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The potential of natural killer (NK) cells to target numerous malignancies in vitro has been
well documented; however, only limited success has been seen in the clinic. Although
NK cells prove non-toxic and safe regardless of the cell numbers injected, there is
often little persistence and expansion observed in a patient, which is vital for mounting
an effective cellular response. NK cells can be isolated directly from peripheral blood,
umbilical cord blood, or bone marrow, expanded in vitro using cytokines or differentiated
in vitro from hematopoietic stem cells. Drugs that support NK cell function such as
lenalidomide and bortezomib have also been studied in the clinic, however, the optimum
combination, which can vary among different malignancies, is yet to be identified. NK
cell proliferation, persistence, and function can further be improved by various activation
techniques such as priming and cytokine addition though whether stimulation pre- or
post-injection is more favorable is another obstacle to be tackled. Here, we review
the various methods of obtaining and activating NK cells for use in the clinic while
considering the ideal product and drug complement for the most successful cellular
therapy.
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Introduction

Natural killer (NK) cells are unique lymphocytes, distinct from B and T cells, which bridge the
innate and adaptive immune systems. They have the unique capacity to exert immunoregula-
tory and cytotoxic functions against transformed and infected cells without prior sensitization.
NK cells are characterized by the expression of CD56 and absence of CD3 and can be fur-
ther subdivided into a CD56bright population, which is predominantly cytokine producing and a
CD56dim population, which is cytolytic and provides antibody-dependent cell-mediated cytotoxicity
via CD16 (1). NK cells operate by detecting information, which is missing on the target. This
phenomenon is known as the “missing self hypothesis” and postulates that NK cell cytotoxicity
inversely correlates with the target expression of major histocompatibility complex class I (MHC-
I) (2, 3). In addition, NK cell activity is further regulated by a complex array of inhibitory and
activating receptors such as killer cell immunoglobulin-like receptors (KIR), natural cytotoxicity
receptors (NKp44, NKp30, and NKp46), and C-type lectins (CD94/NKG2A/NKG2C/NKG2D).
These properties equip NK cells with the tools to actively eliminate susceptible targets (4). Tak-
ing into account, the cytotoxic potential of these cells numerous attempts have been made to
transfer NK cell immunotherapy into the clinic. Here, we review which methods to consider for
obtaining cells for therapy, drug complements, and pre-infusion activation techniques. We also
summarize current clinical trials and outcomes and postulate where success in NK immunotherapy
may lie.
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NK Cells and Cancer

Natural killer cells were first implicated as playing a role in cancer
immunosurveillance when one large epidemiologic study found
that low NK cell cytotoxicity forecasted an increased risk in
developing cancer (5). There have since been numerous studies,
which demonstrate that NK cells can target human tumors in vivo
making themadesirable candidate for therapeutic use (6). Clinical
trials using autologousNK cells have shown the therapy to be non-
toxic, however, they fail to prove efficacy (7), which could be the
result of inhibition by self-MHC-I. Allogeneic treatment therefore
has potential to offer an alternative therapy with improved effect.
The direct involvement of allo-reactive NK cells in inducing anti-
tumor effect in hematopoietic transplants was first demonstrated
in 2002 (8). NK cells showed to enhance engraftment; providing
graft vs. leukemia (GvL) effect while suppressing graft vs. host
disease (GvHD) particularly when a KIR ligand mismatch in
the donor to host direction was observed. Reduced GvHD was
hypothesized to be attributed to the lysis of the recipient’s antigen
presenting cells (APCs) reducing the incidence of GvHD while
maintaining GvL effect. This was later successfully translated into
an in vivomodel using acute myeloid leukemia (AML)-engrafted
NOD/SCIDmice infusedwith allo-reactiveNKcells. Tumor clear-
ance was achieved implicating NK cells in preserving the GvL
effect (9).

