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The many alternative faces of
macrophage activation
David A. Hume*

The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK

Monocytes and macrophages provide the first line of defense against pathogens.
They also initiate acquired immunity by processing and presenting antigens and pro-
vide the downstream effector functions. Analysis of large gene expression datasets
from multiple cells and tissues reveals sets of genes that are co-regulated with the
transcription factors that regulate them. In macrophages, the gene clusters include
lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes
required for endocytosis and lysosome function. Macrophages enter tissues and alter
their function to deal with a wide range of challenges related to development and
organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli.
These stimuli alter the gene expression to produce “activated macrophages” that are
better equipped to eliminate the cause of their influx and to restore homeostasis.
Activation or polarization states of macrophages have been classified as “classical”
and “alternative” or M1 and M2. These proposed states of cells are not supported
by large-scale transcriptomic data, including macrophage-associated signatures from
large cancer tissue datasets, where the supposed markers do not correlate with other.
Individual macrophage cells differ markedly from each other, and change their func-
tions in response to doses and combinations of agonists and time. The most studied
macrophage activation response is the transcriptional cascade initiated by the TLR4
agonist lipopolysaccharide. This response is reviewed herein. The network topology is
conserved across species, but genes within the transcriptional network evolve rapidly
and differ between mouse and human. There is also considerable divergence in the
sets of target genes between mouse strains, between individuals, and in other species
such as pigs. The deluge of complex information related to macrophage activation can
be accessed with new analytical tools and new databases that provide access for the
non-expert.
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The Cells of the Mononuclear Phagocyte System

The mononuclear phagocyte system (MPS) (1) is a family of professional phagocytes derived from
hematopoietic progenitor cells under the influence of specific growth factors. They are the front line
innate defense against pathogens, drive appropriate acquired immune responses, initiate inflam-
mation, and promote resolution and repair. (2–7). The MPS has been viewed as a linear sequence
from pluripotent progenitors, through committed myeloid progenitors shared with granulocytes, to
promonocytes and blood monocytes, finally giving rise to tissue macrophages (2–7).
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Challenges to the unified concept of an MPS have been dis-
cussed elsewhere (4, 5, 8). Some authors claim that macrophages,
notably the microglia of the brain (9) and the epidermal
macrophages (Langerhans cells) of the skin (10, 11) are seeded
entirely during embryonic development and are renewed by
local proliferation (12–14). A critical review of the experimen-
tal basis for this conclusion has been published elsewhere (8).
Monocytes obviously can give rise to tissue macrophages, and
tissue macrophages can also self-renew (15). An assessment of
the relationship between the two mechanisms depends upon the
interpretation of lineage-trace studies in mice that are open to
criticism (8).

The abundance of monocytes and tissue macrophages is con-
trolled through the macrophage colony-stimulating factor recep-
tor (CSF1R), which is activated by two ligands, CSF1 and IL34
(6, 16–20). Treatment of mice with monoclonal antibody against
CSF1Rdepletesmost tissuemacrophage populations in adultmice
(21). Csf1r is itself a macrophage marker gene. The promoter
of the mouse gene was used to generate transgenic MacGreen
mice in which all of the tissue macrophages express an EGFP
reporter gene (22). Myeloid-specific transgenes, using this and
other tissue-restricted promoters, have been used in many studies
of macrophage cell biology [reviewed in Ref. (23)].

How Do We Define a Macrophage?

The network tool BioLayout Express3D supports user-friendly
visualization of co-expression relationships in large datasets (24,
25). We used this tool to identify co-regulated genes in the mouse
BioGPS dataset (26) and in other mouse (27), human (28), and
pig gene expression data (29). Macrophages as recognized by
Metchnikoff are first and foremost professional phagocytes. To
carry out that function, theymust express all of the genes required
to internalize particles and to degrade those particles in lysosomes.
To identify those genes, we can compare the expression profiles
of macrophages with cells that are not phagocytic. The under-
lying principal of guilt-by-association was recently extended to
RNAseq data including long non-coding RNAs in the networks
(30).Within the BioGPS dataset, different hematopoietic cell types
expressed lineage-specific transcription factors alongside known
lineage-specific genes (26). One obvious functional set of genes
shared by all of the phagocytes (including bone-resorbing osteo-
clasts) contains the components of lysosomes, such as vacuo-
lar ATPase H+ pump and lysosomal hydrolases. The significant
numbers of genes within this set that possess little associated
annotation are therefore likely to also participate in phagocytosis.
The phagocyte-enriched gene set also contains a set of transcrip-
tion factors that are linked in turn to their likely binding sites
in phagocyte-restricted promoters. For example, the promoters
of these phagocyte-restricted genes contain purine-rich motifs
(binding sites for the macrophage-specific transcription factor,
PU.1) alongside the motifs bound by basic helix–loop–helix tran-
scription factors of the microphthalmia transcription factor fam-
ily;MITF, TFEB, TFEC, andTFE3. All fourMITF familymembers
are expressed in macrophages. TFEC is a macrophage-specific
transcription factor and itself a PU.1 target gene (31). MITF
interacts both physically and genetically with PU.1 (32) and is able

