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Vaccination against influenza is the most effective way to protect the population. Current
vaccines provide protection by stimulating functional B- and T-cell responses; howevet,
they are poorly immunogenic in particular segments of the population and need to
be reformulated almost every year due to the genetic instability of the virus. Next-
generation influenza vaccines should be designed to induce cross-reactivity, confer
protection against pandemic outbreaks, and promote long-lasting immune responses
among individuals at higher risk of infection. Multiple strategies are being developed
for the induction of broad functional humoral immunity, including the use of adjuvants,
heterologous prime-boost strategies, and epitope-based antigen design. The basic
approach is to mimic natural responses to influenza virus infection by promoting cross-
reactive neutralizing antibodies that directly prevent the infection. This review provides an
overview of the mechanisms underlying humoral responses to influenza vaccination or
natural infection, and discusses promising strategies to control influenza virus.

Keywords: influenza, hemagglutinin, functional antibody responses, universal influenza vaccine, neutralizing
antibodies, vaccination strategies

Introduction

Influenza virus alone causes over 40,000 deaths every year in the United States, and even more during
pandemics, like in 2009 with pandemic A/California/07/09 HIN1 virus strain (1, 2). Influenza
viruses contain eight single stranded RNA segments and are classified in three different types (A,
B, and C), on the basis of major antigenic differences; only influenza A and B are responsible for
annual human epidemics. All influenza virus subtypes circulating in non-human species have the
potential to infect humans, and transmissions from animals to humans may occur, albeit rarely, with
dramatic scenarios for the public health; this was the case of the avian H5N1 strain that appeared for
the first time in human in 1998 and re-appeared in 2004-2005 with a mortality rate of 50% among
infected patients and thousands of deaths are reported until today (3, 4). Treatment of influenza
infections is a major challenge for clinics and public health institutions because available antiviral
drugs are often ineffective due to antigenic mutations or are given too late after infection (5). The
most effective intervention that we have today to combat influenza is the vaccination that reduces
virus infection and spreading, even if some levels of morbidity and mortality remain due to the
suboptimal efficacy of the current vaccines and mismatch between the vaccine and the circulating
virus strain.

Most of the current seasonal influenza vaccines are produced with live attenuated or inactivated
(split or subunit) virus and both types of vaccines reduce virus infectivity and restrict viral replication
by inducing functional antibodies against the virus. The antibodies generated against the virus
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represent the primary correlate of immunity, whereas cell-
mediated immunity can contribute to reduce the clinical symp-
toms (6). Although existing vaccines confer acceptable levels of
protection in the general population, they are suboptimal, and are
associated with some important limitations: (i) antigen composi-
tion needs to be updated every year in order to match the new
seasonal circulating viruses, (ii) mismatch between the vaccine
and the circulating virus can always happen, and (iii) people with a
reduced ability to mount an immune response, infants, the elderly,
and pregnant women respond suboptimally to these vaccines,
requiring a tailored vaccine formulations (7-11).

Current influenza vaccines consist of three different virus
strains: two influenza A strains (usually HIN1 and H3N2) and one
influenza B strain. More recently, quadrivalent influenza vaccines
have been developed, which are composed of influenza B strains
of both lineages (12). Unfortunately, influenza strains acquire
mutations every 1-3 years in their genome segments expressing
the antibody-binding regions, a process named antigenic drift, and
give raise to new circulating strains. Antigenic drift represents the
principal immune evasion mechanism of influenza virus and has
two major consequences: first, the humoral immunity developed
in response to previous infections/vaccinations is usually non-
fully effective against the new emerging strains, and second, man-
ufacturers need to update the vaccine every year with increasing
costs and risks of delays in the release of the lots. The virus can also
undergo major antigenic changes in his hemagglutinin (HA) and
neuraminidase (NA), referred to as antigenic shift, which consists
of an ample reassortment of viral gene segments between different
viruses of human or zoonotic origin, leading to the emergence of
totally new and potentially dangerous virus strains, as happened
during the pandemics of the last century and more recently in
2009 with the HIN1 virus of swine origin (13).