Miller and colleagues later translatedNK cell therapy alone into
the clinic where allogeneic NK cells were infused into patients
with advanced cancer alongside IL-2 administration. This demon-
strated that NK cell infusions were feasible and safe and led to
complete remission in 5/19 patients with poor prognosis AML
(10). Additionally, the efficacy of haploidentical NK cell therapy
in the refractory disease was further improved by depleting host
regulatory T cells with IL-2 diphtheria toxin preventing their
immunosuppressive effect (11). NK cell allo-reactivity could also
be utilized in other scenarios besides hematopoietic stem cell
transplantation (HSCT) with studies in malignant glioma and
neuroblastoma patients demonstrating that NK cell infusions are
safe and partially effective (12, 13). Numerous types of cancer
could therefore benefit fromNK cell immunotherapy and current
clinical trials include pancreas, lungs, head/neck, breast, and renal
cell carcinomas.

Clinical Conditioning

Not only chemotherapy and/or radiotherapy are required for
the success of HSCT but also cellular immunotherapy. Such
treatments are necessary to reduce tumor burden and suppress
the immune system of the patient to prevent rejection of the
cellular therapy. Defining the correct conditioning regimen is
therefore critical. In a transplantation setting, common regimens
are referred to as myeloablative, non-myeloablative, and reduced
intensity and their use will depend on patient age and disease
severity; however, any decrease of leukemia recurrence is often at
the expense of an increase in toxicity (14).

The use of new conditioning agents termed as “novel agents”
have become increasing popular in cancer immunotherapy as a
result of their immunomodulatory and direct tumor targeting

mechanisms. In combination with cellular therapy, they offer the
potential for amore personalized and less toxic treatment regimen
as these specialized drugs have been shown to not only reduce
tumor burden but also enhance the function of cellular therapies.
Although chemotherapy has revolutionized the treatment of can-
cer, its side effects include the development of refractory disease
and severe toxicity. Novel agents provide an alternative option of
harnessing the immune system to tackle malignancies.

Thalidomide was one of the first novel agents to be well
studied; it is a synthetic glutamic acid derivative that is capable
of immunomodulatory, anti-inflammatory, and anti-angiogenic
effects. Although proven successful in targetingmultiplemyeloma
the exact mechanism of action of thalidomide is yet to be elu-
cidated although anti-inflammatory effects have been attributed
to inhibition of TNF-α production by monocytes and anti-
proliferative capabilities to disruption of the bone marrow (BM)
microenvironment preventing multiple myeloma cellular devel-
opment (15). Although extended anti-angiogenic characteris-
tics make a desirable option in limiting tumor development its
immunomodulatory properties have not been so well defined.
Lenalidomide is an immunomodulatory compound with a dual
mechanism of action. It is capable of targeting the tumor directly
through stromal support disruption, induction of tumor sup-
pressor genes, and activation of caspases (16). It is also able to
stimulate the cytotoxic functions of NK cells and T lymphocytes
while limiting the immunosuppressive impact of regulatory T cells
(17). Additionally, bortezomib is a proteasome inhibitor proven
popular by up-regulating expression of TRAIL death receptors
and altering caspase-8 activity rendering tumors susceptible toNK
cell lysis. However, intriguingly these tumors became resistance
to T cell cytotoxicity (18). The specific mechanisms by which
novel agent function offer a promising future for the treatment
of a variety of malignancies as these agents target not only the
tumor themselves but also offer potential to enhance the immune
system. This provides the possibility of coupling cellular therapy
with novel agents to provide personalized treatment regimens to
target an individual’s condition.

NK Cell Sources

It is considered that the success of NK cell immunotherapy is
dependent on obtaining high numbers of functional NK cells that
have the potential to survive in vivo. Numerous attempts have
therefore been made to obtain high levels of NK cells from a
variety of sources. One option is to isolate cells directly from
peripheral blood (PB) or cord blood (CB), however, as NK cells
make up only 10% of circulating lymphocytes in PB and 20%
in CB the number of cells obtained can be limited and could
potentially prevent the option for multiple infusions. Doses of
1–2× 107 cells/kg have been identified as safe (19); however,
higher doses of 2× 108/kg have been shown to be well toler-
ated and non-toxic (20). Several techniques have therefore been
explored to increase cell numbers. This includes expanding iso-
lated cells in vitro using different combinations of cytokines with
orwithout feeder layers, the use ofNK cell lines and differentiating
NK cells from hematopoietic stem cells (HSCs).
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NK Cell Expansion