to transactivate the promoter of the ACP5 lysosomal enzyme (32).
So, taken together, the data provide a picture of the transcriptional
network required to become a professional phagocyte and provide
a signature that distinguishes macrophages from other cell types.

The most controversial distinction in this respect is between
macrophages and dendritic cells (DC). In the minds of some,
the term “dendritic cell” has become almost synonymous with
antigen-presenting cell (APC). However, the term clearly groups
together cells of quite different function and origin (5, 8, 33–
35). Active APC grow in vitro by cultivation of monocytes (in
humans) or bone marrow cells (in mice) in GM-CSF. These
cultured-derived APCs are quite distinct from “classical DC” or
“conventional DC,” which express the growth factor receptor, Flt3,
and differentiate in response to Flt3L in vitro and in vivo (35–37).
The immunological genome consortium (ImmGen) produced
datasets comparing mouse macrophages and “DC” from multiple
sources. They claimed to have identified a DC signature (38) as
well as markers (Cd64 and Mertk) that defined macrophages as
a separate cell type (39). They based the analysis upon compar-
ison of DC with “prototypical” macrophages from peritoneum,
lung, brain (microglia), and splenic red pulp that were known
already to lack class II MHC. We could not confirm the valid-
ity of the signatures of either cell type (34). Instead, the APC
could be separated based upon their expression of the phago-
cyte gene cluster. The microarray platforms are now sufficiently
reproducible and the processing methods standardized, that one
can actually integrate datasets from independent laboratories,
so it is not necessary to perform all studies in one laboratory.
In microarray datasets from mouse and human (27, 28), cells
annotated as DC form two distinct clusters. Cells grown in GM-
CSF segregate with the macrophages in a separate class from
classical “DC” isolated from lymphoid organs. The FANTOM5
consortium produced data that enable promoter-based clustering
of co-expression networks, which support the same distinction
between two different classes of APC (40, 41). The same data
supported a study of the process of macrophage differentiation
from pluripotent progenitors through monocytes to macrophages
(40, 41). Overall, all the data are consistent with the original def-
inition of the classical DC by Steinman and Cohn; which “unlike
macrophages, do not appear to engage in active endocytosis” (42).
So, I take the view that antigen presentation is a function, not a
cell type, and prefer to restrict the use of the term DC to APCs
that depend up Flt3L.

Macrophage Activation

Macrophages are abundant in every organ of the body, but
each tissue macrophage population is distinct (34). For example,
microglia, the macrophages of the brain, are quite different from
blood monocytes and tissue macrophages isolated from other
locations (43). Indeed, as discussed above, a Csf1r-EGFP trans-
gene has been used as a marker for all tissue macrophages (22).
In most organs, there are so many macrophages that we can infer
the macrophage signature from analysis of total mRNA. In pigs,
for example, we profiled lungmacrophages, bloodmonocytes, and
bone marrow-derived macrophages alongside most major organs
(29). Alveolar macrophages expressed many different C-type
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lectin receptors, presumably to recognize and engulf inhaled
microorganisms. In mRNA from the wall of the gut, macrophage-
specific transcripts derived from the abundant lamina propria
macrophage population were easily detected, but the C-type
lectins were undetectable.We infer that recognition of gut luminal
microorganisms by macrophages in the lamina propria would be
undesirable.

Macrophages change their gene expression in response tomany
different stimuli. Aside from driving tissue-resident macrophage
heterogeneity, this plasticity enables an appropriate response to
pathogen challenge. The term “activation” applied originally to
recruited macrophages that acquired tumoricidal and microbici-
dal activity. Activation occurred in two phases, a priming event
initiated by T cell products and a triggering event generated
by lipopolysaccharide (LPS) (44, 45). The activation states in
recruited macrophages have since been classified as M1 and M2,
or classically activated and alternatively activated (3, 46–49). M1
andM2 activation of macrophages is associated with Th1 and Th2
lymphocytes, and in turn with interferon-gamma (IFNγ) (45) and
interleukin 4 (IL4) as the mediator. Classical or M1 activation
mediates defense against bacterial pathogens. Classically activated
macrophages also express class II MHC, and present antigen to T
lymphocytes. M2 or alternatively activated macrophages are pro-
duced in parasite infections and tumors and express the targets of
IL4 signaling (50–52). The house of cards built on this foundation
included the identification of M2 markers, such as Arg1, Retnla,
Chi3l3 (53).

