
July 2015 | Volume 6 | Article 3341

Review
published: 08 July 2015

doi: 10.3389/fimmu.2015.00334

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Susan Carpenter,  

University of California  
San Francisco, USA

Reviewed by: 
Philippe Georgel,  

Strasbourg University, France  
Frederick J. Sheedy,  

Trinity College Dublin, Ireland

*Correspondence:
 Paul J. Hertzog,  

Centre for Innate Immunity and 
Infectious Diseases, Hudson Institute 

of Medical Research, 27-31 Wright 
Street, Clayton, VIC 3168, Australia  

paul.hertzog@hudson.org.au

Specialty section: 
This article was submitted to 

Molecular Innate Immunity, a section 
of the journal Frontiers in Immunology

Received: 01 May 2015
Accepted: 15 June 2015
Published: 08 July 2015

Citation: 
Forster SC, Tate MD and Hertzog PJ 

(2015) MicroRNA as type I 
interferon-regulated transcripts and 

modulators of the innate 
immune response.  

Front. Immunol. 6:334.  
doi: 10.3389/fimmu.2015.00334

MicroRNA as type i interferon-
regulated transcripts and modulators 
of the innate immune response
Samuel C. Forster1,2,3, Michelle D. Tate1,2 and Paul J. Hertzog1,2*

1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia, 
2 Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia, 3 Host-Microbiota 
Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, UK

Type I interferons (IFNs) are an important family of cytokines that regulate innate and 
adaptive immune responses to pathogens, in cancer and inflammatory diseases. While 
the regulation and role of protein-coding genes involved in these responses are well 
characterized, the role of non-coding microRNAs in the IFN responses is less developed. 
We review the emerging picture of microRNA regulation of the IFN response at the tran-
scriptional and post-transcriptional level. This response forms an important regulatory loop; 
several microRNAs target transcripts encoding components at many steps of the type I 
IFN response, both production and action, at the receptor, signaling, transcription factor, 
and regulated gene level. Not only do IFNs regulate positive signaling molecules but also 
negative regulators such as SOCS1. In total, 36 microRNA are reported as IFN regulated. 
Given this apparent multipronged targeting of the IFN response by microRNAs and their 
well-characterized capacity to “buffer” responses in other situations, the prospects of 
improved sequencing and microRNA targeting technologies will facilitate the elucidation 
of the broader regulatory networks of microRNA in this important biological context, and 
their therapeutic and diagnostic potential.
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introduction

The innate immune system provides the first line of defense against invading pathogens and plays a 
vital role in the detection of cellular disturbances. This system is initiated through activation of pattern 
recognition receptors (PRRs), such as the Toll-like receptors (TLRs) (1), Nod-like receptors (2), and 
RIG-I like helicases (3), which act as a sophisticated detection network, recognizing danger signals 
and initiating both intra- and intercellular responses. Importantly, the intercellular responses regulated 
through these pathways act to recruit and guide the broader immune response. The PRR intracellular 
signaling pathways are composed of well-characterized components including adaptors (e.g., MyD88, 
TAB) and enzymes (e.g., IRAKs and IKKs) that activate two main transcription factors, namely NF-κB, 
which drive pro-inflammatory cytokine gene transcription, and the IRFs, which drive expression of 
type I interferon (IFN) gene transcription (Figure 1). The type I IFNs are inducible cytokines that 
play an important role in many aspects of immunity (4) and have been shown to regulate over 2000 
coding and non-coding large RNA transcripts, termed IFN-regulated genes (IRGs). This regulation 
occurs in a highly coordinated manner, the exact nature of which is dependent on subtype, timing, 
dosage, cell, and pathophysiological context (5).
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At the systems level, an understanding of signaling in the innate 
immune response has been initiated (6, 7). Over the last decade, 
a role for particular microRNAs and other non-coding RNA in 
sculpting and modulating many levels of the innate immune 
response has begun to emerge (8). This includes targeting tran-
scripts encoding components of PRR pathways impacting IFN 
production, targeting transcripts encoding the IFN cell surface 
receptors and signal transduction proteins to regulate signaling, 
and targeting IRGs directly, to shape the overall IFN response. 
At each of these levels, microRNAs may suppress activation by 
targeting key signaling components or enhance signaling, by sup-
pressing negative regulators. Interestingly, microRNAs themselves 
may also be induced or repressed directly through IFN signaling, 
introducing an additional layer of regulation to this response. This 
review will highlight the growing body of research in this area.