Numerous methods of expanding mature NK cells in vitro
have been explored and have been reviewed previously (21);
however, these products seem to produce limited clinical success.
This may be because of wide variations in expansion rate and
distribution of NK cell subpopulations (22) or expanding mature
cells produces effectors with a more finite lifespan unable
to proliferate with lower cytotoxicity post infusion (23). NK
cell expansion using aAPCs particularly the GMP-compatible
genetically modified form of the K562 myeloid leukemia cell
line engineered to express membrane-bound interleukin 15 and
the ligand for the co-stimulatory molecule 4-1BBL has been
rising in popularity due to the potential to rapidly expand an
NK cell product with an up-regulation of activating receptors
and improved killing capacity (24). However, a first-in-human
trial carried out by Shah and colleagues in 2014 performing
the adoptive transfer of donor-derived IL-15/4-1BBL activated
NK cells showed interesting results. Surprisingly, 5/9 patients
experienced acute GvHD and as the T cell content of the infusion
was well below the specified threshold for GvHD development
the group concluded that the aNK-DLI contributed to the effect
by stimulating underlying T cell allo-reactivity (25). This is the
first time in a clinical setting NK cells have been implicated in the
role of induction or aggravation of GvHD, which could be a result
of lack of immunosuppressive drugs post transplant or infusion
of IL-2, which expands immunoregulatory populations. This
coupled with the infusion of an expanded NK cell population
with such a high up-regulation of activating receptors could be
the reason for such unfavorable results.

NK Cell Lines

The use of NK cell lines have been seen as an attractive option
due to the availability of a clinical grade frozen stock and their
homologous nature. The most prominent NK cell line currently
in focus is NK-92, which was established from a patient with
non-Hodgkin’s lymphoma and has demonstrated the capability of
lysing leukemia, lymphoma, and myeloma in vitro (26). Current
clinical trials have proven non-toxic; however, they have shown
limited success in demonstrating efficacy (27, 28). This could be
a result of the necessity to irradiate a cell line prior to infusion
for safety requirements, the cells could therefore be incapable
of proliferation in vivo severely limiting their persistence and
potential to target the tumor.

Differentiation of NK Cells

DifferentiatingNKcells in vitro fromHSCs or induced pluripotent
stem (iPS) cells are alternative options for obtaining high numbers
of functional cells. Different sources of cryopreserved HSCs have
been used to differentiate NK cells in vitro including human
embryonic stem cells (hESC), BM, mobilized peripheral blood
stem cells (mPBSC), and cord blood stem cells (CBSC). hESC are a
controversial source due to the ethical dilemma posed by obtain-
ing cells from a 5- to 7-day-old embryo. However, the H9 hESC
cell line has been used to produce NK cells that express activating
and inhibitory receptors, including KIRs, and are able to produce

cytokines and mediate cytotoxicity in vitro and in vivo (29). The
invasive collection procedure limits the use of BM and has there-
fore mainly been used to study NK cell development (30, 31). Dif-
ferentiating NK cells from induced pluripotent cells offers poten-
tial due to the ready availability of a donor and the non-invasive
cell harvestingmethods. A recent study identified amethod of dif-
ferentiating mature and functional NK cells using a combination
of embryoid body formation and membrane-bound interleukin
21-expressing aAPCs (32) and a thorough review of the potential
uses of such cells in the clinic was published last year (33). The
possibility of reprograming cells is a promising one; however,
there is the possible limitation that the differentiated NK cells
will be suppressed by self-MHC and therefore have little cytotoxic
effect. The use of NK cells differentiated fromCD34+ progenitors
was first shown to be feasible in the clinic by Yoon and colleagues
in 2010 (34). This led to interest in the use of umbilical cord blood
CD34+ cells as a source of NK cells with the focus being on gener-
ating a readily available, non-invasive, off the shelf cellular product
(35). Our groupmodified a published protocol (36) and compared
the use ofmPBSC, fresh CBSC, and frozen CBSC at differentiating
NK cells in vitro (37). This work demonstrated frozen CB CD34+
cells to be the best source of NK cells over fresh CB CD34+ and
frozen mPBSCs. This was due to higher fold expansion and there-
fore higher NK cell numbers generated without compromising
on phenotype, cytokine production, or cytotoxicity. Additionally,
the cells are capable of further proliferation in vitro and more
importantly could persist for longer and in higher numbers in vivo.
Considering that proliferation and persistence of NK cells in vivo
is fundamental for the development of a clinically relevant cellular
product this makes the differentiation of NK cells from CB HSCs
in vitro an attractive candidate for NK cell immunotherapy.