The nomenclature has become increasingly confused.
Macrophages grown in GM-CSF are said to be M1-like (when
they are not called DC), and those grown in CSF1 to be M2-like
(50). Different activation states require distinct transcription
factors, such as the IRF transcription factor family; STAT1 and
IRF5 induce M1 polarization where STAT6 and IRF4 interact
to polarize toward M2 (50). The quite different response to
macrophages to toll-like receptor agonists such as LPS (54–59)
has also been called an M1 response. This response involves the
sequential induction of hundreds of genes and includes a complex
intrinsic and inducible feedback control network [see below, Ref.
(60)]. We recently compared responses to IFNγ and IFNβ and
the response to LPS (61). There was limited overlap. Interestingly,
the LPS target genes differ in their dose-responsiveness, so even
the response to a single agent cannot be classified.

The problem with nomenclature in macrophage activation
prompted a group of researchers in the field to try and establish
a common framework (53). They noted that the origins of the
M1/M2 concept came from the significant biases in macrophage
polarization between C57Bl/6 (M1) and BALB/c (M2) mice.
Macrophages from different mouse strains differ substantially in
their gene expression profiles (58, 61, 62). As discussed further
below, these differences can be related to gain and loss of tran-
scription factor-binding sites (58) and are also associated with
allele-specific DNA methylation patterns in macrophages from
F1 crosses between strains (63). Some of the sequence changes
between strains produce clear strain-specific variation that is
completely idiosyncratic. For example, the C57Bl/6 mouse has a
deficiency in cathepsin E expression, due to loss of a PU.1 site in
the promoter, and is therefore deficient in antigen processing (64).

The attempt by Murray et al. (53) to establish a consensus view
of activation nomenclature still favors the use of combinations
of markers to describe macrophage polarization states. Unfortu-
nately, there is absolutely no support for the usefulness of markers
in genome-scale data. There is no set of genes that is co-expressed
in large datasets that could be used as a signature of a macrophage
activation state. Just as DC has been conflated with APC, the
“alternatively activated” macrophage is often a synonym for IL4-
stimulated. For example, the implied role of “alternatively acti-
vated macrophages” in adaptive thermogenesis was no more than
a study of the function of IL4-inducible target genes (65). Inter-
estingly, the macrophage-restricted transcription factor, TFEC,
appears to have a specific function in the inducible expression of
a subset of IL4-response genes (66). The M1/M2 concept does
not translate well across species. The gene expression profiles of
“activated”mouse, pig, and humanmacrophages are quite distinct
(67), with the pig more human-like (68, 69). Comparative analy-
sis of IL4-stimulated mouse and human macrophages identified
transglutaminase 2 as a “conserved M2 marker” (52). However,
this did not appear in any co-expression clusters from largemouse
or human datasets.

As discussed elsewhere (70), I personally support Mosser and
Edwards (71) suggestion that macrophage activation at a popu-
lation level at least is analogous to a color wheel. The extremes
of polarization of macrophage function may be seen as red, blue,
or yellow, but macrophages exist in every hue and intensity in
between. Xue et al. (72) confirmed the spectrum model based
upon analysis of human monocyte-derived macrophages grown
in CSF1 or GM-CSF and exposed to stimuli including IFNγ,
IFNβ, IL4/IL13, IL10, glucocorticoids, TLR agonists, TNF, and
prostaglandin. While there was some separation between IFNγ
(M1) and IL4 (M2) directed states, the transcriptional response
could be divided into 49 distinct co-expression clusters with
27–884 genes per module. Even these modules are clearly a sim-
plification based upon synchronous stimulation with individual
agents or combinations. As they enter an inflammatory site in vivo,
macrophages are exposed to a complex gemisch of signals and the
cellular phenotype changes with time. As we move toward single
cell profiling in diseased tissues, we will inevitably come to the
conclusion that every macrophage is unique.

