured by the binding of the initiators of the 
CP (C1q) and LP [Mannose-Binding Lectin (MBL) and ficolins]. 
These initiator proteins interact with receptors on phagocytic cells 
(immature dendritic cells or macrophages), which elicit immune 
tolerance and prevent immune responses toward self-antigens 
(17–20).

Pathogen elimination
On pathogens that lack specific regulators of complement, C3b 
interacts with FB and FD to form a surface-bound C3 convertase 
as part of the AP, which cleaves C3 into C3a and C3b. Maximum 
complement activation is achieved during pathogen recognition 
leading to a pro-inflammatory milieu, contributing to genera-
tion of an adaptive immune response and rapid elimination of 
the pathogen (Figure 2). Complement-derived anaphylatoxins 
have potent inflammatory mechanisms including recruitment 
of phagocytes to the site of infection and activation of leuko-
cytes, endothelial cells, or platelets. Upon activation, terminal 
complement components also have direct lytic capacity to kill 
pathogens.

The CP and LP have a critical role in pathogen recognition and 
initiation of the complement cascade. However, the AP assures 
more than 80% of the terminal complement activity during patho-
gen recognition (21). Additional AP C3 convertases are formed 
on the C3b molecules generated either by CP activation or the 
AP C3 convertases. This chain reaction amplifies opsonization 
of the target and increases generation of anaphylatoxins. This 
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amplification loop augments the effect of all pathways and is the 
heart of the complement cascade (22).

Structural Basis of Complement Activation 
and Regulation

Target Recognition and initiation of Complement 
Pathways
The CP and LP have clearly identified recognition molecules, C1q, 
MBL, and ficolins, which trigger each pathway only when and 
where it is necessary. The recognition event induces a structural 
change in the recognition molecule, which in turn induces the 
activation of enzymes able to cleave the subsequent molecules 
in the cascade and generate the central enzymatic complexes of 
complement, CP and AP C3 convertases. The AP lacks a traditional 
target recognition molecule as an initiator. However, several 
molecules, such as properdin and P-selectin, can recruit C3(H2O) 
and C3b to the cell surface and serve as local initiators of the AP.

Recognition Molecules of the Classical and 
Lectin Complement Pathways
Complement pathway and LP are triggered after interaction of 
a pattern-recognition molecule with the target structure. The 
recognition molecule of the CP, C1q, has an extra-hepatic origin 
and is produced mainly by immature dendritic cells, monocytes, 
and macrophages (23). It has a complex, described as a “bouquet 
of flowers” topology (Figure  3A), composed of 18 chains of 
three types (A, B, and C), forming six globular target recognition 
domains (gC1q) attached to a collagen-like region (CLR). Each 
gC1q domain carries a Ca2+ ion, which maintains domain stability 
and regulates the electrostatic field (24). C1q recognizes mostly 
charged patterns and can bind to more than 100 different target 
molecules, including IgG and IgM containing immune complexes 
and surface-bound pentraxins [C-reactive protein (CRP), pen-
traxin 3 (PTX-3)] (25). Therefore, CP can be activated in either an 
immune complex-dependent and -independent manner. Mapping 
of the target molecule-binding sites on gC1q by a site-directed 
mutagenesis, revealed that charged residues on the apex of the 
gC1q heterotrimer (with participation of all three chains), as well 
as, the side of the B-chain are crucial for binding to IgG, IgM, CRP, 
and PTX-3. These binding sites are not identical, but partially 
overlapping (24, 26–29). C1q recognizes pathogen-associated 
molecular patterns including lipopolysaccharide (LPS) (30) and 
bacterial porins (31). The gC1q domain also recognizes molecules, 
exposed on the surface of dying cells (32, 33), including phosphati-
dylserine (34, 35), double stranded DNA (36, 37), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) (38), annexins A2 and A5 
(39), and calreticulin (35, 40–42). The most well-characterized 
target recognition molecule of the LP is the MBL, which recognizes 
carbohydrates (43). MBL has a similar overall structure to C1q, 
but exists in multiple oligomeric forms (trimers, tetramers, and 
higher ordered oligomers) (Figure 3B). C1q and MBL associate 
in a Ca-dependent manner with SP complexes, consisting of C1r 
and C1s for the CP (44, 45) and MBL-associated serine proteases 
(MASP) for the LP (46, 47). In absence of Ca2+ ions (such as in 
plasma samples collected in EDTA), C1q and MBL cannot interact 
with C1r2C1s2 and MASPs, respectively and CP and LP activation 

is prevented. In the presence of Ca2+ ions, after activation, SPs 
cleave subsequent complement components C4 and C2. The result-
ing complex C4b2a is the C3 convertase for CP and LP. This C3 
convertase has enzymatic activity and is able to cleave the central 
complement component C3 to bioactive fragments C3a and C3b.

Mechanism of Activation of the Classical Pathway
Recent studies have shed light on the molecular mechanisms of 
activation of CP and LP. It has long been established that C1q 
requires one surface-bound IgM or several IgG molecules in 
close proximity in order to interact with several of its globular 
domains and to activate complement. However, the molecular 
mechanisms and the C1-antibody stoichiometry required for 
optimal activation remain poorly understood (48). IgM is a 
planar polymeric molecule (pentamer or hexamer), in which 
C1q-binding sites are hidden. A conformational change occurs 
upon binding to an antigen (staple conformation), leading to 
exposure of C1q-binding sites. Contrary to IgM, IgG is a mono-
mer and despite the presence of the C1q-binding sites, only very 
low affinity binding can be achieved. The epitope distribution 
of the antigen and the density of the IgG binding determine the 
level of complement activation, however the molecular mecha-
nisms were unknown until recently. Diebolder and colleagues 
demonstrated that specific non-covalent interactions between 
Fc fragments of IgG and formation of ordered antibody hexam-
ers on the antigen surface are needed for efficient C1q-binding 
(Figure  3A) (49). Their proposed model could explain the 
strong antigen and epitope dependency of complement activa-
tion. Efficient C1q-binding could only occur upon formation 
of a platform of IgG Fc fragments with a steric compatibility 
for gC1q domains. Clustering of IgG molecules on the antigen 
surface could be affected by antigen size, density, and fluidity 
(50, 51) such that smaller antigen-antibody complexes will allow 
only moderate complement activation. In addition, binding 
stoichiometry is further complicated by antibodies fluidity on 
surfaces of regularly spaced epitopes. It has been demonstrated 
that IgG exhibit “bipedal” stochastic walking forming transient 
clusters that might serve as docking sites for the C1q-binding 
and complement activation (52).

Once C1q binds to its target surface, a conformational change 
is required to transmit the signal from the gC1q domain via the 
CLR to induce auto-activation of C1r (Figure 4A) (53). Molecular 
modeling, mutagenesis, and disease-associated mutation analysis 
revealed the structure of the C1r2C1s2 binding site in the cone of 
collagenous arms of C1q (44, 54, 55). The C1r2C1s2 proenzyme 
tetramer within the C1 complex in a resting state adopts an 
eight-shaped form (Figure 4B). Upon activation, conformational 
changes in the tetramer allow transition to an S-shaped active 
form, passing through a transition state. This conformational 
change allows auto-activation of the C1r SP domain. Subsequently, 
activated C1r will cleave and activate C1s. The driving force for 
this auto-activation of C1r is an increase of the angle between 
the collagen stalks of C1q (48). However, the mechanism for this 
structural change is poorly understood. Mutagenesis experiments 
have revealed that residues on the apex and the lateral surface of 
the B-chain of gC1q are important for IgG, IgM, CRP, or PTX-3 
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FiguRe 3 | Classical and lectin pathway activation. (A) Activation of the 
classical pathway. Multiple adjacent IgG molecules are needed to bind C1q. 
IgG interacts with its target antigen forming specific circular structures. A single 
FAB binds to the antigen, while the other does not. The movement of the Fc 
domain exposes the C1q-binding sites allowing complementarity with the six 
globular domains of C1q (gC1q). The number of engaged IgG molecules will 
determine the compatibility of the immune complex with C1q and hence the 
strength of classical pathway activation. C1q circulates in plasma-associated 

with the serine proteases C1r and C1s, forming inactive C1 complex. After 
binding, the target C1q undergoes a conformational change to increase the 
angle between its collagenous stalks (CLR). This conformational change 
activates C1r, which in turn activates C1s. (B) Activation of the lectin pathway. 
MBL recognizes mannose containing sugars on pathogens. MBL circulates 
associated with serine proteases MASP-1 or MASP-2. Upon target binding, 
juxtaposition of MASP-2 and MASP-1 containing MBL complexes is required 
for MASP-1 to activate MASP-2.
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interactions (27–29). Taking into account the surface morphology 
of gC1q and its targets, it is difficult to contemplate how these 
residues can engage simultaneously in binding. One possibility is 
that these residues form binding sites, which make contact with 
the target subsequently and not simultaneously (Figure 4A). These 
data, combined with the importance of the Ca2+ ions for the elec-
trostatic field of C1q (24), and the induced conformational change 
leading to an increased angle between the collagenous stalks by 
gC1q and target interaction (48, 56–60) has led to the proposal 
of an electrostatic model for the activation of the C1 complex 
(Figure 4A). This model suggests that the increase in the angle 
between the collagen stalks occurs because of a rotation of the gC1q 
domains, driven by electrostatic interactions between gC1q and the 
target molecule (IgG, IgM, or CRP) (24). Interactions between the 
negatively charged binding sites on the target may cause a removal 
of the Ca2+ ion from gC1q. Loss of Ca2+ changes dramatically the 
size and orientation of the electric moment vector of gC1q. This 
electrostatic change can induce the rotation of gC1q allowing it to 
engage the lateral surface of the B-chain. This rotation may provide 