NK Cell Activation

As reviewed in Table 1, there have been many studies that well
document the expansion ofNK cells in vitro, however, we are yet to
obtain a clinically successful product, which proliferates and per-
sists in vivo inducing consistent efficacy. This could be because we
are yet to identify the optimumactivationmethod and status of the
cells before infusion. As seen in Figure 1, whether the cells should
be incubated with cytokines, genetically engineered, differenti-
ated into a “memory-like” phenotype, or primed using NK non-
susceptible cell lines are all options that need to be considered.

Cytokine activation has always been a popular method of stim-
ulating NK cells as it is a well-documented pathway of activation
in vivo and different cytokines can give rise to the same signaling
patterns while differing in their effects on development, activa-
tion, and proliferation. IL-2 stimulates cellular proliferation and
enhances cytotoxicity, however, it has been noted that this only
affects a small sub-population for an extended period (55). IL-15
significantly improves NK cell survival although it only stimulates
minimal expansion (56). Furthermore, the toxic effects of the
in vivo administration of cytokines cannot be ignored, IL-2 risks
vascular leak syndrome caused by the stimulation of endothelial
cells through the IL-2 receptor (57) and preferentially expands T
regulatory cells, which mediate immune suppression (58). Studies
with IL-15 in non-human primates have only shown transient
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TABLE 1 | NK cells in the clinic: trials so far.

Initial
population

Feeder
cells

Fold expansion
in vitro (purity)

In vitro
cytokine
admin

Condition Treatment and
in vivo cytokine

admin

Dose In vivo
expansion

Clinical
outcome

Reference

AUTOLOGOUS
CD3
depleted
PBMCs

LCL cell line
(LAZ388)

43±26 in
13–21days (90%)

IL-2 MRC High dose IL-2+ LANAK
following initial PR to IL-2
alone

N/A N/D Induced clinical response
15–30% patients

(38)

PBMCs None No expansion IL-2 Advanced CRC and
NSCLC

Multiple infusions of NK
cells+ IL-2+Hsp70
peptide TKD

1–7.5×
106/kg

Multi-infusion trial Well tolerated and safe, no
significant tumor response

(39)

PBMCs Wilms tumor cell
line (HFWT)

113 in 14 days
(96%)

IL-2 Malignant glioma Multiple infusions+ IFN-β N/A Multi-infusion trial Well tolerated, no toxicity, 3
PR, 2 MR, 4 NC, and 7 PD

(12)

PBMCs αGalCer-pulsed
autologous
PBMCs

101–103 21days
(70% viability)

IL-2 Recurrent or
advanced NSCLC

Infusion of ex vivo
expanded Vα24NKT cells

5×107/m2 Reduced function in
some patients

Well tolerated, no toxicity (40)

CD3−/CD56+

PBMCs
EBV-LCL
(TM-LCL)

53–683 in 14 days
(99.7%)

IL-2 CLL and metastatic
tumors

Infusion of NKs+ IL-2
after PEN/BOR

1×108/kg Multi-infusion trial Well tolerated and some
pre-clinical evidence of
anti-tumor response

(41)

CD3−

PBMCs
Auto PBMCs 278–1097 in

21–26days
(91–97%)

IL-2 Metastatic melanoma
and RCC

Infusion of activated
NKs+ IL-2 after CY/FLU
regimen

1.88–7.6×
1010/kg

NK persistence
7days post infusion

No toxicity or clinical response (42)