The tumor-associated macrophage has been considered the
archetype of the M2 phenotype (7, 73). Because the stromal
component of a tumor biopsy is not uniform, each sample dif-
fers in its relative macrophage content. For that reason, we can
extract a common macrophage co-expression signature from the
expression profile of solid tumors (74). This signature includes
macrophage markers, CD68, CD14, and CSF1R, many lysosomal
genes, class II MHC, co-stimulatory molecules, and markers of
both the M1 and M2 phenotypes. There is a separate set of
interferon-inducible genes in many datasets, including tumors
(74) implying that these genes are regulated independently of
macrophage content. As noted above, we have defined the inter-
feron responses in mice (61) and the interferon signature in the
response of pigmacrophages to LPS, which differs between breeds
(69, 75). Another study (76) compared the responses of human
monocytes from several hundred donors to IFNg and LPS. Each
stimulus produced a stereotypical response (77), but therewas also
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variation in expression of individual genes, with eQTLs associated
with the majority of loci. The authors (76) identified an SNP
associated with the level of expression of interferon (IFNβ1) after
2 h; linked in trans to expression of IFN responsive genes after 24 h
of LPS treatment. The targets include many anti-viral effectors
including IFITM2 and IFITM3, implicated in genetic susceptibil-
ity to influenza (78). On this basis, the variation in IFN-response
genes between patient samples in many large datasets probably
reflects the underlying genetic predisposition rather than the dis-
ease state. The interferon signature is present in gene expression
profiles in tissues and blood in human infections and chronic
inflammatory diseases, and implicated in severity, prognosis, and
progression (78–82).

Dynamic Networks in Macrophage
Differentiation and Activation

Macrophage activation by any agonist alters gene expression rad-
ically during the transition from one steady state to another.
Features of the regulatory cascade are exemplified by the detailed
analysis of the response to LPS.

(1) There is a sequential cascade of gene regulation. This cascade
has been analyzed in great detail in mouse bone marrow-
derived macrophages (54, 55, 61). The early response genes,
including classical inflammatory cytokines, such as TNFα,
are controlled at the level of transcription elongation from
poised RNA pol II complexes (83, 84). Later response genes
are regulated by autocrine factors, including TNF and IFNβ1,
and by numerous induced and repressed transcription factors
regulated downstream of the initial signal (54–59).

(2) The response of individual target genes to LPS requires the
interaction between promoters and poised enhancers. In the
macrophage lineage, a critical “pioneer” factor that binds to
these elements is PU.1. PU.1 mRNA is expressed in both
myeloid and lymphoid cells, but the level of PU.1 protein in
the nucleus is vastly higher in macrophages (85, 86). These
high levels permit PU.1 binding to relatively low affinity sites,
to support both constitutive and stimulus-inducible tran-
scriptional regulation (56, 87–90). Macrophage-specific tran-
scriptional enhancers involve the interaction between PU.1
and multiple other transcription factors, including the MITF
family, IRF8, AP1, Klf, and Rel (NFκB) family members (56,
87–90). These factors are themselves regulated by LPS. A
recent study separated the characteristics of IRF8 binding
to constitutive and inducible enhancers. IRF8–PU.1 coop-
erated to support basal expression of macrophage-specific
genes. Conversely, binding of IRF8 in the vicinity of inducible
genes required cooperationwith other inducible transcription
factors, including AP1, IRF, and STAT family members (91).

(3) The numbers and magnitudes of regulation/expression of
induced genes are balanced by transcriptional repression of
other genes. Analysis of CAGE tag libraries [genome-scale 5′-
RACE (92, 93)] revealed that individual transcript abundance
follows a power law relationship with a constant exponent
(94). So, gene induction of some genes must be balanced
by repression of others. In LPS-stimulated macrophages, the
repressed genes include transcriptional repressors that can

block the response to LPS, as well as genes involved in
other pathways. For example, LPS produced growth arrest in
macrophages, so the LPS-downregulated genes include those
required for the response to the growth factor, CSF1, and the
cell cycle (61).

(4) The response to LPS is self-limiting even in the continued
presence of the agonist. The LPS-inducible genes are numer-
ous additional feedback-regulators (60, 61, 95) described as
“inflammation suppressor genes” (60, 61). They includemany
inducible splice variants that encode competitive inhibitors
of signaling (96). These inducible feedback regulators act
at every level of the TLR signaling cascade. The intuitive
explanation for this complex feedback regulation is that they
represent an “effective self-control mechanism to ensure that
sufficient levels of innate and adaptive immune response are
induced to combat pathogens but to avoid “over-heating”
the system once this has been achieved” (95). However, the
feedback is not robust, since even heterozygous knockouts
of many of the feedback repressors produce severe pathol-
ogy, and many are polymorphic within populations (60). The
alternative view is that the complex feedback regulation pro-
duces population heterogeneity between macrophages and
between individuals. In essence, when dealing with an ever-
changing pathogen landscape, it is desirable not to have all the
macrophage eggs in one basket.