In this review, we summarize the mechanisms eliciting humoral
responses against influenza infection or vaccination, and discuss

the approaches that are today under evaluation to develop broadly
protective and, hopefully, universal vaccines against influenza.

Learning from Antibody Responses
Against Influenza

Immune responses, generated against influenza by vaccina-
tion and by natural infection, consist of neutralizing and non-
neutralizing antibodies. Non-neutralizing antibodies make the
most part of the antibody pool generated during the immune
response, but only a small fraction is functional and participates
in the clearance of infected cells through interaction with other
immune cells. On the other hand, neutralizing antibodies specif-
ically bind epitopes crucial for viral function and are extremely
important to confer immunity. Most of the neutralizing antibodies
recognize surface proteins of the virus, in particular, the trimeric
HA, which is critical during the process of cell invasion. The
overall structure of HA can be segmented in a globular head
and a stem region (Figure 1). The globular head is responsible
for the sialic acid-dependent binding on the extracellular surface
of target cells, and allows for a conformational change of the
protein for membrane fusion. Neutralizing antibodies against HA
interfere during both steps of the process, in particular, they
bind to the sialic acid-binding site (or in close proximity) of
the globular head, thus preventing attachment of the virus to
the cells. Antibodies against the stem region may restrict the
conformational changes required for the membrane cell fusion.
Although both kinds of antibodies are functional, only those
against the stem region can have the intrinsic ability to confer
broad protection against different influenza strains because this
region is much less susceptible to antigenic changes as compared
to the globular head (Table 1). Unfortunately, stem-specific neu-
tralizing antibodies are rare and difficult to induce because vac-
cination with the seasonal vaccine formulations typically skews

FIGURE 1 | Schematic diagrams of influenza A virus and surface
hemagglutinin protein. (A) The segmented negative-sense RNA genome of
influenza A virus encodes three envelope proteins (hemagglutinin,
neuraminidase, and ion channel M2 protein), and internal nucleoprotein (NP),

M1 (Matrix protein)

Lipid bilayer

M2 (Ion channel protein)

Segmented RNA genome

Globular head domain
(variable region)

Stem or Stalk domain
(conserved region)

B

polymerases (PA, PB1, and PB2), matrix protein 1 (M1), and non-structural
proteins (NS). The lipid bilayer is derived from host cell membrane. (B) The
cylindrical HA is a homo-trimeric protein consisting of a variable globular head
and a conserved stem domain.
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TABLE 1 | Target site of important cross-reactive neutralizing antibodies on
HA stem domain.

Neutralizing  Epitope location Breadth Reference
antibodies on HA stem
CR6261 Helical region in the A/H1, H2, H5, H6, H8, (15-22)
membrane-proximal H9
stem of HA1 and HA2
CR9114 F subdomain A/H1, H2, H3, H4, H5, (16, 22)
H6, H7, H8, H9, H10,
and influenza B viruses
F10 Helical region in A/H1, H2, H5, H6, H8, (21-25)
membrane-proximal H9
stem
CR8020 Base of stem in close A/H3, H7, H10 (26, 27)
proximity to the viral
membrane
C179 Amino acid sequences  A/H1, H2, H5, HB, H9 (28, 29)
318-322 and 47-58 of
HA1and HA2,
respectively

the specificity of B cell responses toward non-neutralizing epi-
topes of the stem region or, depending on the formulation of the
vaccines, toward immunodominant epitopes of the HA globular
head (14).