MicroRNA Biogenesis and Function

Unlike many families of non-coding RNAs, the processing, 
accessory proteins and functional requirements for microRNA 
activity are relatively well understood. Processing from a primary 
to a mature microRNA occurs through a series of cleavage events 
dependent on the enzymes Drosha, Dicer, and associated accessory 
proteins (9). Through this processing, one of the two precursor 

FiGURe 1 | MicroRNAs and their roles in regulating the innate immune response.

hairpin RNA strands is incorporated into the RNA-induced 
silencing complex (RISC) containing the Argonaute (Ago) 
proteins. These mature microRNA contained within the RISC 
complex are small, approximately 21–23 base pair transcripts. 
Through nucleotide homology, they bind the target messenger 
RNA (mRNA) molecule, usually within the 3′ untranslated region 
(UTR), to direct RNA silencing. This silencing has been shown 
to occur through mRNA cleavage, transcript destabilization by 
shortening of the mRNA polyadenylated tail, or through direct 
target degradation (10).

Initial work defining microRNA function has focused largely 
on constitutively expressed and cell-specific microRNA, assigning 
to these microRNAs important functions in cell differentiation, 
lineage commitment, and the determination of cell fate (11, 12). 
High-throughput expression profiling studies of microRNAs in the 
context of cancer-related diseases, for example, have demonstrated 
microRNA dysregulation, predominantly reduced expression (13). 
These observations have led to a model suggesting that microRNAs 
act primarily in determination of cell fate by guiding differentia-
tion and maintenance of homeostasis. Further experiments using 
gene profiling have demonstrated a capacity to classify cancers 
by microRNA expression with many studies investigating the 
use of microRNAs as circulating biomarkers for prognostic and 
diagnostic purposes, as recently reviewed in Ref. (14). There is now 
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growing knowledge of the role played by microRNA regulation in 
other biological contexts, including in protecting against infection 
and regulating the immune response (8, 15).

MicroRNA Regulation of innate immune 
Signaling Leading to iFN Production

Activation of a number of PRR signaling pathways may result 
in the production of a subset of IFNα subtypes, the single IFNβ 
subtype or both a subset of IFNα subtypes and the IFNβ subtype 
in combination. While there are no reported stimuli that activate 
only a single IFNα subtype, nor all IFNαs, IFNβ is expressed exclu-
sively in circumstances including M-CSF stimulated macrophage 
progenitors and RANKL stimulated osteoclast progenitors (16). 
All IFN subtypes commonly bind the IFNAR receptor complex 
and activate similar signal transduction pathways, although IFNβ 
can also initiate an additional transcriptional response through 
a unique receptor interaction (17). With increased microRNA 
expression profiling of innate immune pathways, a growing number 
of inducible microRNAs are being described that regulate signaling 
pathways that lead to IFN production. MiR146 and miR155 are two 
well-described, highly inducible microRNAs, which were initially 
identified by microarray on human THP-1 cells as responsive to the 
TLR4 agonist LPS (18). Extensive characterization demonstrates 
rapid induction of these microRNAs in response to activation of 
many innate immune pathways, including those initiated by TLR2, 
TLR4, TLR5, TNFα, and IL-1β (18). Fluorescence reporter and 
microRNA decoy assays have also demonstrated miR146 targeting 
of TLR signaling molecules, MAL, TRAF6, IRAK1, and IRAK2, 
which are involved in initiating NF-κB responses (19, 20).