AUTOLOGOUS/ALLOGENEIC
CD56+/CD3−

PBMCs
4-1BBL+ IL-
15Rα+

aAPCs

12–160 in
7–9 days
(68–99%)

IL-2 MM Infusion of NKs+ IL-2
after BOR/CY/FLU

2×107–2×
108/kg

Significant in vivo
expansion fresh
product

Well tolerated, no toxicity (43)

ALLOGENEIC
CD3−/CD56+

PBMCs
N/A No expansion None High risk myeloid

malignancies
Infusion of NKs post
haplo-HSCT

0.21–1.41×
107/kg

N/D Well tolerated, increased donor
chimerism in 2/5 patients

(19)

CD3−/CD56+

PBMCs
None 5 in 12 days (95%) IL-2 Multiple relapse ALL

and AML
Repeat infusions of
activated NKs post-HSCT

8.9–29.5×
106/kg

N/D Well tolerated, no toxicity (44)

CD3−

PBMCs
None No expansion None Metastatic

melanoma, RCC,
refractory Hodgkin’s,
and AML

Infusion of NKs+ IL-2
after Lo-CY/mPred, FLU,
or Hi-CY/FLU

1×105–2×
107/kg

In vivo NK expansion
in Hi-Cy/Flu patients

CR in 5/19 poor prognosis
patients

(10)

CD3−

PBMCs
None No expansion IL-2 Myeloma Infusion of activated

NKs+ IL-2 after FLU/MEL
regimen and auto-PBSCT

1.7×106/kg Donor cells persisted
and lost by day 9–14

CR in 50% patients (45)

PBMCs None 1036 in 19 days
(88% viability)

OKT3
and IL-2

CRC, carcinoma and
B-CLL

Infusion of activated
NKs+ IL-2 after
haplo-HSCT

8.1–40.3×
106/kg

Multi-infusion trial Minor response in 2 patients (46)

CD3−/CD56+

PBMCs
None No expansion None AML Infusion of NKs+ IL-2

after CY/FLU regimen
0.5–8.1×
107/kg

Significant in vivo
expansion observed
at day 14 (5800/mL)

100% EFS at 2 years (47)

CD3−

PBMCs
None No expansion

(43±11%)
None Lymphoma Infusion of NKs+ IL-2

after RTX/CY/FLU
0.2–40×
107/kg

NK cells not detected
7days post infusion

2 CR/2PR (48)

(Continued)
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TABLE 1 | Continued

Initial
population

Feeder
cells

Fold expansion
in vitro (purity)

In vitro
cytokine
admin

Condition Treatment and
in vivo cytokine

admin

Dose In vivo
expansion

Clinical
outcome

Reference

CD3−/CD56+

PBMCs
None 32–131.3 in

20–23days
(82.7–99.6%)

HC and
IL-15

Advanced NSCLC Infusion of pre-activated
NKs

0.2–29×
106/kg

Multi-infusion trial PR in 2 patients best response
with most infusions

(49)

CD56+

selected
PBMCs

None No expansion None AML Infusion of NKs+ IL-2
after CY/FLU regimen

1.11–5.0×
106/kg

Donor NKs detected
up to 17days post
first infusion

CR 6/13 patient (50)

CD3−/CD56+

PBMCs
None No expansion IL-2 for

half of
patients

AML, ALL,
neuroblastoma, and
RMS

Multiple infusions of
pre-activated and resting
NKs after haplo-HSCT

6–45.1×
106/kg

NK cells detected at
24 h

Two patients with
neuroblastoma alive at 2 years

(51)

CD3−

PBMCs
None No expansion

(70% viability)
IL-2 Breast and ovarian

carcinoma
Infusion of pre-activated
NKs+ IL-2 after CY/FLU
with/without TBI

8.33×
106–3.94×
107/kg

No eligible patients
met predefined
criterion for
successful in vivo
expansion

TBI improved longevity of NK
engraftment

(52)