the mechanical stress necessary for the transition of the C1r2C1s2 
complex from closed, inactive eight-shaped conformation to an 
active, S-shaped conformation, allowing C1r auto-stimulation 
and further C1s activation by C1r. In this active form allows the 
tetramer to unfold and to extend its C1s ends outside the C1q cone 
for interaction with C4 and C2. Cleave of C4 and C2 by C1s allows 
formation of the CP C3 convertase in the immediate proximity to 
the C1 complex-binding site (44, 45, 53, 61). It is a matter of debate 
whether the C1s catalytic domain faces the exterior or the interior 
of the C1q cone. If the recognition and cleavage of C4 occurs inside 
the cage-like structure of the cone of C1 (62), this may increase the 
efficacy of the covalent binding of the bioactive cleavage product 
C4b to the surface. However, it is still unclear what would be the 
driving force to assure the entrance of both C4 and C2, as well as the 
substrate molecules of C3, in this confined space. These data imply 
that one C1 complex will have limited efficacy, generating only 
one or two C3 convertases as a result of steric hindrance. It is too 
few compared to the experimental evidence that one activated C1 
complex generates about 35 C4 molecules during its lifespan (63). 
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FiguRe 4 | Mechanism of C1 classical pathway activation  
and regulation. (A) Structural changes in C1q are necessary to  
induce auto-activation of C1r and activation of C1s. Upon binding  
of the inactive, closed C1 complex, electrostatic interactions with a target 
surface may alter the electrostatic field of the domain. This will induce a  
rotation of gC1q, leading to opening of the angle between the CLRs.  
A part of the binding site on gC1q apex will be lost, but new links will be 
formed with the side surface of the B-chain. (B) Concomitant with the 

structural changes in C1q, C1r2C1s2 complex will pass from closed,  
inactive eight-shaped conformation to an active, S-shaped conformation, 
allowing C1r auto-activation and further C1s activation by C1r. (C) The C1 
inhibitor is a serpin that binds covalently to the active site of C1r and C1s, 
blocking their function. It also dissociates C1r2C1s2 from C1, releasing free 
C1q. C1 inhibitor also inhibits the lectin pathway by binding to MASP-1 and 
MASP-2. (D) MBL can bind to MASP-3, MAp44, or MAp19, which cannot 
cleave C4 and C2.
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In order to understand the exact architecture of the C1 complex, 
further investigation will be required.

Mechanism of Activation of the Lectin Pathway
The pattern-recognition molecules of the LP are MBL, collectins, 
as well as ficolins H, L, and M (64, 65). The LP pattern-recognition 
molecules have an N-terminal collagenous region similar to C1q, 
however their C-terminal domains differ from gC1q. Collectins 
contain carbohydrate recognition domains, which recognize sugar 
patterns. MBL, which belongs to the collectin family, recognizes ter-
minal monosaccharide exposing horizontal 3′- and 4′-OH groups 
(glucose, mannose, and N-acetyl-glucosamine) in a Ca-dependent 
manner. These sugars are rarely present on host proteins and cell 
surfaces, but frequently expressed on bacteria, viruses, and dying 
cells. Ficolins are associated with MASPs protein in the circulation 
and have C-terminal recognition fibrinogen-like domains, which 
are able to bind acetyl groups, such as N-acetyl-glucosamine, on 
the surface of bacteria. Following binding, MASPs associated with 
MBL or ficolins are activated and result in the cleavage of C4 and 
C2 (66, 67). Similar to C1q, stable binding can be achieved only 

when the ligands are clustered on the surface forming a specific pat-
tern. This complex can simultaneously engage several carbohydrate 
recognition domains or fibrinogen-like domains for collectins and 
ficolins respectively.

Despite the similarity between the architecture of the C1 and 
MBL/MASP complexes, the mechanism of activation of the LP 
is different than the classical one (64). While in the CP each C1 
complex carries both C1r and C1s, the majority (~70%) of the 
MBL molecules present in plasma are associated with only one 
homodimer of either MASP-1 or MASP-2 to assure their separa-
tion (Figure  3B) (68). In physiological conditions, MASP-1 is 
required for the activation of MASP-2 and both activated proteases 
can cleave C2 while MASP-2 can also cleave C4. Auto-activation 
properties confer to MASP-1 a fluctuating state between inactive 
and active-like conformations, giving it a key role in LP activation 
(69–74). Auto-activation of MASP-2 provides a residual capac-
ity (~10%) to cleave its natural substrate C4 in zymogen form 
(75). Since MASP-1 and 2 are associated with different MBL or 
ficolin molecules, they are required to juxtapose their recognition 
molecules on ligand surfaces to facilitate activation of different 
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MASPs (76). Therefore, MASP-1 from one complex will activate 
MASP-2 from the adjacent complex, allowing C4 cleavage (77). 
MASP-3 also influences LP activation.

The described mechanisms of activation of the CP and LP 
illustrate two of the key characteristics of the complement 
cascade. Complement activation relies on the versatility of the 
target patterns recognition molecules (C1q, MBL, ficolins) that 
can discriminate between self and non-self and bind to patho-
gen- or danger-associated molecules. These molecular patterns 
are often generated after a specific conformational changes, such 
as with IgM or particular clustering, such as with IgG, CRP, or 
pathogen-associated carbohydrates. Complement is driven by 
these conformational changes that transmit a signal as a result of 
the recognition event to the subsequent complement components, 
activating them or modulating their function.

Regulation of the Classical and Lectin Pathways Initiation
Activation of the CP is controlled by a serpin molecule, C1 
Inhibitor (C1Inh). C1Inh binds and inactivates C1r and C1s, 
leading to dissociation of the C1 complex and liberation of free 
C1q leaving an inactive covalent complexes between C1Inh and 
C1r or C1s (Figure 4C) (78, 79). C1Inh is thought to bind to and 
stabilize unactivated C1r and C1s in the C1 complex thus retard-
ing their spontaneous activation (80), but this function is poorly 
studied. C1Inh has additional functions outside complement 
inactivation, related to kinin pathway (a plasma system related to 
inflammation, vasodilatation, and pain). Angioedema is disease 
caused by hereditary or acquired C1Inh deficiency. The edemas 
are triggered by increased permeability of the blood vessels in 
response to elevated levels of bradykinin as a result of the C1Inh 
deficiency. Recombinant and plasma-derived C1Inh are approved 
therapeutic agents for hereditary angioedema (81).

C1q inhibitors released under physiological or pathological 
conditions such as chondroitin-4 sulfate proteoglycan and the 
hemolysis derivative heme can bind to C1q and inhibit the CP 
(55, 82). The mechanism of action of heme, as well as a number 
of synthetic C1q inhibitors, rely on binding to gC1q and alteration 
of its electrostatic properties (55, 83). Calreticulin, released during 
cell death or from parasites can also act as an inhibitor of C1q to 
prevent CP activation (84, 85).

Inhibition of the LP is influenced by MASP-3, MAp44, and 
MAp19 proteins, which share high sequence homology with 
MASP-1 and -2 and have similar binding affinity to MBL and 
ficolins (70, 86). These proteins may compete with MASP-1 and 
-2, but are unable to cleave MASP, C2, and C4 preventing further 
activation of the LP cascade (Figure 4D). In addition, C1Inh is 
able to control LP activation by inhibiting MASP-1 and MASP-2 
but not MASP-3 activity (87, 88).

Platforms for Surface Assembly of the 
Alternative Pathway C3 Convertase

C3b can bind to the cell surface not only via its own thioester 
bond, but also by interacting with surface molecules that serve 
as platforms for C3b recruitment (Figure  5). Recently, it has 
been observed that C3b and C3(H2O) can also bind to the cell 
surface by these platforms resulting in local activation of the AP. 

Although activated platelets are the predominant cell type that 
binds C3(H2O) (89, 90), the exact molecules it binds are not yet 
well defined. Nevertheless, several molecules are likely candidates 
for activated C3 recruitment on different cell types.

Properdin, which stabilizes the alternative C3 convertase (91), 
is able to bind pathogens, activated or damaged host cells to induce 
stimulation of the AP (Figure 5A) (92, 93). Properdin recognizes 
heparin and heparan sulfate on tubular cells leading to complement 
activation (94). Properdin contributes to the AP activation on 
human neutrophils and has been observed in neutrophil-mediated 
diseases (95). Degranulation stimuli on neutrophils induce low 
properdin release and deposition, triggering AP by recruiting C3b 
and promoting C3 convertase formation. Plasma properdin is also 
required for an efficient C3b feedback loop and amplified AP acti-
vation (95). Generation of C5a also further stimulates properdin 
release and amplifies complement activation and neutrophil stimu-
lation. Moreover, it has been demonstrated that myeloperoxidase 
secreted by neutrophils during degranulation binds to properdin 
and leads to the AP activation (96). Properdin released by activated 
neutrophils can also bind to activated platelets. In the absence of 
C3, properdin can also bind directly to platelets after interaction 
with a strong agonist and serves as a platform for recruitment of 
C3b or C3(H2O) and C3 convertase formation (Figure 5B) (90). 
This complement activation may contribute to localization of 
inflammation at sites of vascular injury and thrombosis.

Another protein, which can recruit C3b to a cell surface is 
complement Factor H (FH)-related protein 4A (CFHR4A). This 
protein shares sequence homology with FH and is able to bind 
C3b via its C-terminal domain. CFHR4A lacks regulatory domains 
and cannot inactivate C3b. Even more, it has been suggested that 
CFHR1A can serve as a platform for the alternative C3 convertase 
formation. Formed convertase on CFHR4A had a higher resistance 
to FH-mediated decay.

P-selectin (CD62P) recruits leukocytes via binding to P-selectin 
glycoprotein ligand 1 (PSGL-1) (97) and has been described to bind 
C3b on the cell surface leading to the activation of AP (Figure 5C) 
(98, 99). Morigi et al. showed the effect of P-selectin as a platform 
for C3 convertase formation in vitro and in a murine model of Shiga 
toxin (Stx2)/LPS-induced hemolytic uremic syndrome (HUS) (99). 
P-selectin expression was partially triggered by the anaphylatoxin 
C3a contributing to a vicious circle of complement activation 
aggravating microvascular thrombosis HUS pathology (99).