Studies using peripheral blood mononuclear cells (PBMCs) 
from patients with systemic lupus erythematosus (SLE), a dis-
ease commonly associated with excessive type I IFN signaling, 
identified significant down-regulation of miR146 in PBMCs 
from patients with this disease (21). Under-expression negatively 
correlated with clinical disease activity and with IRG expression, 
while transfection of miR146 transcriptionally suppressed IFNα 
and IFNβ expression. In an Epstein–Barr Virus positive lymphoma 
cell line, miR146 targeted both STAT1 and IRF5 transcripts (21) 
and resulted in modification of the intensity of the IFN response 
through suppression of IRGs (22). Given this regulatory relation-
ship, in which miR146 is both induced by NF-κB and acts to nega-
tively regulate NF-κB and IFN signaling, an important negative 
feedback relationship is suggested. Indeed, mice lacking miR146 
exhibit an autoimmune disease phenotype and over-activation of 
NF-κB signaling pathways in a manner consistent with this mode 
of action (23, 24).

Strong up-regulation of miR155 in response to LPS activation 
of TLR4 is well described (18, 25, 26). A recent study demon-
strated both NF-κB and ETS2 play a key role in the regulation of 
miR155 (27). In the context of TLR signaling, western blot and 
3′ UTR luciferase assays have demonstrated miR155 targeting 
of TNF adaptor molecules Fas-associated death domain protein 
(FADD), the serine-threonine kinase Ripk1 and IkappaB kinase 
epsilon (IKKɛ) (28), c-Fos (29), the signaling molecule TAB2, 
and the transcription factor PU.1 (30). Multiple targets within 

TLR pathways suggest a role for miR155 in providing protection 
against uncontrolled TLR responses (28). Significant investigation 
has also been performed contrasting the actions of the alternate 
miR155 minor strand during TLR7 signaling (31), suggest-
ing coordinated regulation of the miR155* strand provides a 
mechanism to modulate IFN production in this response. Rapid 
up-regulation of miR155* suppresses translation of the negative 
regulator of TLR signaling, IRAK3, thus potentiating signaling 
and resulting in greater induction of both TNFα and IFN (31, 32). 
This signal enhancement mediated by miR155* contrasts with the 
buffering role provided by miR155, suggesting a need for further 
investigation into the expression and activation profiles of the two 
miR155 strands.

Other microRNAs have been associated with regulating PRR 
signaling pathways and thus may play important roles in regula-
tion of the IFN response. TLR2 and TLR4 have been shown to 
be regulated by miR19 (33) and let7e (34), respectively, while the 
important adaptor molecule MyD88 is targeted by the miR200 
family (35). Since the pathways in which these receptors and adap-
tor are found are involved in the induction of IFN gene expression, 
these microRNAs may thus impact on IFN production, but this has 
not been directly shown. These data together suggest a complex 
regulatory network interacting to balance the degree and duration 
of the TLR and thus IFN responses.

Multiple members of the IFNα gene family have been shown 
to be directly targeted by miR466i at the transcript level, reducing 
IFN production by macrophages and dendritic cells, as well as the 
induction of an anti-viral response (36). Similarly, miR26a, miR34a, 
and let7b directly target the IFNβ gene transcript. Interestingly, 
IFNβ signaling was shown to up-regulate the expression of these 
microRNAs, indicating a potential negative feedback loop to 
buffer IFNβ production (37). Overall, these studies demonstrate 
an important, emerging role for microRNA regulation of IFN 
production, which may be applied directly through targeting 
IFN transcripts or indirectly through subtle manipulations of the 
strength, timing, and duration of the upstream PRR signaling 
pathways.