Natural responses against influenza elicit also non-neutralizing
antibodies, which are specific not only to HA and NA (30) but
also against M1, M2, and NP proteins (Figure 1). Such non-
neutralizing antibodies, typically, can promote the clearance of
the virus, relying on their Fc portion after the interaction of the
variable-region of the antibody with its epitope. Several cell pop-
ulations, including phagocytic cells and natural killer cells, express
Fc receptors (FcRs) and may mediate the clearance of virions
or virus-infected cells (31, 32). Natural killer cells express FcRs
and may participate in the killing of the virus-infected cells by a
mechanism called antibody-dependent cell-mediated cytotoxicity
(ADCC) (33); ADCC has been observed to participate in the
control of the HIN1 influenza virus infection in macaques, and a
mix of intravenous antibodies that may mediate ADCC has been
suggested as therapeutic for humans (34, 35). Also, the comple-
ment system may participate in clearing the virus by a mecha-
nism called complement-dependent cytotoxicity (CDC) involving
influenza-specific antibodies; in particular, IgG antibodies that
bind to target surface proteins may activate complement factors
in the host serum that ultimately puncture the lipid membrane of
pathogen or infected host cells. Two studies have clearly shown
that C3, a critical component of the complement system, may
participate in reducing viral titers and in clearing the virus with
a mechanism that involves M2-specific antibodies of the IgG1 or
IgG2a subclasses (36, 37).

B Cell Responses to Influenza

Most of the responding B cells after influenza vaccination or
infection are specific to HA, and they are difficult to isolate
and characterize, especially by flow cytometry (38), because of

the binding of HA to any sialic acid residue on the host cell.
Taking advantage of ex vivo ELISpot assay, several studies have
shown that adults or older children possess low but consistent
base line levels of influenza-specific IgG memory B cells, in the
range of 0.1-0.6% of the total IgG memory B cells (39). Those
cells respond to further antigen encounter by quickly differen-
tiating in antibody-secreting cells, they mostly produce isotype
switched antibodies and show high frequencies of mutation in
their Ig genes (40, 41). Pre-existing immunity in adults makes
the characterization of the responses after seasonal vaccination
challenging, so the 2009 HIN1 pandemic (pHIN1) influenza
virus was a great opportunity to better understand the immune
responses to influenza. Indeed, the pHIN1 HA was remarkably
divergent from the HAs of the seasonal vaccines (even with a
stem region quite conserved). Surprisingly, the highest numbers
of deaths during the 2009 HIN1 pandemic were registered among
the younger population, while the older population showed pre-
existing protective immunity. How to explain the unexpected
level of deaths among adults that is typically the most resistant
group to influenza infections? It was suggested that adults had
too low frequencies of cross-specific B cells to generate protec-
tive levels of cross-neutralizing antibodies against HA (42). On
the contrary, the older population (over 65 years old) showed
a very low incidence of infection and hospitalization (42-45),
probably due to their life-long accumulation of an expanded
reservoir of stem-specific cross-reactive memory B cells that effi-
ciently responded to the 2009 pHIN1 virus (42). In addition, a
close antigenic relation was found between the HA of the 2009
pHINI virus and the HA of influenza viruses that had circu-
lated before 1950; hence, neutralizing antibodies against the HA
globular head may also have contributed to protect the elderly
population (46, 47).

In 2010, Lanzavecchia et al. reported that some individuals
who received the seasonal influenza vaccine developed cross-
reactive antibodies able to neutralize viruses belonging to different
HA subtypes (H1, H2, H5, H6, and H9), including the pHIN1
isolate. By immortalizing IgG-expressing B cells, Lanzavecchia
et al. showed that heterosubtypic monoclonal antibodies bound
to acid-sensitive epitopes in the HA stem region, used different
VH genes and carried high frequency of somatic mutations (24,
48,49). More recently, the same group showed that most of the HA
stem-specific antibodies are characterized by the use of the heavy-
chain variable-region VH1-69 gene, only few polymorphisms are
functional, and that few single somatic mutations are sufficient to
promote high-affinity HA-specific antibodies (50).

The above studies have enhanced our understanding of
influenza-specific B cell responses, and helped to set the primary
goals in the development of next-generation anti-influenza thera-
pies and vaccines. A major objective is to promote the generation
of HA-specific broadly neutralizing antibodies in order to target
cross-protective epitopes that are present among multiple strains.
A second objective is to promote long-lasting memory B cells and
plasma cells, hopefully for the entire life. Several strategies are
today evaluated to achieve such goals including the use of adju-
vants in vaccine formulation, heterologous prime-boost strategies,
and antigen design with a “minimalistic-approach.”
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Cutting-Edge Strategies for Inducing
Protective Anti-Influenza Immune
Responses

How to translate our knowledge of the influenza-specific humoral
responses into novel strategies that specifically elicit the ideal
protective immunity? As primary goals, successful vaccination
strategies should confer cross-protection against multiple strains
of influenza virus, and should boost long-lasting protective immu-
nity in subjects with weakened immunity, as well as in younger
and elderly populations.