Another activator of C3 convertase, heme, is released from 
hemoglobin during hemolysis, where it stimulates the AP. Heme 
induces deposition of C3 activation product in erythrocytes and 
has been shown to play a role in malaria pathogenesis (100, 101). 
Heme binds C3 (not C3b), likely near to the TED domain, lead-
ing to the generation of C3(H2O) and homophilic C3 complexes 
associated with overactive C3/C5 convertases (102). Furthermore, 
in vitro experiments on human EC have shown that heme-induced 
mobilization of specific EC granules that store von Willebrand 
Factor and P-selectin called Weibel Palade bodies, is at least in 
part induced by TLR4 (102, 103). This TLR4 stimulation lead to 
degranulation of P-selectin accompanied by C3b and C3(H2O) 
binding to the cell surface of EC. Heme is a hydrophobic molecule 
that binds to lipid bilayers and it is hypothesized that cell-bound 
heme may serve as a platform to recruit C3(H2O) (102).
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FiguRe 5 | Platforms for complement activation. (A) Properdin is released 
from activated neutrophils and is bound to the cell membrane where it recruits 
C3b to form the alternative pathway C3 convertases. C5a then activates 
additionally neutrophils and they secrete more properdin. This installs a vicious 
cycle of neutrophil and complement activation. (B) Properdin released from 

neutrophils or in the plasma binds to activated platelets promoting C3(H2O) 
recruitment and complement activation. (C) Stimulation of endothelial cells with 
C3a, heme, or other agonists induces expression of P-selectin. P-selectin 
contains CCP domains and binds C3b, promoting formation of C3 convertases 
that generate more C3a to stimulate cells.
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Collectively, these examples lead us to propose a general mecha-
nism for a positive feedback loop implicating protein platforms 
in tissue damage. An initial trigger will stimulate the cell to either 
express a platform protein (properdin for neutrophils or P-selectin 
for EC and platelets) or to bind molecules from the fluid phase 
(properdin, CFHR4A, or heme in case of hemolysis). The type 
of the platform will likely depend on the cell type, location of 
activation, and other yet undiscovered factors. C3(H2O) will bind 
to these platforms and will initiate local complement activation 
and C3b deposition. The amplification loop will generate C3a and 
C5a, which upon binding to their receptors (described below) 
will augment cell activation and increase expression of platform 
proteins stored in intracellular granules or recruited from the 
plasma. These events will form an intensified circle resulting in 
local inflammation, thrombosis, and tissue damage.

Structure and Function of the C3 
Convertases

Alternative Pathway C3 Convertase
The structure and function of the AP C3 convertase has been 
dissected during the few last years. Upon cleavage and removal 

of C3a, C3b undergoes a dramatic structural change (Figure 6A) 
leading to exposure of novel binding sites. This allows recruitment 
of FB which binds in a Mg2+-dependent manner and yields the 
pro-convertase C3bB (Figure 6B) (104). This interaction occurs 
via the Von Willebrand Factor A-type (VWF-A) domain and three 
complement control protein (CCP1-3) domains of FB (104, 105). 
The catalytic SP domain of FB undergoes large conformational 
changes oscillating between a closed (loading) and an open (acti-
vation) forms (Figure  6B) (104–106). In the open (activation) 
conformation, the scissile bond is exposed and the FD binding 
site is formed correctly.

Factor D is synthesized in an inactive pro-FD enzyme lacking 
proteolytic activity (107). It was suggested that this zymogen form 
can be cleaved by MASP-1/3 into a form with limited activation to 
support the basal levels found in the AP (108, 109) and becomes 
fully activated only upon binding to C3bB open complex. The 
physiological relevance of MASPs-mediated cleavage of pro-FD 
is still being debated. MASPs cleavage is not the only mechanism 
for FD activation, since mice deficient in MASP-1/3 have reduced 
but detectable AP activity (110) and the only patient found to 
be deficient in MASP-1 and -3 was reported to have a normal 
AP activity (111). Further studies are needed to elucidate the 
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FiguRe 6 | Alternative pathway C3 convertase. (A) Structure and domain 
organization of the central complement component C3 and its cleavage 
fragments C3b and C3a. C3b is shown in two orientations to illustrate the 
surfaces containing the ANA domain and the opposite surface, carrying FB and 
FH binding sites. (B) Steps of formation of the alternative pathway C3 

convertase. C3b is shown in green, FB in magenta, FD in yellow, C3a is in 
violet, and the substrate molecule C3 – in light green. For these molecules, the 
available crystal structures were used for the visualization. The C3bBbC3 
complex is visualized based on molecular modeling. Properdin, for which a 
crystal structure is not available, is depicted in orange.
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mechanism of FD activation in mice and men. Insights into this 
pathway could help lead to the development of MASP-1 inhibitors 
as a strategy to treat renal diseases associated with uncontrolled 
AP activation.

Upon activation, FD binds to and cleaves C3b-bound FB releas-
ing the N-terminal fragment Ba (comprising the CCP1-3 and the 
αL helix). This results in the formation of the C3 convertase of 
the AP C3bBb (Figure 6B) (112). The Bb fragment consists of a 
VWF-A and a SP domain. The SP domain undergoes a new struc-
tural change and is positioned in a conformation, similar to the 
closed form of the pro-convertase (Figure 6B) (113). A substrate 
molecule of C3 binds then to the alternative C3 convertase and is 
cleaved generating new C3b and C3a molecules (Figure 6B) (113).

Factor B binds in a similar manner to C3(H2O) to form the 
alternative C3 convertase [C3(H2O)Bb] in the fluid phase (114). 
Even if FB has a higher affinity to C3(H2O) than to C3b, the 
convertase activity remains lower than the C3bBb complex, as 
measured by C3a released. The fluid phase convertase C3(H2O)Bb 
also has higher resistance to decay by complement inhibitors (114).

Classical Pathway C3 Convertase
The structure and mode of action of the CP C3 convertase is 
not well understood. C4 and C2 share high degree of sequence 
and structure homology to C3 and FB respectively, thus the 
mechanism of formation of the classical C3 convertase may be 

similar to the well-studied AP C3 convertase, described above 
(Figure 6). C4 is cleaved by activated C1s or MASP-2 to bioactive 
fragment C4b and a small fragment C4a (Figures 7A,B). C4b 
contains an internal thioester bond, similar to that in C3b, and 
forms covalent amide or ester linkages with the antigen–antibody 
complex or the adjacent surface of a cell. C4b binds C2 in Mg2+-
dependent manner. C2 is then cleaved by C1s or MASPs. Since 
the concentration of C2 is about 20–30-fold lower compared to 
C4, one active C1 complex can cleave about 35 C4 molecules, 
while only 4 C2 will be cleaved for the same time (63). The larger 
fragment C2a remains bound to C4b and forms the CP C3 con-
vertase C4b2a (Figure 7C) (115) and the smaller fragment C2b 
is released in the circulation. Historically, C2b was considered to 
have kinin-like properties, but recent reports failed to confirm 
this function (116, 117).

The C3 convertases are an excellent example of a general 
mechanism that governs different steps of the complement cas-
cade. Each subsequent step can only occur after a conformational 
change, triggered by the preceding step, thus assuring the temporal 
and specific control of this powerful destruction cascade (118).

Stabilization of the Alternative Pathway C3 
Convertase
The C3bBb is a short-lived complex with a half-life of about 90 s (119) 
and, therefore a stabilization of this complex is required to assure 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/


FiguRe 7 | Formation of the C3 convertase by the classical and lectin 
pathways. (A) C1s or (B) MASP-2 will cleave C4 into bioactive fragment C4b 
that bind covalently to the surface of cells and interacts with C2. The small 
fragment C4a is released. Following, the same enzyme will cleave C2 to 
generate the classical pathway C3 convertase C4b2a. (C) C4b2a will interact 
with C3 cleaving it and releasing the bioactive fragments C3a and C3b. C3b 
will bind covalently to the surface and allow formation of alternative pathway 

C3 convertases C3bBb via the amplification loop. The C3a generated is a 
pro-inflammatory anaphylatoxin. The C4 molecule is presented in red, with 
brow colored the ANA domain, which will become C4a after cleavage and in 
green – the TED domain, which will become C4d after cleavage. The crystal 
strictures of C4, C4b, and C2a were used for the representation. The CP C3 
convertase C4b2a is modeled based on the structure of the AP convertase 
C3bBb, with which it shares high homology.
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efficient host defense (Figure 6B) (93). The AP C3 convertase is 
stabilized 5- to 10-fold by association with properdin (91). Properdin 
(120) is secreted by monocytes/macrophages and T lymphocytes 
(121, 122) and is stored in secondary granules of neutrophils (95, 
123) and mast cells (124). Properdin is composed of identical rod-
like protein subunits (125) that are associated head-to-tail to form 
cyclic dimers, trimers, and tetramers that resemble rods, triangles, 
and squares, respectively. The function of properdin is dependent on 
its level of polymerization, with the tetramer being approximately 
10-fold more active than the dimer (126). Purified properdin results 
in aggregates and has artificially high binding activity (127, 128). 
Properdin binds C3bBb, as well as, the pro-convertase C3bB and C3b 
(92). Properdin interacts both with the C345C domain of C3b and 
the VWF-A domain of Bb, in order to stabilize the convertase (129). 
Interestingly, electron microscopy studies visualized that properdin 
binding induces a large displacement of the TED and CUB domain 
of C3b (129). These structural changes distort the FH binding site 
(130–132), which may explain the relative resistance of the stabilized 
C3 convertase to decay by FH.

Recent studies of Hourcade and colleagues demonstrated that 
properdin is not merely a stabilizer of the C3 convertase, but also 
a pattern-recognition molecule that binds to microbial surfaces 
including glycosaminoglycans (GAGs), apoptotic, and necrotic 
cells providing a platform for C3 convertases assembly (93).