MicroRNA Regulation of Type i iFN 
Signaling

In addition to impacting IFN production through targeting PRRs, 
there is mounting evidence that microRNAs also directly regulate 
different aspects of the type I IFN signaling pathway. Type I IFNs 
bind to the cell surface IFNAR receptor complex, comprised of 
the subunits IFNAR1 and IFNAR2, resulting in phosphorylation 
and activation of the associated tyrosine kinases TYK2 and JAK1 
(Figure 1). These in turn phosphorylate receptor tyrosine residues 
leading to the recruitment and activation of transcription factors. 
These transcription factors include STAT1, STAT3, and STAT5 
homo- and heterodimers, the ISGF3 complex, composed of STAT1, 
STAT2, and IRF9, as well as STAT-independent pathways (16).

At the type I IFN receptor level, multiple microRNAs have 
been reported to target IFNAR1. MiR29a has been shown experi-
mentally to reduce the expression of IFNAR1 on murine thymic 
epithelial cells, reducing IFN responses critical in the regulation 
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TABLe 1 | Table of known iFN-regulated microRNAs.

MicroRNA Stimulation Cell type/
tissue

Change Technique Reference

Let7a IFNβ Glioma Down Microarray (52)
Let7b IFNα Huh7 Up Microarray (55)

IFNβ Glioma Down Microarray (52)
Let7c IFNβ Glioma Down Microarray (52)
Let7f IFNα Huh7 Up Microarray (55)

miR1 IFNα PBMC Up RT-PCR (53) 
IFNβ Huh7 Up Microarray, 

RT-PCR
(50, 56)

Primary 
hepatocyte

Up RT-PCR (50)

miR100 IFNβ Glioma Down Microarray (52)
miR122 IFNβ Huh7 Down Microarray (50)
miR1225 IFNα Huh7 Down Microarray (55)

miR128 IFNα PBMC Up RT-PCR (53)
IFNβ Huh7 Up Microarray, 

RT-PCR
(50, 56)

miR129 IFNβ HeLa Up Microarray (57)
RT-PCR

miR1296 IFNα Huh7 Down Microarray (55)
miR142 IFNβ Huh7 Up RT-PCR (56)
miR143 IFNα Huh7 Up Microarray (55)
miR146 IFNβ Huh7 Up RT-PCR (56)

miR155 IFNβ BMM Up Microarray (26) 
IFNβ RAW264.7 Up RT-PCR (58)
IFNβ Huh7 Up RT-PCR, 

Microarray
(50, 56)

Primary 
hepatocyte

Up RT-PCR (50)

miR181a IFNα Huh7 Up Microarray (55)
miR184 IFNα Huh7 Down Microarray (55)
miR187 IFNβ Glioma Up Microarray (52)
miR190b IFNα Huh7 Down Microarray (55)
miR194 IFNβ Glioma Up Microarray (52)
miR195 IFNβ LX-2 Up RT-PCR (59)
miR196a IFNβ Huh7 Up RT-PCR (56)
miR21 IFNβ Glioma Down Microarray (52)
miR212 IFNα Huh7 Down Microarray (55)

miR296 IFNβ Huh7 Down RT-PCR (56)
IFNβ Huh7 Down Microarray (50)

miR30 IFNα PBMC Up RT-PCR (53)
IFNα Blood-derived 

human NK 
cells

Down Sequencing (54)

IFNβ Huh7 Up Microarray, 
RT-PCR

(50, 56)

miR301 IFNα Huh7 Up Microarray (55)
miR34a IFNβ Up (60)
miR351 IFNβ Huh7 Up Microarray (50)

miR378 IFNα Blood-
derived 
human NK 
cells

Down Sequencing (54)

miR431 IFNβ Huh7 Up Microarray (50)
miR448 IFNβ Huh7 Up Microarray (50)
miR449a IFNα Huh7 Down Microarray (55)
miR499a IFNα Huh7 Up Microarray (55)
miR518b IFNα Huh7 Down Microarray (55)
miR582 IFNα Huh7 Up Microarray (55)