CD56+/
CD3−

PBMCs

None No expansion None Leukemia and
malignant solid
tumors

Multiple NK infusions after
ATG/OKT3 and
hapol-HSCT

0.3–3.8×
107/kg

N/D No significant clinical response (53)

CD56+/CD3/
CD19−

PBMCs

None No expansion
(53%)

IL-2 Relapsed/primary
AML

Infusion pre-activated NKs
after IL-2DT

2.6±1.5×
107/kg

In vivo expansion
enhanced with
T-REG depletion

Well tolerated, no toxicity (11)

CD56+CD3−

PBMCs
4-1BBL+ IL-
15Rα+

aAPCs

9–11days
(>90%)

IL-15 EWS, DSRCT, and
RMS

CY/FLU/MEL/G-CSF 1×105/kg Multi-infusion trial 5/9 patients experienced acute
GVHD

(25)

CELL LINES
NK92 cell
line

None >200 in
15–17days

IL-2 RCC and malignant
melanoma

Infusion of ex vivo
expanded NK-92 cells

Up to
3×109/m2

Multi-infusion trial Well-tolerated possible
response in 2 patients

(27)

NK92 cell
line

None 2 in 32 h IL-2 Solid tumors,
sarcomas,
leukemias, and
lymphoma

Infusion of ex vivo
expanded NK-92 cells

Up to
1×1010/m2

Persist in circulation
up to 48 h

Well-tolerated possible
response in lung cancer
patients

(28)

CD56+CD3−

PBMCs
None 5 in 14 days

(>95%)
IL-2 Multiple relapsed

neuroblastoma
Infusion pre-activated NK
cells

7.8–45.1×
106/kg

No clear expansion No toxicity observed (54)

ALL, acute lymphoblastic lymphoma; AML, acute myeloid leukemia; ATG, anti-thymocyte globulin; B-CLL, B cell chronic lymphocyte leukemia; BOR, bortezomib; CLL, chronic lymphocyte leukemia; CR, complete response; CRC, colorectal
carcinoma; CY, cyclophosphamide; DSRCT, desmoplastic small round cell tumor; EWS, Ewing sarcoma; FLU, fludarabine; G-CSF, granulocyte colony stimulating factor; HC, hydrocortisone; MEL, melphalan; MM, multiple myeloma; mPred,
methylprednisolone; MRC, metastatic renal carcinoma; N/D, not determined; NSCLC, non-small cell lung carcinoma; PEN, pentostatin; PR, partial response; RCC, renal cell carcinoma; RMS, rhabdomyosarcoma; RTX, rituximab; TBI, total
body irradiation.
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FIGURE 1 | Summary of NK activation mechanisms. (A) CAR NK cells.
Expression of chimeric antigen receptor (CAR) specific for tumor-associated
cell surface antigens redirects NK cells to malignant cells and facilitates
cytotoxic activity. (B) Primed NK cells. Engagement of CD2 within CD15 of
CTV-1 ligand leads to granule polarization and NK cell function is triggered
by the engagement of at least one more activating receptor from a tumor

cell. (C) Cytokine activated NK cells. IL-2 and IL-15 activation leads to
activation of JAK/STAT, PI3K, MAPK, and NF-κB pathways. (D) CIML NK
cells. IL-12, IL-15, and IL-18 induces a rapid and prolonged expression of
CD25, resulting in a highly functional high-affinity IL-2 receptor. The receptor
responds to picomolar concentrations of IL-2 leading to STAT5
phosphorylation and release of IFN-γ.

toxicity; however, its reduced half life may suggest the need for
more frequent dosing in therapeutic applications (59).

A method to avoid such life threatening conditions through
in vivo administration of cytokines is expanding or stimulating
the cells in vitro. NK cells have always been considered a member
of the innate immune system incapable of producing memory.
However, in 2006, it was first observed thatNK cells couldmediate
a long-lived antigen-specific adaptive response independently of
other lymphocytes (60). Sun and colleagues (61) later identified an
immunological memory in NK cells from MCMV infected mice
and it was demonstrated that NK cells pre-activated with IL-12
and IL-18 infused into a naïve host and later re-stimulated showed
enhanced IFN-y production (62). Thismodel was later transferred
to an in vitro model stimulating human cells showing the same
results (63). This improvement in cytokine production offers the
potential for enhancedGvL effect and a clinical trial is currently in
progress targeting relapsed and refractory AML (NCT01898793).