Negative Regulation of the C3 
Convertases

The amplification loop is the balance between two competing 
cycles, acting on the C3b–C3 convertase formation, which 
enhances both amplification and downregulation via the C3 break-
down cycle. Complement amplification depends on the balance 
between binding rates of each reaction (22). To regulate activation, 
several inhibitors of complement pathways, primarily against AP, 
exist in the fluid phase and on host cells. Complement inhibitors 
have overlapping functionality. FH works as a soluble inhibitor of 
the alternative C3 convertase, while membrane cofactor protein 
(MCP), decay acceleration factor (DAF), and complement receptor 
1 (CR1) work as membrane inhibitors. FH is a specific cofactor 
for C3b and C4 binding protein (C4BP) primarily is a cofactor for 
C4b, while MCP and CR1 act as cofactors for the inactivation of 
both C3b and C4b via Factor I (FI).

inactivation of C3b and C4b by Factor i
Factor I is a SP found in the plasma that cleaves C3b in presence 
of different cofactor molecules, such as FH, MCP, CR1, or C4BP 
(Figure 9A). The protease activity of FI leads to the generation 
of degradation product of C3b, iC3b, which is unable to bind 
FB (133). A zymogen form of FI has not been detected in the 
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FiguRe 8 | Regulation of the classical and lectin pathways C3 
convertase. To avoid overactivation, the CP and LP tightly regulate signaling. 
(A) If a C4b2a C3 convertase is formed, it will be rapidly dissociated by DAF 
and/or CR1 depending on the cell type. Bound C4b will be inactivated by FI in 
presence of cofactors such as CR1 and/or MCP. C4d will remain bound to the 
surface and C4c will be released. (B) C4BP can act in fluid phase as well as on 

the cell surface. C4BP has an octopus structure and interacts with several C4b 
molecules. It dissociates the C3 convertase and serves as a cofactor for FI in 
the cleavage of C4b to inactive fragments C4c and C4d. The structures of the 
complexes of C4b with the regulatory proteins have not been resolved yet, 
therefore the proteins are depicted in proximity one to another, represented by 
their known structures, but no complex could be reliably modeled.
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circulation. In  fact, FI circulates in a proteolytic form but in 
inhibited conformation. The activity of the light chain of FI 
is allosterically inhibited in the circulation by a non-catalytic 
heavy-chain (134). In presence of its cofactors, the non-catalytic 
heavy-chain of FI is released and it is able to cleave C3b between 
Arg1281 and Ser1282 to give the iC3b fragment (134, 135). 
Molecular modeling suggested that FI binds FH1–4 and C3b 
simultaneously in a groove between two proteins, which is in 
agreement with the hypothesis that FI binds CCP1–3 of FH and 
C345C of C3b (132).

Factor I Cofactors
Membrane cofactor protein, DAF, and CR1 (CD35) serve as 
cofactors for FI-mediated proteolysis of C4b and C3b. MCP 
is composed of 4 extracellular CCP domains expressed on all 
nucleated cells (136) and CR1 contains 30 extracellular CCP 
domains and is expressed on leukocytes, erythrocytes, and 
glomerular podocytes. MCP N-glycosylation on CCP2 and 
CCP4 is essential for MCP inhibitory activity (137). CCP1–4 
of MCP binds to C3b and C4b and is structurally similar to the 
four N-terminal domains of FH (described below), both proteins 
serve as cofactors for FI for C3b inactivation (Figure 9A) (132, 

138–140). FH only induces C3b-degradation and is inefficient 
for C4b. CCP-3 and -4 of MCP are responsible for binding to C3b 
and C4b, while CCP1–2 only interacts with C4b (Figure 8A) 
(141). The binding site for MCP on C3b is partially overlapping 
with the site for CCP-3–4 on FH (142).

The first 28 CCP of CR1 are 4 long homologous repeats (LHR) 
for 7 CCP domains containing the binding sites for C3b and 
C4b (143, 144). C3b and C4b-binding sites located in CCP8–10 
(LHR2) and CCP15–17 (LHR3), respectively, are responsible for 
FI cofactor activity (143, 145). CCP15–17 has a major role in C3b/
C4b inactivation (146). CCP15 carries a positively charged region 
essential for the C4b-binding and a basic region in the CCP16 that 
is necessary for C3b-binding. Although the architecture of the 
CR1/C3b and CR1/C4b is not well defined, it is known that CR1 
interacts with the α′NT region of C3b (residues 727–767), which 
overlaps with the FH CCP1-binding site, but not MCP-binding 
site (132, 133, 142, 147).

C4b can be inactivated by the action of C4BP, a plasmatic cofac-
tor for FI (Figure 8B) (148–151). C4BP has a complex, octopus-like 
structure comprised of CCP domains containing α- and β-chains 
(152, 153). The first three CCP domains of each α-chain are 
involved in cofactor and convertase dissociation functions. A 
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FiguRe 9 | Regulation of the alternative pathway. (A) FH as a master 
regulator of C3b in the fluid phase and on the cell surface. FH binds to C3b in 
fluid phase preventing novel convertase formation. FH may bind to C3b and 
GAGs on the cell surface and the architecture of the complex depends on the 
level of activation of the cell and the density of deposited C3 fragments. 
Resting cells have only a few C3b molecules that are deposited and FH binds 
to them with the regulatory domains CCP1-4. CCP7 and CCP20 interact with 
GAG on the membrane. Alternately, CCP19 may bind to the TED domain of 
C3b allowing CCP20 to interact with GAGs. If the cell is activated and C3b 
and C3d (or two C3b molecules) are deposited in close proximity, FH may 
bind to two of these molecules, allowing GAG binding by CCP20. (B) On 

resting cells, C3b will immediately be inactivated to iC3b by the action of FI 
and the assistance of cofactors (FH, MCP, CR1). iC3b cannot bind FB and 
forms C3 convertases. Only the cofactor CR1 allows FI to execute a second 
cleavage generating C3c (released in the fluid phase) and C3dg, which 
remains bound to the cell. C3dg is rapidly transformed to C3d by tissue 
proteases. (C) If the host cell is activated, the complement control will not be 
sufficient to prevent any complement deposition and C3 convertases could be 
formed. To avoid cell damage, these convertases need to be dissociated. 
Multiple complement regulators such as DAF, CR1, and FH decay the C3bBb 
complex formed on host cells. Remaining C3b will be inactivated by FI, using 
FH, MCP, or CR1.
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maximum of four C4b molecules can simultaneously interact 
with the α-chains of one C4BP molecule (154). The β-chain 
binds coagulation protein S and contributes to regulation of 
the coagulation cascade (155).

Complement receptor 1 is a unique cofactor of FI due to its 
ability to induce further cleavage of iC3b, generating C3c and C3dg 
degradation fragments (Figure 9A) (133), where FH, MCP, and 
C4BP only induce the cleavage of C3b to iC3b.

Several proteins have been shown to enhance FI-mediated 
cleavage in the presence of cofactors. Thrombomodulin binds to 
C3b and FH and negatively regulates complement by accelerating 
FI-mediated inactivation of C3b in the presence of FH and C4BP 
(156). Von Willebrand factor also enhances the efficacy of FH 
as a cofactor for FI (157). In specific in vitro buffer conditions, 
Von Willebrand factor has been suggested to have direct cofactor 
activity, but the physiological function of this interaction requires 
further validation (158).

C3 Convertase Dissociation
The AP C3 convertase is dissociated and Bb is released primarily 
by the action of CCP1–4 in FH (described below). CR1 dis-
sociates the C3 and C5 convertases. CCP1–3 of CR1 carries a 
binding site for C4b allowing it to induce accelerated decay of 

the C3 convertase in the CP and AP (Figures 8A and 9B) (143, 
159). C4BP prevents the formation of the classical C3 and C5 
convertases (148–151).

Decay acceleration factor accelerates decay of the C3 and C5 
convertases in the CP and AP (Figures 8A and 9B). DAF has four 
extracellular CCP domains, a highly glycosylated domain and a 
GPI anchor (160). DAF inhibits the AP C3 convertase by binding 
to Bb on the vWA domain with its CCP2 domain (161). CCP2 of 
DAF has a higher affinity for Bb compared to the intact FB. As a 
consequence, the active convertase is more sensitive to rapid decay, 
compared to C3bB (162, 163). DAF also binds to the C3 convertase 
on C3b via its CCP4 domain (163) and CCP-3 contributes to the 
accelerated decay function (164).

Factor H – The Master Regulator of the Alternative 
Pathway
Factor H regulates the AP and the amplification loop of the com-
plement pathways (Figure 9). It is a soluble inhibitor of the C3 con-
vertase competing with FB for binding to C3b (Figure 1A) (165). It 
also serves as a cofactor for C3b inactivation by FI (Figure 9A) and 
induces C3bBb complex dissociation (Figure 9B) (166, 167). FH is 
composed of 20 CCP domains arranged as beads on a string (168) 
(Figure 9C). CFHL1 is a shorter protein, containing the seven 
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N-terminal domains of FH, generated via alternative splicing from 
the same gene (169) and functions as a fluid phase complement 
regulator. The fluid phase convertase C3(H2O)Bb is more resistant 
than the alternative cell-bound convertase and is less susceptible 
to regulation by FH (114). FH has two main ligands, C3b and the 
GAG, found on host cells surface. Recent crystallographic and 
mutation analysis resulted in precise mapping of the C3b and 
GAG-binding sites in FH.

Factor H binds to C3b and C3(H2O), but not to uncleaved C3. 
The conformational changes in the TED and CUB domains accom-
panying the transition from C3 to C3b expose the FH-binding sites. 
FH binds to C3b in at least two regions, at the N-terminus and the 
C-terminus of the protein. The N-terminal four CCPs contain the 
complement regulatory activity (132) and the CCP1–4 interacts 
with the MG ring of C3b. CCP-3 interacts with the CUB domain 
and CCP4 interacts with the TED domains (132, 142). CCP1–2 
competes with FB causing its dissociation from C3b (Figure 9C). 
Both Bb and CCP1–2 are negatively charged leading to electrostatic 
repulsion. CCP19–20 carry a second binding site for C3b and can 
also interact with C3d (130, 131, 170, 171).