List of reported IFN-regulated microRNAs, identified through specific cellular stimulation 
with type I IFN.
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of thymic cellularity (38). In this study, mice lacking miR29a dis-
played increased thymic IFNAR1 expression and hyper-sensitivity 
to polyI:C treatment. A single nucleotide polymorphism (SNP) 
ablating miR1231 regulation of IFNAR1 has been associated as a 
causative factor in hepatocellular carcinoma (39). MicroRNAs can 
also indirectly modulate type I IFN signal transduction by target-
ing SOCS1, a negative regulator of the JAK-STAT pathway, which 
binds the receptor complex through interaction with TYK2 (40). 
MiR19a, miR122, and miR155 have been shown to target SOCS1, 
resulting in enhancement of type I IFN signaling and subsequent 
innate and adaptive immune responses (41–45). This miR155 
targeting of SOCS1 is consistent with increased phosphorylation 
of STAT1 and STAT3, resulting in the enhanced induction of anti-
viral genes and inhibition of HBV replication (46).

Downstream of the IFN receptor, STAT1, STAT2, and STAT5 
are targeted by a number of microRNAs, as reviewed previously 
(47). In particular, STAT1 is targeted by miR145, miR146, and 
miR221/222, and STAT2 by miR221/222, reducing type I IFN 
signaling and IRG expression. A recent study also illustrated that 
miR373 reduces the expression of both JAK1 and IRF9, leading 
to reduced type I IFN anti-viral gene induction and increased 
HCV replication (48). STAT3 regulation by microRNAs, including 
miR9, miR93, miR20a, and miR17, has also been examined in 
many disease and developmental contexts, as previously reviewed 
in Ref. (49). In the context of IFN response, the direct regulation 
of STAT3 remains to be elucidated.

iFN Regulation of MicroRNAs

While extensive characterization of the microRNA response to 
type I IFN examining temporal or subtype variation has not been 
reported, analysis using microarray based expression profiling 
has provided some insight into IFN-regulated microRNAs. 
Characterization of IFNβ-regulated microRNAs in Huh7 cells, with 
a custom microarray containing 245 microRNAs from humans and 
mice, identified 30 microRNAs that were induced or suppressed 
(50). Interestingly, these included eight induced microRNAs 
(miR1, miR30, miR128, miR196, miR296, miR351, miR431, and 
miR448) that displayed complementarity in their seed sequences 
with hepatitis C virus RNA. In addition, miR122, which positively 
regulates HCV replication, was suppressed by IFNβ. MiR122 acts 
to enhance viral replication by shielding the HCV genome from 
the cytosolic RNA exonuclease, Xrn1 mediated degradation, and 
another, yet undefined, Xrn1 independent mechanism (51). Other 
studies in human glioma cells stimulated with IFNβ used more 
advanced microarrays containing 662 probes. These experiments 
identified induction of miR187 and miR194 and suppression of 
miR100, let7a, let7b, let7c, and miR21 (52). In total, 36 type I 
IFN-regulated microRNAs have been reported to date using arrays 
and quantitative real-time PCR (Table 1). Of these, 18 are regulated 
by IFNβ, 14 by IFNα, and 4 have been shown to be regulated by 
both IFNβ and IFNα. While 21 microRNAs are reported to be 
up-regulated after IFN stimulation, 13 are suppressed. Let7b and 
miR30 are regulated differentially in a cell type-specific manner 
(50, 53, 54). Interestingly, this list includes a number of key micro-
RNAs already described as playing important roles in regulating 
the induction of type I IFNs. Notably, miR155, induced broadly and 
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strongly in response to IFN, has been shown to both suppress TLR 
signaling and induce IFN signaling through targeting of SOCS1 
(42). This regulation may occur in a cell type-specific manner or 
act within the same cell to induce a shift to suppress TLR-based 
signaling and enhance IFN signaling, once the secondary signal 
has been induced. Alternatively, miR155 induction by IFN in a 
cell where TLR induction has not yet occurred could render a 
cell unresponsive to TLR signaling and focus cell resources into 
the induction of an IFN-mediated protective state. Overall, the 
existing data suggest a negative regulatory role for the major 
miR155 strand in buffering TLR signaling that may be induced 
either through NF-κB signaling or downstream of IFN signaling. 
This contrasts the role for the minor miR155* strand in enhancing 
IFN signaling through negative regulation of IRAK3, described 
previously, suggesting an important miR155 dependent switch in 
immune response.