A very promising strategy to meet those purposes is based on
the use of particular adjuvant formulations. Adjuvants have been
used in influenza vaccines for decades, usually in combination
with split or subunit vaccines with the major goal to enhance
their intrinsic immunogenicity (51). Although aluminum salts
are potent adjuvants for most of the subunit antigens present
in licensed vaccines, they seem not to be good adjuvants for
influenza antigens. Instead, oil-in-water emulsions, like MF59,
have been successfully used in influenza vaccines for the past
20 years with outstanding results (52, 53). MF59 not only induces
high titers of influenza-specific antibodies but also cross-reactive
responses against different clades of influenza viruses (54-56).
Khurana et al. showed that MF59 adjuvant promotes high titers
of HA-specific antibodies and expands the overall diversity of
the influenza-specific antibody repertoire (14, 57). MF59 also
promotes persistence of long-lasting memory B cells and increases
the affinity of the antibody responses, not only in adults but
also in younger and elderly (14, 52, 56-58); such evidences
have shed light on the use of oil-in-water emulsion as adju-
vants for influenza vaccines. Furthermore, oil-in-water adjuvants
may prevent the effect of the “original antigenic sin” that is
the propensity of the immune system to preferentially utilize
immunological memory instead of inducing novel responses,
hence limiting the development of an expanded B cell reper-
toire (59-61). Although their mechanisms of action are still not
fully understood, MF59 and AS03 (62), the other oil-in-water
adjuvant used for pandemic vaccines, represent an important
tool on the way to develop broadly protective influenza vaccines.
An increased risk of narcolepsy was found few years ago fol-
lowing vaccination with AS03-adjuvanted split influenza vaccine
used in several European countries during the A/California/07/09
HINI influenza pandemic, but multiple subsequent studies have
not confirmed any possible association between vaccination and
narcolepsy (63-66).

An alternative strategy consists of heterologous prime/boost
vaccinations. When the immune system encounters for the first
time an influenza antigen, it generates specific antibodies and
long-lasting memory B cells. Many influenza epitopes shift every
year, so a second encounter with the antigen will recruit naive
B cells, which are specific for the new shifted epitopes and will
also expand the pre-existing pool of memory B cells that is specific
for the most conserved epitopes (30, 67, 68). Subsequent immu-
nizations with divergent influenza antigens, the “prime/boost
strategy” might expand the memory B cells specific for the most
conserved epitopes that usually are under-represented in the

B cell repertoire, hence inducing cross-protective immunity. This
approach has been shown to be successful by Wang et al. who
used a gene-based heterologous prime/boost strategy to induce
cross-protection. Mice were sequentially immunized with DNA
coding for the HA of different influenza A H3 virus strains
(A/Hong Kong/1/1968, A/Alabama/1/1981 or A/Beijing/47/1992)
and boosted with another H3 virus, A/Wyoming/3/2003; mice
developed cross-neutralizing antibodies and protective capacity
against multiple subtypes of H3 viruses (69). In a similar study,
Wei et al. immunized mice twice with the same HA strains, but
using a different delivery system for priming and for boosting.
Mice primed with a DNA plasmid encoding HIN1 HA or H3N2
HA from the 2006/2007 vaccine strains and boosted with the triva-
lent 2006/2007 seasonal vaccine, developed enhanced neutraliz-
ing antibodies against diverse HIN1 strains compared to mice
receiving only DNA or seasonal vaccine and showed higher levels
of protection after infection (18). The above studies provided
the proof-of-concept that a prime/boost strategy can increase
the production of broadly neutralizing antibodies, and suggested
that a combined strategy involving nucleic acids/proteins may
have the benefit of expanding the antibody repertoire as well as
inducing a different type of cellular immunity (18, 70). We further
speculate that sequential immunizations with different HA pro-
teins properly formulated with oil-in-water emulsion adjuvants
(MF59 or AS03), may truly maximize the broadly neutralizing
repertoire against influenza compared to non-adjuvanted vaccine
formulations.