It has been reported that resting NK cells require a two-stage
activation process known as “priming” and “triggering” (64). This
states that tumors resistant to NK cell killing evade lysis by failing

to prime the cell; however, Mark Lowdells group were able to
identify a cell line, which could prime the cell without triggering
cytokine production or cytolytic activity. This led to the devel-
opment of an NK cell priming technique that readied the cells
for killing, which was still maintained post cryopreservation (65).
Primed NK cells from patients with multiple myeloma have also
been proven to kill NK cell resistant malignant plasma cells (66).
Preliminary data from an ongoing transitional phase I/II clinical
trial showed that without cytokine administration primed NK
cells from HLA haploidentical-related donors can persist in vivo
with no toxic effects (67).

Genetic Engineering

Although currently restricted to pre-clinical models the use of
chimeric antigen receptor (CAR)-expressing NK cells has the
potential to offer enhanced effector cell function of increased
specificity. Anti-CD19 CAR T cells have effectively demonstrated
their ability to induce long-term remission in patients with B
cell malignancies (68). However, concern associated with CAR
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T cell therapy extends to GvHD, on target/off tumor effects, and
tumor lysis syndrome. By contrast, allogeneic CAR-engineered
NK cells are expected to induce anti-tumor effects and dissipate
after a few days (23). As previously reviewed by Glienke et al. in
2015, current work in the field has focused mainly on targeting
CD19 and CD20, however, CARs, which target CS1 and CD138
for multiple myeloma, GD2 and CD244 for neuroblastoma, HER-
2 for epithelial carcinomas, and GPA7 for melanoma, are also
beginning to indicate promising results.

Immune Escape Mechanisms

Not all tumors are susceptible to NK cell mediated killing, as some
cancer cells have developed the ability to escape detection by the
immune system. Mechanisms that regulate the evasion of tumor
cells by NK cells extends to the down-regulation of activating
receptor ligands forNKG2D (69), the production of soluble stress-
induced ligands, such as MICA, which degrades NKG2D leading
to NK cell inhibition (70) and the release of suppressive cytokines
such as IL-10 and TGF-β (71). Some success has been seen by
NK cell immunotherapy targeting hematological malignancies;
however, this has not been transferred to solid tumors. This could
be a result of the increased concentration of immunosuppressive
cytokines and ligands around a tumor mass, method to overcome
such escape mechanisms could provide further potential for NK
cells to not only target hematological malignancies but also solid
tumors.

Concluding Remarks

Natural killer cell immunotherapy has been a promising option for
providing specialized and target specific treatment for a therapy

in its own right and as a supportive one in infection or transplan-
tation. Although some mechanisms of NK cell biology are yet to
be elucidated as we make progress in the field an effective clinical
NK cell immunotherapy will becomemore achievable. A standard
clinical regimen is still to be elucidated and obstacles such as cell
dose, activation status, method of expansion, drug complement,
and source are still to be determined.

It has always been thought that high numbers of NK cells are
necessary for a successful clinical product. However, numerous
groups have managed to successfully generate high numbers of
functional NK cells in vitro although the lack of clinical effect
and significant cost implications cannot be ignored. The high-
cell number requirement is likely to be the result of a “success
in numbers” approach with there being a significant loss of cells
through in vivo targeting and just a small sub-population of
effector cells that will target the tumor. Perhaps work should
therefore be refocused on the infusion of a small population of
cells with optimum pre-activation status that will traffic to the
tumor site and would not be suppressed by tumor evasion mecha-
nisms. This is a significant goal to achieve considering the variety
of NK cell populations occurring naturally in the body. How-
ever, the absence of a labor-intensive long-term culture system
would mean this method would pose significantly reduced cost
implications. Once techniques have been optimized and stream-
lined there would therefore be a greater possibility of NK cell
immunotherapy being routinely adopted as a clinical therapy in
the future.
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