It has been difficult to unravel questions regarding the 
stoichiometry and architecture of the C3b–FH complex in the 
physiological fluid phase and on the surface of cell (Figure 9C). 
Does FH interact in the same way with C3b and C3(H2O) or with 
C3b in fluid phase and on cell surface? Could FH bind with its 
N- or C-terminal domains on the same C3b molecule or can it 
interact with two adjacent C3b or C3b and C3d molecules or with 
one C3b molecule via CCP1–4 at the C-terminus and engage in 
cell membrane binding? If it is assumed that FH CCP1–4 and 
CCP19–20 bind to the same C3b molecule and if there is a liner 
arrangement of the C-terminal CCPs, could there be a steric clash 
between CCP18 and CCP4? The crystal structure of CCP18–20 
indicates a bend-back conformation of CCP18, allowing binding 
on the TED domain of both CCPs 1–4 and CCPs 19–20 (172). 
Studies of the C3b/C3d binding site on CCP19–20 showed that it 
may be overlapping, but it is not identical with the GAG-binding 
site (173–177). The C3b/C3d-binding site is extended toward the 
CCP19 and the GAG binding is extended toward the apex of the 
CCP20. It is possible that FH19–20 domains may bind both C3d 
and GAG at the same time (131, 172, 174, 177). Site-directed 
mutagenesis of the FH19–20 domains indicates that a ternary 
complex between C3d/FH19–20/heparin can be formed and is 
essential for the functional activity of FH (177). The formation 
of a ternary complex was confirmed by the crystal structure of 
FH19–20 with C3d and a model sialylated trisaccharide, where 
a surface area extending from SCR19 to the beginning of CCP20 
binds C3d and CCP20 carries a is highly conserved binding site, 
which may accommodate GAGs and sialic acid containing glycans 
(174). Structural analysis of the complex of FH19–20 with C3d 
showed that CCP20 also may interact with C3d suggesting poten-
tial competition between C3d and GAG at this site of FH (130). 
Analysis of published PDB files indicates that this CCP20–C3d 
interaction is present in the other FH CCP19–20 crystals, but 
was considered a crystallization artifact. Nevertheless, mutations 
in CCP20 appeared to affect the interaction with C3b and C3d, 
suggesting that a C3d–CCP20 interaction is possible. Based 
on the accumulating structural and functional data, it can be 

hypothesized that the architecture of the C3b–FH complex is 
governed by the target surface and the density of the C3b and C3d 
molecules (Figure 9C). On host cells, one isolated C3b molecule 
will bind CCP1–4, while SCR7 and the C-terminus will interact 
with the GAG of the cell membrane. Since FH may circulate 
in plasma in a folded back hairpin conformation (178–181), 
simultaneous interactions with the N- and C-termini to the 
same C3b molecule could be possible, while CCP7 and 20 bind 
to the GAGs of the membrane. Indeed, CCPs 10–13 are involved 
in the inclination of FH, allowing both CCP1–4 and CCP19–20 
binding to C3b (182). Using crystal structures of CCP10–11, 
CCP11–12, and CCP12–13, the authors also demonstrated that 
a tilt of 80–100° occurs allowing a hairpin structure formation. 
The compact architecture of the C3b–FH complex is supported 
by the existence of a third binding interface involving CCP6–10 
in FH and the C3c portion of C3b (171, 183, 184).

Glycosaminoglycans are an important constituent of the cell 
membrane and play a critical role in complement regulation. In 
addition to the GAG-binding site in CCP20, FH carries another 
GAG-binding site located in CCP7 (183, 185–189). These GAG-
binding sites in FH allow it to recognize negatively charged 
heparan sulfate moieties on the membrane and may explain the 
differences in the affinity of FH binding and a dependence on the 
expression of GAG and sialic acid on the cell surface (190). The 
difference in the susceptibility of sheep and rabbit erythrocytes to 
lysis by human complement, which are at the basis of the classical 
hemolytic tests for complement activation, is expression level of 
sialic acid on the surface of these cells. This allows them to bind 
(sheep) or not to bind (rabbit) to FH (165, 191). Together with 
the low affinity of properdin for heparin and heparan sulfate 
(94), GAG expression is a powerful regulator of the complement 
homeostasis between negative regulation and stimulation of the 
complement pathways. The two regions anchoring FH to the 
cell membrane, CCP7 and CCP20, are specialized in binding 
to unique GAG, expressed in different types of cells, however 
both are necessary to assure functional activity of FH on the cell 
surface (189). CCP7 containing construct CCP6–8 binds stronger 
to heparin than CCP20 containing construct CCP19–20 (192), 
while CCP6–8 and CCP19–20 do not recognize the same sulfate 
GAG. GAG and sialic acid are expressed in multiple human 
organs with different subpopulations and distinct structures that 
may provide a variation of the binding affinity of complement 
regulators (193). These differences can potentially explain why 
polymorphisms or mutations in these regions are associated with 
complement-mediated diseases.

Mutations or polymorphisms in the GAG-binding sites of FH 
may create an imbalance in the homeostasis of complement regu-
lation and could explain its association with different diseases. For 
example, a polymorphism in CCP7 leading to a modification from 
a tyrosine to histidine at amino acid 402 (Y402H) is the strongest 
genetic susceptibility factor for age-related macular degeneration 
(AMD) (194–197). Detailed analysis of this mechanism revealed 
that CCP7 in FH binds not only to GAG, but also to oxidized 
lipids, including malondialdehyde (MDA) (198–200). Y402H 
binds more weakly to MDA and oxidized phospholipids expressed 
on retinal pigment epithelium compared to the non-mutated 
protein (198, 200).
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FiguRe 10 | Domain organization and mechanism of CFHRs.  
CFHR1, 2, and 5 carry dimerization N-terminal domains allowing  
them to form homo and heterodimers. These CFHRs, particularly  

CFHR1, are downregulators of FH, competing with FH for C3b and  
binding on the cell surface. This allow C3 convertases and MAC  
formation.

June 2015 | Volume 6 | Article 26214

Merle et al. Mechanisms of complement activation and regulation

Frontiers in Immunology | www.frontiersin.org

Another ligand of CCP7 and CCP19–20 in FH is the CRP, which 
is secreted by the liver during inflammation acute phase. Binding 
of FH to CRP can enhance complement inhibition, particularly on 
apoptotic or damaged cells during inflammatory conditions (201).

The interaction of FH with different cell surfaces is controlled 
by CFHR proteins. CFHRs belong to the FH family and comprise 
five different members (CFHR1–5). CFHRs are composed of five 
to nine CCP domains, present a high sequence homology with FH, 
and are recently described in detail (202). CFHR1, CFHR2, and 
CFHR5 share high homology in their two N-terminal domains, 
allowing them to form homo- and heterodimers (Figure 10) (203, 
204). CFHR3 and CFHR4 do not form dimers, the C-termini of 
each share a high sequence homology with FH leading to competi-
tion between CFHRs and FH for binding to C3b, C3d, and GAG on 
the cell surface (203, 205, 206). Therefore, the CFHRs will enhance 
complement activation, preventing the action of FH.

C5 Convertases and the Terminal 
Complement Pathway

C3b binds to the C3 convertase to form a new enzymatic com-
plex – C5 convertase which cleaves C5 to bioactive fragments 
C5a and C5b (Figure 11). C5b recruits complement components 
C6, C7, C8, and C9 which polymerize to form the membrane-
attack-complex (MAC) ring (Figure  12) (207). The structures 
of individual components and overall architecture of the C5b-9 
complex are starting to be elucidated, while, the structure and the 
mechanism of action of the CP and AP C5 convertases is not fully 
understood and require further investigation.

C5 Convertases
The C3 convertases C4b2a and C3bBb are the precursors of the 
C5 convertases. The C3 convertases are able to bind C5, but with 
a very low affinity and cleavage rate. These C3 convertases switch 
their specificity and start to bind and cleave C5 only after binding 

of an additional C3b molecule in the immediate proximity or most 
likely over the C3 convertase itself (Figure 11) (208). The structure 
of this trimolecular complex is unknown, but has been suggested 
that the covalent C3b-binding site on C4b is the residue Ser1217 
(p.Ser1236) within the TED domain (209). This residue is not 
conserved in C3b and the binding site seems to be located outside 
of the TED domain, in the α43 fragment (residues 1268–1641) 
(210), suggesting different topology of the two trimolecular com-
plexes. Whether the newly bound C3b molecule interacts with 
C5 or affects the conformation of the C3 convertase subunits is 
currently unknown. Laursen and colleagues propose a model by 
which the MG1, MG4, MG5, and TED domains of C3b will be 
able to contact the CUB and TED domains of C4b. The CUB, 
MG2, MG6, and MG3 domains appear to be capable of reaching 
mainly the rest of C4b, while the MG7, MG8, and C345C domains 
potentially could be in direct contact with C5 (Figure 11) (211).

The dramatic conformational change of C4 upon release of 
C4a is very similar to C3 (212). TED domain, MG8, and CUB 
are exposed after C4 cleavage, allowing covalent bond with 
Gln1013. The crystal structure of C4b confirms the implication 
of the flexibles residues 1231–1255 in the interaction with the 
TED domain of C3b (209, 212). This model supports the idea 
that C3b has no direct interaction with C5 in the classical (and 
most likely in the alternative) C5 convertase (Figure 11). C4b 
and CVF-C5 structures suggest that C4b-binding area for C5 is 
within the domains MG4, MG5, and MG7, supporting Laursen 
hypothesis.