IFNβ is currently used as a therapy for multiple sclerosis (MS). 
In about 85% of patients, disease associated with MS starts with a 
single demyelinating episode (clinically isolated syndrome, CIS), 
which progresses to a relapsing-remitting course (RRMS) with 
acute exacerbations and periods of remission. A study by Hecker 
et al. longitudinally examined microRNA expression profiles in 
PBMCs from patients with CIS or RRMS in response to subcutane-
ous IFNβ therapy (61). Microarray analysis demonstrated seven 
microRNAs were up-regulated (e.g., let7a, let7b) and 13 microR-
NAs were down-regulated (e.g., miR29a, miR29c) following IFNβ 
treatment. Consistent with these results, miR29 has been identified 
in our unpublished studies as up-regulated early by IFNβ, yet 
down-regulated by 48 h. Given the known role of miR29 targeting 
IFNAR1, this regulatory relationship suggests a negative feedback 
role in limiting the type I IFN response. Such a relationship would 
provide a capacity for a cell to rapidly induce the IFN response, 
while providing innate protection against the detrimental impacts 
of over-activation or an inappropriately sustained response.

iFN Regulation of MicroRNA Machinery

In addition to direct regulation of microRNAs by IFN, modula-
tion of the microRNA processing machinery would be predicted 
to have wide-scale impacts on the overall biological outcome. 
Examination of IFN-mediated transcript regulation through 
analysis with the Interferome database (a global collection of 
IRGs) (5) suggests strong down-regulation by more than threefold 
in both Ago1 and Ago2 in lung and blood cells 24 h following IFNα 
treatment (62, 63). Emerging evidence suggests that microRNA 
may have differential association with the various Argonaute 
family members (64). This relationship introduces a possibility 
that differential down-regulation of Ago proteins may act as an 
additional IFN-induced, regulatory mechanism. In the absence 
of Ago1 and 2, it could be expected that IFN stimulation would 
favor activity of microRNAs that predominantly interact with 
Ago3 and Ago4. In addition to the Argonaute protein regulation, 
evidence exists for post-transcriptional Dicer down-regulation 
with prolonged IFN stimulation. Using Western blot, Weisen et al. 
demonstrated that both IFNα and polyI:C stimulation could lead 
to down-regulation of Dicer after 72 h (65). These longer-term 
regulatory impacts of the type I IFN response on the microRNA 

cellular machinery suggest a biphasic response in which early 
microRNA regulation plays a key role in determining cellular 
responses and protection. By contrast, longer-term suppression 
of microRNA regulation may provide a benefit by preventing 
hijacking of the system by pathogen-derived microRNA. In 
addition to broad scale changes in regulatory machinery, specific 
changes in microRNA targeting may be controlled through the 
adenosine deaminase (ADAR) or apolipoprotein B mRNA editing 
enzyme, catalytic polypeptide (Apobec) families of proteins, both 
of which are induced strongly by IFN. ADAR family members, 
particularly, are widely reported to direct microRNA regulation 
through transcript editing and warrant further investigations in 
an IFN context (66).