The minimalist approach is an innovative strategy that is eval-
uated today to promote cross-protective humoral responses. It is
based on the design of antigens composed only of cross-protective
epitopes, in order to focus the immune system on the desired
response and generate cross-protective immunity. This approach
is strongly supported by the fact that most of the broadly neu-
tralizing antibodies identified until today are directed against the
stem region of HA, and very few against its globular head (17,
23, 24, 26, 28). The minimalistic approach for antigen design has
demonstrated to be successful in mice immunized with a “head-
less” HA, an antigen composed by the complete HA2 polypeptide
and some regions of HA1 that both form the stem part of HA.
Such antigen maintained the structural integrity of the conserved
stem domain, but lacked the globular head with its immunodom-
inant strain-specific epitopes (71). Sera form mice receiving the
“headless HA” showed broader reactivity against heterologous
strains than sera from mice vaccinated with the full-length HA and
were protected against lethal virus challenge. Similar findings were
obtained by using a stabilized HA2 peptide (72). Furthermore,
Wang et al. designed a 60-amino-acid peptide to reproduce a
long o-helix (LAH) of HA2 recognized by a broadly neutralizing
monoclonal antibody, the clone 12D1 (73). The LAH peptide
was not much immunogenic by itself, but when coupled to a
carrier protein (KLH)-induced protection in mice challenged with
divergent subtypes of influenza viruses, including H3N2, H5N1,
and HINT strains; this work represents the most important proof
that a carefully designed immunogen can be used in influenza
vaccines to skew the B cell responses toward the epitope of
interests. However, some concerns have been raised regarding the
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development of a vaccine to elicit HA2 stem-targeting antibodies,
not only because the stem region is poorly immunogenic by itself
(requiring further optimization of the formulation with adjuvants
or protein carriers) but also, in some circumstances, anti-stem
antibodies have been observed to be detrimental for the host.
Indeed, in a swine experimental model, Khurana et al. showed
that a vaccine inducing anti-stem antibodies may have the risk to
worsen the outcome of the influenza infection (74, 75).

Other groups have characterized cross-protective epitopes
included in the HA globular head; in particular, Whittle et al.
have identified a broadly neutralizing antibody that recognizes the
receptor-binding pocket of HA and have suggested that a modified
HA globular head could be used for epitope-based antigen design
to promote broadly neutralizing antibodies (76, 77).

Although not strictly related to the “minimalistic approach”
for antigen design, some work recently published by Giles et al.
described a new computationally optimized broadly reactive anti-
gen (COBRA) based on the structure of the HA from H5N1 sub-
type; mice and non-human primates immunized with this antigen
develop broadly reactive antibodies and are protected from H5N1
challenge (78-80).
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Conclusion

Current influenza vaccines confer limited cross-protection against
different strains of influenza and often fail to promote protective
immunity in high-risk populations. Scientists are today evaluating
multiple strategies to develop a universal influenza vaccine able to
confer cross-protection, long-lasting immunity, and to be effective
in subjects with weakened immunity. Such strategies include the
use of oil-in-water emulsion adjuvants, heterologous prime/boost
strategies, and antigen design. All these new strategies aim at
inducing influenza-specific neutralizing antibodies that would
confer sterilizing immunity in vaccinated hosts, and HA is the
ideal antigen candidate to meet this purpose. Some groups are
also evaluating alternative antigen candidates, such as NA, NP
and M2, which are well conserved in multiple influenza strains
and generate protective immunity through non-neutralizing anti-
bodies helping to control the infection; hence, a multi-component
vaccine not limited to HA antigen can be also considered. Each of
the above strategies is promising to be successful, and most likely a
combination of them will provide a universal influenza treatment
in the future.
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