The loss of affinity to C3 and the acquisition of affinity to 
C5 results in cessation of C3b opsonization and initiation of 
MAC-induced membrane damage. Upon covalent binding of a 
C3b molecule to a CP convertase C4b2a, there is a formation of a 
trimolecular complex with about 1000-fold increased enzymatic 
activity toward C5 cleavage (213) compared to the bimolecular 
complex. The CP C3 convertase cleaves on average 1.5 C5 mol-
ecules per minute. The gained activity of the trimolecular complex 
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FiguRe 11 | C5 convertase formation. A C5 convertase is generated 
when a C3b molecule binds covalently in the vicinity or directly to a C4b or 
C3b, already engaged in a C3 convertase. This new enzyme loses its 
capacity to cleave C3 and starts to cleave C5. The binding site of the second 
C3 molecule is unclear, but it has been suggested to bind to the TED domain 
of C4d and to the CUB domain of C3b. Since the atomic coordinates of the 
two C5 convertases have not been published yet, this figure represents the 

current model for their organization. The CP C3 convertase is modeled here 
on the basis of the structures of C4b, C2a, and the AP C3 convertase 
C3bBb. The second C3b molecule is depicted in a schematic representation 
in blue to be distinguished from the C3b molecule interacting with FB to form 
the C3bBb complex. The Bb and C2a fragments are depicted in magenta 
and violet, respectively. They are partially visible behind the C3b and C4b 
molecules.
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of the AP C3bBbC3b is six to ninefold weaker compared to the 
classical, cleaving less than 0.3 C5 molecules per minute (214). 
To compensate for the weaker efficacy, the AP C5 convertase can 
be stabilized by properdin (215, 216), which increases its half-life 
from approximately 3–30 min. This is different than the classical C5 
convertase, for which a natural stabilizer has not been described. 
Together with the fact that the AP amplification loop generates a 
large number of C3b molecules makes the AP C5 convertase the 
main source of the terminal pathway complex C5b-9. In 2002, 
Pangburn and Rawal proposed a ring model for the amplification 
of the complement activation on the cell surface (213). In this 
model, any deposited C3b molecule coming from the classical 
or AP initiation can form an AP C3 convertase that will cleave 
one or several molecules of C3 (depending on the stabilization by 
properdin). A ring of new C3 convertases is formed or C3b binds 
on top of the C3 convertase itself to form a C5 convertase. As the 
activation spreads, the older enzymes will be inactivated by FH and 
FI leaving an expanding inner core of inactivated C3b surrounded 
by an active band of C5 convertases. The outermost band of newly 

formed C3 convertases is responsible for the growth of the site as 
it expands across the surface of the target.

Complement-Independent Cleavage of C5 and C3
Accumulating evidence suggests the existence of additional 
complement activation pathways in the plasma (217) aside from 
the three established pathways. Thrombin, human coagulation 
factors IXa, XIa, Xa, and plasmin were all found to effectively 
cleave C3 and C5 (218). C5a and C5b can be generated from C5 
via thrombin, independently of the plasma complement system 
(217, 219). Thrombin cleaves C5 poorly at R751, which is the site 
of action of the C5 convertase (220). However, it does cleave C5 at 
an alternate site, R947, generating intermediates C5T and C5bT. 
These activation fragments will be generated at sites of activation 
of the coagulation cascade. Interestingly, C5bT formed a C5bT-9 
MAC with significantly more lytic activity than with C5b-9.

Complement-independent cleavage of C3 by plasmin has also 
been suggested in the literature (221–223). The fragments gener-
ated by plasmin-mediated cleavage (C3a-like, C3b-like, iC3b-like, 
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FiguRe 12 | The terminal complement pathway. The C5  
convertase cleaves an inert molecule of C5 into a potent anaphylatoxin,  
C5a, and a bioactive fragment C5b. C5b interacts with C6, C7, C8,  
and multiple copies of C9 to form the membrane attack complex  
C5b-9 (MAC). C5b-8 inserts into the membrane and C9 polymerize to  

form a pore inducing Ca flux and pathogen lysis. Host cells are protected  
from lysis by expression of CD59, which prevents the insertion and by clusterin 
and vitronectin, which bind to C8 and prevents insertion in the membrane. If 
MAC is bound to the membrane, host cells can internalize it or remove it by 
ectocytose.
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C3c-like, and C3dg-like) are similar, but not identical to fragments 
generated by the complement cascade and are biologically active.

Membrane-Attack-Complex C5b-9 Formation
Activation of the terminal complement pathway results in formation 
of MAC that form large, 10 nm wide, pores in the target membrane 
(207). These complexes are formed when C5 is cleaved into C5b 
by the C5 convertase. Upon cleavage, C5b undergoes a dramatic 
conformational change, similar to C3b, but with a TED domain 
ending up only halfway the distance to the MG ring (Figure 12) 
(224). This conformation of C5b interacts with C6, which wraps 
around the TED domain of C5b. C6 to C9 are homologous proteins 
that share similar central membrane-insertion domains called 
MACPF. Binding of C7, C8, and multiple copies of C9 results in 
MAC formation with C5b–C6–C7–C8β–C8αγ–C9 making an arc 
with a protrusion at the beginning by C5b. C5b-7 is lipophilic and 
binds to the cell membrane (225). C8 is the first component to 
penetrate the lipid bilayer upon interaction with the forming MAC. 
The structure of the MACPF domain of C8α (226) shows homology 
to perforin, a pore-forming protein released by cytotoxic T and 
NK cells, as well as, to bacterial cholesterol-dependent cytolysins. 
This resemblance suggests a common membrane perforation 
mechanism for MAC, perforin in the mammalian immune system, 

and bacterial pore-forming proteins (226). A single MAC contains 
up to 18 C9 molecules forming a tubular channel. However, only 
one or two C9 molecules are sufficient to form functional pores 
(227, 228).

Each functional MAC is sufficient to lyse by colloid osmosis 
in the membrane of metabolically inert cells, like erythrocytes 
or liposomes (229). Gram-negative bacteria are also susceptible 
to complement killing, in particular the meningitis causing 
Neisseria species (230, 231). Individuals deficient in terminal 
complement components are at increased risk for recurrent 
meningitis. Gram-positive bacteria have an extremely thick 
cell wall that MAC cannot penetrate leaving them resistant to 
complement elimination. Metabolically active nucleated cells 
are also resistant to lysis by complement (228, 232). In order to 
induce killing in these cells, multiple MACs must be inserted in 
the cell membrane together with coordination of calcium flux and 
not well-understood signal transduction (233). Once MACs have 
inserted in these cells, calcium flux is induced in the pore from 
the extracellular space or is released from intracellular stores 
(234). Subsequently, multiple still not well-known signaling 
pathways are activated leading to cell proliferation or apoptosis, 
which is dependent on the targeted cell type and experimental 
conditions.
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Membrane-Attack-Complex Regulation
Membrane-attack-complex formation is tightly regulated to avoid 
accidental host cell damage and activation (Figure 12). C8 was 
suggested to play a dual role in MAC formation and regulation. 
In the absence of a cell membrane, the binding of C8 to C5b-7 
induces conformation changes that result in a loss of ability to 
form pores, causing it to act as a MAC inhibitor (235). If soluble 
dead-end products sC5b-7, sC5b-8, and sC5b-9 are generated in 
fluid phase and do not bind to a membrane, they are scavenged 
by clusterin and vitronectin. These two regulators bind below the 
C5b-9 arc rendering it water soluble and preventing membrane 
binding (224, 236–238).

The GPI anchored protein, CD59 is expressed on most cell types 
(239, 240) and blocks membrane perforation by C5b-8 and C5b-9 
(241, 242). CD59 does not bind free C8 and C9, but does interact 
with the MACPF domain of each protein upon conformational 
changes associated with C5b-9 complex formation (243–245). 
Furthermore, the lytic terminal complex of complement C5b-9 can 
be removed within minutes of its deposition on the membrane of 
target cells either by shedding via membrane vesicles (exocytosis) 
or by internalization and degradation (246–249).

Complement Anaphylatoxins

The anaphylatoxins, C3a and C5a, are constantly released during 
complement activation. These small (10–14 kDa) peptides play a 
critical role in supporting inflammation and activation of cells that 
express anaphylatoxin receptors (250). To enhance inflammation, 
anaphylatoxins recruit immune cells to the site of complement 
activation and induce oxidative bursts on macrophages (251, 
252), eosinophils (253), and neutrophils (254, 255). However, 
some studies challenged the concept for the pro-inflammatory 
role of C3a. C3a has a more complex function, depending on the 
context, with a balance between pro- and anti-inflammatory roles. 
The highlight anti-inflammatory properties of C3a re-evaluate its 
physiological role during inflammation (256). Furthermore, C3a 
and C5a induce histamine production by basophils (257, 258) and 
mast cells (259) to provoke vasodilatation. C5a also recruits T-cells 
(260) and myeloid-derived suppressor cells (261) that constitutively 
express C5aR. Although the functional activity of C4a is debated, 
it has been reported to activate macrophage and monocytes (262, 
263). However, a lack of cognate C4a receptor identification and 
unreproducible data (264) warrant further studies to determine 
the physiological role of C4a.

Structural data show that both human C3a and C5a adopt an 
alpha-helical conformation with four- and three-helical bundles, 
respectively (Figure 13). The C5a crystal structure has a core 
domain constituted as an antiparallel alpha-helical bundle and 
the C-terminal domain links the core domain by a short loop 
containing two adjacent arginines in position 62 and 74 (265) 
that both interact at the same binding site on the receptor. In 
human plasma, these two fragments are rapidly converted by 
carboxypeptidase N to C3a desArg and C5a desArg by cleavage at 
the C-terminal arginine (266, 267). C3a desArg has a very similar 
structure to C3a (268), but is incapable of binding to C3aR. The 
alpha1-helix of C5a desArg is detached at the three others alpha-
helices (269). Due to this conformational change, human C5a 

desArg has 90% weaker pro-inflammatory activity compared to 
C5a (270). In contrast, murine C5a desArg is as potent as the 
murine C5a upon binding to C5aR on murine cells (271), which 
could be explained by the lack of major structural changes in the 
murine C5a desArg, compared to C5a. Both murine proteins 
form a four-helix bundle, contrary to the human C5a desArg, 
which adopts a three-helix bundle conformation upon cleavage 
of the terminal Arg residue. These inter-species differences need 
to be taken into account during analysis of in vivo experiments.