interferon Regulation of Anti-viral 
MicroRNAs

The anti-viral functions of effector proteins induced during the IFN 
response are well understood and studies now focus on the role 
of IFN-induced microRNAs in direct targeting of viral transcripts 
(50, 67). It is hypothesized that this could occur in a manner similar 
to the well-characterized, RNAi-based, plant anti-viral defense 
system (68). While this hypothesis remains contentious, growing 
evidence exists for direct viral targeting by cellular microRNAs. 
This includes investigations in viral infections, including hepatitis 
B (69), hepatitis C (50, 70), and HIV (71). These studies have identi-
fied miR122 as targeting hepatitis B and C and miR29 as targeting 
HIV; both miR122 and miR29 have been reported previously as 
IFN-regulated microRNAs. These data suggest that IFN-induced 
microRNAs may directly target viral RNA in addition to modifying 
the cellular state through regulation of host anti-viral genes. This 
targeting strategy is also being investigated for the development 
of experimental vaccines against influenza A virus. Through the 
insertion of mammalian-specific microRNA target sites in the viral 
genome, egg-produced live viruses can be rendered attenuated 
through microRNA silencing in mammalian vaccine recipients 
(72). The breadth of IFN-regulated host microRNAs that may 
directly target viral RNA remains to be determined.

identification of MicroRNA Targets

To further understand the role of known IFN-regulated micro-
RNAs and those which regulate the IFN response, predicting 
the structure and functional significance of regulatory networks, 
identifying novel microRNAs, and understanding the targeting 
relationships is critical. Accurate computational prediction of 
microRNA regulation remains limited and represents an active 
area of research. In 2005, Brenecke et al. characterized three classes 
of microRNA binding (73):

 1. Canonical binding involved high complementarity throughout 
the sequence with exact complementarity observed within the 
last six to eight base pairs of the 5′ end of the microRNA, 
termed the “seed” region.

 2. 5′ dominant seed region binding was defined where the seed 
region exhibited high complementarity, while the remaining 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
www.frontiersin.org


July 2015 | Volume 6 | Article 3346

Forster et al. Interferon regulated microRNA

Frontiers in Immunology | www.frontiersin.org

microRNA had limited complementarity with the target 
region.

 3. 3′ compensatory binding was described in which binding in 
the 3′ region can compensate for mismatches in the 5′ seed 
region (73).

These definitions were further expanded in 2009, resulting in 
the definition of seven types of sites: five based on seed region 
complementarity resulting in seed based binding sites plus two 
additional categories, 3′ supplementary and 3′ compensatory (74). 
The seed-based matches are composed of three canonical sites 
that vary in length from seven to eight base pairs and differ by 
the association with an adenine at the 5′ end of the microRNA 
(75). A further two seed-based sites with a six base pair region 
complementarity have also been identified; however, due to their 
frequency, these are rarely detected using algorithmic approaches. 
The 3′ site categories remain similar to those previously defined, 
with supplementary sites containing consecutive base pair 
complementarity at the 3′ end. In the 3′ compensatory category, 
binding in the 3′ region acts to negate mismatches in the seed 
region. Indeed, many studies have now shown conclusively that 
binding is more complex than simple seed region recognition. 
Fluorescence reporter assays have been applied to validate seedless 
target recognition, while sequence-based, high-throughput target 
validation has demonstrated the diversity of these interactions 
(76–79).

As the definitions of these sites have improved, the availability 
and diversity of algorithms for their detection have also increased. 
Algorithms for microRNA target site identification include 
miRanda (80), Dianna-microT (81), PicTar (82), PITA (83), and 
RNA22 (84). Despite this diversity of algorithms, the ability to 
predict targets that can be experimentally validated is limited, 
with a high frequency of false positive results being the common 
problem. Indeed, comprehensive algorithm comparisons suggest 
sensitivity rates, defined as the number of correctly predicted 
sites as a proportion of total correct sites, to vary between 6 and 
20% depending on the algorithm applied (85). Equally, precision, 
defined as the number of correct predictions as a proportion of the 
total predicted, ranged from 24 to 51% (85). Given the resource 
investment associated with experimental validation of these inter-
actions, such a poor accuracy rate in computational predictions 
represents a significant area of concern. These numbers, however, 
have not been reliably and extensively determined specifically for 
microRNAs involved in innate immune or IFN responses. As 
such, for these biological systems, the breadth of IFN-regulated 
microRNA target networks remains to be determined.

Wide-scale experimental mapping of microRNA binding sites 
is emerging as the solution to these limitations. These methods 
include PAR-CLIP (86), HITS-CLIP (87) and CLASH (88), which 
involve UV or chemical crosslinking, and the use of antibody 
based methods to pull down the RISC complex and associated 
microRNAs, and target transcript RNAs. When combined with 
high-throughput sequencing, the resulting samples can provide 
a detailed overview of microRNA binding to a target within a 
cell. While much like early chromatin immunoprecipitation-based 
transcription factor analysis, antibody efficiency and protocol sen-
sitivities currently limit widespread adoption of these techniques. 

Nevertheless, these methods provide great potential for future 
understanding of microRNA networks and their regulation.

MicroRNA Targeting of iFN-Regulated 
Genes

While there are limited direct studies of IFN-regulated microRNA 
targeting of IRGs, one of the first applications of the HITS-CLIP 
approach compared activated CD4+ T-cells in wild-type and 
miR155 knockout cells from mice, and provided indirect evidence 
that this microRNA targeted IRGs (79). This analysis identified 
4195 genes containing Ago-binding sites, of which 175 genes 
were predicted to be regulated by miR155. This analysis identified 
microRNA binding sites previously predicted by computational 
methods, but approximately 40% of the experimentally identified 
sites lacked perfect seed complementarity, and thus could not have 
been predicted computationally. Interestingly, meta-analysis of the 
175 genes predicted to be regulated by miR155 included 82 genes 
that were contained within the Interferome database (5) as IRGs 
(1.5-fold cutoff). Analysis of this first set of immune-related micro-
RNA targeting relationships supports a role for inducible miR155 
targeting, suggesting that miR155 acts as both as an IFN inducible 
microRNA and a negative regulator of the type I IFN response 
in the context of CD4+ T-cell activation (79). Microarray based 
correlation analyses have also suggested a relationship between 
IFNβ inducible miR128, miR196a, or miR142 with reported IRGs 
HNMT, XPO1, PMPCB, and HMGB1 (56). However, evidence 
of multiple microRNA directly targeting IRGs remains to be 
presented. As these RNA-immunoprecipitation based technolo-
gies become more readily available, examination of the type I IFN 
response, specifically, and the innate immune response, more 
broadly, will elucidate the importance of microRNA targeting as 
a component of these responses.

Summary, Conclusion, and Future 
Directions

Recent studies have shown an important role for microRNAs in 
regulating the innate and adaptive immune response, and key 
cytokines in these responses, including the type I IFNs. There 
are examples of microRNA regulation at many stages of the IFN 
response, namely through regulation of components of PRR signal-
ing that drive IFN expression; their cognate receptor components, 
IFNAR1 and IFNAR2; down-stream signal transduction pathways 
including STATs; and through association with IRGs themselves. 
There are currently 36 microRNAs reported to be regulated by 
type I IFNs; but with improvements in sequencing technologies, 
we can expect this number to grow substantially (as we have seen 
in unpublished studies). Not only do IFN-regulated microRNAs 
target components of the IFN response to modulate its biological 
effects, such as anti-viral actions, they can also directly target viral 
RNA. In addition to regulating the transcription of microRNAs, 
IFN may also show unique regulation of microRNA processing 
by regulation of Dicer, Ago, and editing proteins, which are 
themselves IRGs. Thus, part of the IFN response may be a general 
impact on microRNA processing. Advances in technologies such 
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as CLIP, combined with RNA sequencing, will enable the further 
definition of the breadth of microRNA regulation of IFN responses 
in different contexts. Given the capacity of microRNA networks 
to “buffer’ responses, their modulation may open new therapeutic 
opportunities. Finally, given the use of microRNA detection as 
biomarkers in cancer, there may be similar opportunities in inflam-
matory diseases and numerous previously described IFN-mediated 
conditions, including autoimmune diseases such as SLE and MS.
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