C3aR, C5aR, and C5aL2 belong to the G protein-coupled recep-
tor (GPCR) family that contain seven transmembrane domains 
that are able to interact with C3a and C5a (Figure 13). The C3a-
binding site of C3aR is located in the large second extracellular loop 
that contains a sulfotyrosine 174, which is critical for C3a docking 
(272). This interaction induces phosphorylation of intracellular 
pathways including PI3K, Akt, and MAPK leading to chemokine 
synthesis (273).

There are two sites in C5aR that are essential for C5a bind-
ing. The first sight consists of basic residues from human C5a 
that interact with sequences rich in aspartic residues located 
on N-terminal extracellular domain of C5aR (274). The second 
site is in a binding pocket located near the fifth transmembrane 
domain (275) and interacts with the C-terminal region of human 
C5a (276). Then, two distinct clusters of hydrophobic residues 
allow a molecular switch in C5aR leading to G protein activation 
(277). This mechanism exposes preserved residues clustered in 
two intracellular and two transmembrane domains that partici-
pate to the initial interaction with G proteins (278). The second 
extracellular loop plays a role of a negative regulator of C5aR 
activation and may stabilize the inactivated form of the recep-
tor (279). By binding human C5a, C5aR induces downstream 
effects including activation of PI3K-γ (280, 281), phospholipase 
Cβ2 (282), phospholipase D (283), and Raf-1/B-Raf-mediated 
activation of MEK-1 (284).

Human C5a and C5a desArg are also able to bind C5L2 (285). 
C5L2 is again composed of seven transmembrane domains, 
however it is not coupled with G protein due to an amino acid 
alteration at the end of the third transmembrane in the DRY 
sequence (286). C5a has lower affinity to C5L2 compared to C5a 
desArg (287) and recently it has been demonstrated that C5L2 is a 
negative regulator of anaphylatoxin activity (288). It has also been 
reported that C5L2 and C5aR form a heterodimer (289) and this 
complex induces internalization of C5aR upon C5a binding (290). 
This internalization is essential for the induction of the late stage 
of ERK signaling (291, 292).

Complement Receptors for C3 Activation 
Fragments

Complement participates actively in the opsonization of patho-
gens and dying host cells, in addition to the clearance of immune 
complexes. Recognition molecules in the CP and LP, as well as 
cleavage fragments of C3, opsonize the target structure and serve 
as bridging molecules with receptors on the surface of the phago-
cytes. Depending on the type of the opsonin present (C3b, iC3b, 
or C3d), the phagocyte will generate a pro-inflammatory response 
or tolerogenic suppression.
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FiguRe 13 | Complement anaphylatoxins. C3a and C5a have  
a four and three helical bundle topology. Mouse C5a (in the square)  
is different from its human counterpart, because it has four helical bundle 

structure. These anaphylatoxins bind to G protein-coupled receptors  
C3aR and C5aR and stimulate pro-inflammatory signaling  
pathways.
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Pathogens, immune complexes, and cell debris opsonized by 
C3 cleavage fragments can be recognized by CR (Figure 14) with 
three different structural organizations: containing CCP modules 
(CR1 and CR2), integrin family members (CR3 and CR4), and 
the immunoglobulin superfamily member (CRIg) (293). CR1 is 
expressed on monocytes, macrophages, neutrophils, erythrocytes, 
and renal podocytes, CR2 is found on B-cells, CR3 and CR4 are 
expressed by macrophages, monocytes, dendritic cells, neutro-
phils, and NK cells and CRIg has restricted expression and is found 
mainly on Kupffer cells in the liver and resident tissue macrophages 
(294). Interestingly, the expression of CRIg on macrophages in 
inflamed tissue is lower compared to macrophages outside of an 
inflammatory area (295).

Complement Receptor 2
Complement receptor2 (CD21) is expressed on B-cells inter-
acting with C3d and iC3b on the surface antigens (Figure 14) 
forming a co-receptor complex with CD19 and CD81 (296). C3d 
serves as a molecular adjuvant by lowering the threshold for 
B-cell activation by 1000–10,000-fold (297). The TED domain 
of C3 has a completely different conformational environment 
in the native protein as compared to its degradation products 
C3b, iC3b, C3dg, and C3d. Recent studies showed that the 
binding site for CR2 in iC3b and C3d lies within the common 
TED domain (298). The C3d-binding site is located in the two 
N-terminal CCP domains of CR2 (299). Two different crystal 
structures had been proposed for the complex CR2:C3d; the first 
one, described in 2001 by Szakonyi et  al. (300), showed that 
only the CCP2 domain of CR2 interacts with C3d. Contrary 
to this result, biochemical studies showed that mutations on 
several basic residues on CCP1 domain affected C3d binding to 
CR2 (301). In 2010, a second structure was proposed (302) in 
agreement with the mutagenesis data (301) where both CCP1 and 
CCP2 are involved in the interaction (Figure 14). One possible 
explanation for the discrepancy between structures could be due 
to the high concentration of zinc in the crystallization buffer from 
2001 leading to a non-physiological complex.

integrin Family Complement Receptors  
CR3 and CR4
Integrin family CR3 (also known as CD11b/CD18, αMβ2 or Mac-1) 
and CR4 (also known as CD11c/CD18 or αXβ2) are heterodimeric 
transmembrane complexes, composed of a unique α-chain and 
a common β-chain. They bind multiple ligands participating in 
phagocytosis, cell adhesion to the extracellular matrix, leukocyte 
trafficking, synapse formation, and co-stimulation. Ligand binding 
and signaling through integrin receptors is governed by a complex 
cascade of conformational changes, known as inside-out signaling 
(303). A receptor in its inactive, bend-closed conformation can 
respond to a cytoplasmic signal, transmitted inside-out through 
the β-chain, passing to a low affinity binding extended-closed 
and high affinity binding extended-open conformation. Upon 
ligand binding, another signal is transmitted outside-in, leading 
to raid cellular response, including actin remodeling, phagocytosis, 
degranulation, or slow responses involving protein neosynthesis. 
CR3 and to lesser extent CR4 are essential for phagocytosis of C3 
fragments, opsonized immune complexes, and pathogens (304). 
CR3 and CR4 differ in their profile of recognized C3 fragments 
because both receptors bind to iC3b, but CR3 recognizes C3d, while 
CR4 binds to C3c, suggesting that the two receptors have distinct 
binding sites on the iC3b molecule (Figure 14) (305, 306). The iC3b 
and C3d binding site of CR3 is located in the VWF-A domain of 
the α-chain, also called αI domain, and binds in a divalent metal 
ion-dependent manner (307). This type of domain is present also 
in FB, which requires divalent ions (Mg2+) in order to interact with 
C3b. However, the two VWF-A containing molecules do not bind 
to the same fragments of C3b (113, 305). FB interacts only with 
C3b, while CR3 binds to iC3b and C3d and the binding sites for 
these VWF-A domains are distinct (Figure 14). VWF-A domain 
of CR3 binds to the TED domain (C3d part) of iC3b and the CUB 
and C345C domains of iC3b may also contribute to the interaction 
with the β-propeller and βI domains of the α-chain of CR3 (305).

In contrast to CR3, CR4 binds to the C3c portion of iC3b 
(Figure  14). The architecture of the complex has only been 
observed at low resolution, by electron microscopy and displays 
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FiguRe 14 | Complement receptors. CR1 is composed of CCP domains 
and is expressed primarily by immune cells and erythrocytes. Apart from being 
cofactor of FI, CR1 is also a complement receptor facilitating immune complex 
clearance and phagocytosis. CR1 interacts with C3b. CRIg has 
immunoglobulin-like structure in its C3b recognition domain. CRIg binds to 
C3b and iC3b and is expressed on macrophages and Kupffer cells. Immune 

cells also express CR3 and CR4 containing integrin domains that bind to iC3b 
(and C3d for CR3) on different binding sites on iC3b molecule. CRIg, CR3, and 
CR4 facilitate phagocytosis and modulate the activation state of cells. CR2 is 
expressed primarily on B-cells and recognizes C3d using the first two CCP 
domains. It serves as a co-stimulatory molecule for the B-cell receptor upon 
binding C3d-opsonized pathogen.
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a CR4 binding site at the interface between MG3 and MG4 (306). 
The flexibility of the CUB domain after cleavage by FI allows re-
orientation of the C3c part of iC3b leading to better exposure of 
the MG3–MG4 interface (9, 308). Initial studies of the structure 
and molecular details of the complex conformational changes in 
CR4 are starting to be elucidated (309) showing that CR4 binds 
iC3b through the αI domain on the face known to bear the metal 
ion-dependent adhesion sites similar to CR3 (306).

immunoglobulin Superfamily Receptor CRig
Immunoglobulin superfamily receptor CRIg is a CR expressed 
on macrophages and Kupffer cells in the liver that binds to C3b 
and iC3b (Figure 14) and mediates the phagocytosis of opsonized 
particles and pathogens (310, 311). CRIg acts as an inhibitor of the 
AP preventing the entry of the substrate molecule C3 and C5 into 
the C3 convertase (312). The CRIg-binding site on C3b is located 
in the MG ring of the β chain, engaging MG3 and MG6 domains. 
A conformational change in MG3 during the transition of C3 to 
C3b contributes to the formation of the CRIg-binding site and 
explains why CRIg binds to C3b and iC3b, but not to intact C3.

understanding Complement-Related 
Diseases using Structure–Function 
Relationships

The importance of the complement system in physiology is illus-
trated by the severe and life threatening diseases occurring due to 

inefficient or excessive complement activity. Abnormal comple-
ment activity is associated with many inflammatory, autoimmune, 
neurodegenerative, and age-related diseases. Here, we will describe 
the role of complement dysfunction in aHUS.

Atypical Hemolytic uremic Syndrome
The aHUS is a rare thrombotic microangiopathy that predominates 
in the kidney. Without appropriate treatment, it leads to end stage 
renal disease in approximately 60% of patients (313, 314). This 
thrombotic microangiopathy is different than typical HUS and 
thrombotic thrombocytopenic purpura because it is not associated 
with infection by Shiga toxin-producing bacteria or ADAMST13 
deficiency, respectively. aHUS occurs at any age and has a poor 
prognosis (prior to the development of Eculizumab). In contrast, 
typical HUS is predominantly a pediatric disease and has a favora-
ble renal outcome. aHUS is characterized by a triad of hemolytic 
anemia due to fragmented erythrocytes, thrombocytopenia, and 
acute renal failure. Renal failure is a result of platelets rich micro-
thrombi, formed in the small vessels (capillaries and arterioles) 
of the kidney resulting in a prothrombotic state. The hallmark of 
the aHUS is the association with alternative complement pathway 
mutations (Figure 15A). Endothelial damage is known to be related 
to complement dysregulation. Screening for and characterization 
of mutations in the components of the C3 convertase (C3 and 
FB), its regulators (FH, FI, MCP, CFHR1, and thrombomodulin), 
or anti-FH antibodies has become an indispensable part of the 
diagnostic of the disease (315).
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FiguRe 15 | understanding aHuS using structure–function 
relationships. (A) The role of complement alternative pathway in the 
physiopathology of aHUS. On healthy endothelial cells, deposited C3b is 
rapidly inactivated by regulatory molecules including FH, MCP, and FI. For FB 
binding and C3 convertase formation, FB is dissociated by FH and DAF 
preventing excessive host tissue damage. Mutations in the complement 
regulators FH, MCP, and FI can result in inefficient complement regulation. 
Mutations in the components of the C3 convertase (C3 and FB) induce the 
formation of overactive C3 convertase or a convertase that is resistant to 
regulation. In both cases, the complement cascade is activated on glomerular 
endothelial cell surface leading to endothelial damage, thrombosis, erythrocyte 

lysis, and aHUS. (B) FH mutations in the CCP19–20 region are mapped on the 
structure of the C3d–C3d–FH19–20 complex. A model GAG bound to FH 
CCP20 is indicated in gray. FH disease-associated mutations that decrease 
only C3b-binding are indicated in orange and mutations decreasing both C3b 
and GAG binding are in magenta. Reduced C3b and/or GAG binding will cause 
inefficient endothelial cell protection and complement overactivation. (C) C3 
mutations found in aHUS patients. The majority of the mutations (in red) are not 
randomly distributed, but mapped to the FH binding sites on C3b. These 
mutations correlated with decreased FH and MCP binding allowing 
characterization of the MCP binding site, which overlaps with the FH binding 
site in CCP-3–4.
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The importance of screening for mutations in complement 
factors can be observed in the examples of FH and C3. The 
majority of the mutations in FH found in aHUS patients does 
not induce protein quantitative deficiency and are located in the 
C-terminus of the protein (CCP19–20). These mutations affect 
either the interaction with C3b, GAG, or both ligands leading to 
impaired cell surface protection against complement attack [(175, 
177, 316); summarized in Ref. (191, 315, 317, 318)]. Mapping 
of these disease-associated mutations on the complex of C3d 
with FH19–20 (130, 131, 174) revealed that the residues which 
decreased C3b-binding mapped to the C3b/C3d-binding site 
of FH in CCP19. The residues that affected both C3b and GAG 
interaction were located in the FH CCP20 interface (Figure 15B). 
These structural analyses help to explain the mechanism by which 
genetic abnormalities in FH induce impairment of C3b and/or 
GAG binding and hence a predisposition to develop aHUS. A simi-
lar phenomenon is observed with C3 mutations found in aHUS. 
These genetic changes are not randomly distributed but cluster 
alongside FH CCP1–4 and CCP19–20 binding sites (Figure 15C) 
(142, 315, 319, 320). Functional analysis revealed that mutations 
located in the FH-binding sites resulted in decreased FH binding, 

thus showing the link with aHUS. Currently, there is a debate as to 
whether or not in physiological conditions FH CCP20 can interact 
with an adjacent C3d molecule (130, 131, 174). It is possible the 
observed interaction between the second molecule C3d and FH 
CCP20 may be a crystallization artifact and in turn the functional 
consequences of certain aHUS associated FH and C3 mutations 
will be more difficult to explain. However, these mutations fall 
within this suggested C3b/C3d binding site and indeed decrease 
FH/C3b interaction. This case exemplifies how structural analyses 
can aid in understanding disease physiopathology and how disease 
physiopathology improves our understanding of complement.

Disease-associated mutations also has resulted in the mapping 
of the MCP binding site on C3b. C3 mutations that decreased 
MCP binding mapped in an area overlapping with the FH CCP-
3–4-binding site (142). However, these mutations did not affect 
CR1  binding suggesting that the CR1 binding site is distinct 
and that CR1 is not involved in aHUS (142). Experimental and 
structural analysis revealed that for FH and C3 almost all studied 
genetic changes mapped to the ligand binding site and had clear 
functional consequences. aHUS mutations in FB seem to be 
exception of this rule. Mutations in FB were located in multiple 
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domains of the protein and in more than half of the cases they were 
far from any known binding sites (321). Mutations located within 
the C3b-binding site did induced formation of an overactive C3 
convertase or a convertase resistant to regulation (321–323). The 
mutations far from this binding interface showed no functional 
defect as observed by FB functional tests (321). As shown for the 
majority of complement mutations in aHUS, mapping of disease-
associated mutations together with detailed functional analysis 
should be performed to understand the mechanism of complement 
dysregulation associated with a disease.

Structural Basis of Therapeutic Complement 
intervention
We have described in depth the known molecular mechanisms of 
the complement system and this unleashes many possibilities for 
rational design of complement inhibitors for treatment of disease 
(324, 325). Here, we will give a few examples that illustrate this 
concept. Blockade of the late effector functions of complement 
can be obtained if the cleavage of C5 by the two C5 convertases 
is prevented. The therapeutic monoclonal antibody, Eculizumab, 
targets human C5 and blocks cleavage by C5 convertases (326). 
The Eculizumab binding epitope on C5 interacts with the contact 
interface between C5 and the C5 convertase (211) preventing the 
entry of C5 into the C5 convertase and blocking further cleav-
age and generation of the bioactive fragments C5a and C5b-9. 
Eculizumab blocks the terminal complement pathway but leaves 
the C3 convertases unaffected. Eculizumab showed significant 
improvement in clinical outcome and has been accepted for 
treatment of complement-mediated diseases including paroxysmal 
nocturnal hemoglobinuria (PNH) (327) and aHUS (328, 329) and 
clinical trials are ongoing for other diseases.

In order to control complement at an earlier step, inhibitors 
acting at the level of C3 have also been designed. Compstatin is a 
13-residue peptide that is being tested pre-clinically. It binds to C3 
and blocks its cleavage (330, 331). Compstatin binds to MG4 and 
MG5 of C3c and C3b where it undergoes a large conformational 
change upon interaction (332) causing steric hindrance of the 
substrate C3 to the convertase complexes and blocking comple-
ment activation and amplification. Compstatin has shown efficacy 
in complement blocking in vitro and in animal models including 
extracorporeal circulation (333), sepsis (334), and PNH (335). 
Both Compstatin and Eculizumab are species-specific and act only 
in humans and monkeys, but not in mice or rats, reflecting subtle 
differences in the structure of human and murine complement 
components.

Another strategy of rational design of complement inhibitors is 
to target the regulatory domains of FH or CR1 to the cell surface via 
potent C3b, iC3b, C3d, or membrane recognition domains, derived 
from FH or CR2. Mini FH molecules, containing CCP1–4 and 
CCP19–20 bind C3b and C3d with high affinity and show better 
efficacy compared to native FH in in vitro models of aHUS (336) 
and PNH (337). A hybrid molecule TT30, containing FH CCP1–5 
and CR2 CCP1–4 is designed to accumulate preferentially at sites 
already under complement-mediated attack (338). TT30 interacts 
simultaneously with C3b and C3d merging the functionality of 
fluid phase FH binding to C3b with CR2 interaction to C3d on 
the surface of host cells (339). TT30 and its murine analog showed 

significant improvement in models of AMD, ischemia/reperfusion 
injury, and PNH (340–342).

Conclusion

Currently, we know that complement is not only a simple lytic 
system, but rather a powerful innate immune surveillance tool, 
serving as a sentinel against pathogens, modulator of the adaptive 
immune response, and as a regulator of host homeostasis. This 
cascade of enzymatic reactions is driven by conformational changes 
induced after a recognition event assuring that complement will 
be activated only when and where needed. This special and tem-
poral control of complement activation is guaranteed also by the 
high specificity and selectivity of the enzymatic reactions, where 
the involved enzymes cleave only a single substrate and have a 
single ligand-binding site. In contrast to this high specificity of the 
propagation of the chain reaction, complement activation relies on 
target patterns binding by versatile recognition molecules, such 
as C1q, MBL, ficolins, and properdin. The activation of the three 
complement pathways leads to the generation of C3b, the Swiss 
army knife of complement, which interacts with a large variety 
of ligands and receptors with multiple distinct binding sites. The 
balance of these interactions determines whether full-blown 
activation will occur by the amplification loop of the complement 
pathways, with a generation of one of the most potent inflammatory 
mediators C5a or the effect will be attenuated by the C3b breakdown 
cycle. Again, the attenuation relies in large part on the capacity of 
a versatile recognition molecule FH to discriminate between self 
and non-self and to stop the amplification loop. C3b and C3(H2O) 
may bind to the cell surface via proteins-platforms, like properdin 
and P-selectin. Expression/binding of these molecules accelerates 
the complement activation and anaphylatoxin generation. The 
anaphylatoxins increase the expression/binding of P-selectin and 
properdin contributing to a vicious circle of complement activation, 
enhancing local inflammation, thrombosis, and tissue damage.

The knowledge of these molecular mechanisms that has been 
accumulated during recent years has allowed for better understand-
ing of complement-related diseases. It also opens up the possibility 
for a rational design of novel molecules with therapeutic potential to 
control steps in the complement cascade. Clinical application of the 
anti-C5 blocking antibody Eculizumab has already demonstrated 
that controlling complement can revolutionize the treatment of 
patients with overactive complement-mediated diseases.
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