(5) Enhancer activation precedes the activation of specific target
promoters. The activation of enhancers can be detected in
LPS-stimulated macrophages through the production of so-
called eRNAs, transcribed by RNApolII (97, 98). The use
of genome-scale 5′-RACE (CAGE) by the FANTOM5 con-
sortium enabled the quantitative analysis of these eRNAs,
which are generally transcribed equally in both directions
from active enhancers, with transcription start sites (TSS)
around 150–200 bp apart. The same technology detects active
promoters in the genomic vicinity, and one can infer the
likely relationship between active promoters and enhancers
that show the same expression pattern across a large cell
and tissue atlas (99). This association is more powerful when
one has access to detailed time course data. As part of the
FANTOM5 project, we produced a detailed time course of the
response of human monocyte-derived macrophages to LPS
(100) (Ms in preparation). Figures 1 and 2 show examples of
the power of this data. Figures 1A,B shows the well-studied
SERPINA1 (alpha-1-antitrypsin) locus. The data reveal that
there are two promoters, one used in liver and the other in
myeloid cells, as previously shown (101) and confirmed in the
mouse (93). The SERPINA1 gene is expressed constitutively in
monocytes and granulocytes, repressed in monocyte-derived
macrophages grown in CSF1, and strongly induced as a late-
response genes upon addition of LPS. As shown in Figure 1A,
the actual TSS in macrophages form a broad cluster, typical
of myeloid promoters, around 50 bp upstream of the TSS
originally identified, but downstream of the EntrezGene tran-
script. Within the promoter region, there are four copies of
the CAGGAA core recognized by Ets family transcription
factors, and it is likely that the induction of multiple mem-
bers of the family by LPS, revealed in the same data set,

Frontiers in Immunology | www.frontiersin.org July 2015 | Volume 6 | Article 3704

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Hume Mononuclear phagocyte transcriptomics

C

B

A

FIGURE 1 | Transcriptional regulation of SERPINA1 in human
macrophages. The FANTOM5 analysis across hundreds of cells and tissues
revealed the existence of multiple transcription start site (TSS) clusters in the
vicinity of the SERPINA1 gene, as well as at least six enhancers in the genomic
facility. At top left, (A) summarizes the fact that existing annotated upstream
TSS in GenCode contributes only 20% of the TSS detected across the entire
dataset. The majority of transcripts derive from two “intragenic” regions. The
expanded genomic view above links the TSS to the expression profile. Note that
the most abundant TSS, p1@serpinA1, was detected most highly in liver and in
primary hepatocyte libraries, and much less in the relatively de-differentiated
HepG2 cells. The second most abundant TSS, p3@serpinA1, was constitutively

active in granulocytes. At top right, we see that three of the distal promoters
were induced by LPS in human monocyte-derived macrophages, starting
around 3–4 h after stimulation. The lower part of the panel (B) shows the
location, and the time course of induction, of four separate enhancers,
upstream, downstream, and within the SERPINA1 gene. (C) shows a close-up
view of the distal TSS region on the ZENBU viewer, showing that the TSS
identified by CAGE do align with known transcripts, but none supports the most
distal 5′ end annotated by Entrez Gene. The primary data summarized in this
image are derived from Arner et al. (100) and may be freely downloaded. The
CAGE data were extracted and the diagram produced by Albin Sandelin and
Erik Arner. The original data were produced in collaboration with Kenneth Baillie.

contributes to regulation. As shown in Figure 1B, induction
by LPS is preceded by increased transcription of multiple
enhancers. The MAK kinase phosphatase, DUSP1, is one of
the key inducible feedback regulators that is induced rapidly

in response to LPS. As shown inFigure 2, theDUSP1 genewas
induced massively by LPS, with an initial peak at 2–2.5 h, and
a secondary peak at 7–8 h. At least eight enhancers upstream
and downstream of TSS were detectably induced by LPS, with
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FIGURE 2 | Transcriptional regulation of DUSP1 in human macrophages.
The FANTOM5 analysis across hundreds of cells and tissues revealed the
existence of multiple transcription start site (TSS) clusters in the vicinity of a
single dominant TSS for the DUSP1 gene, with a classical TATA-box architecture
typical of highly inducible genes, as well as at least 14 enhancers in the genomic
facility. Upper left panel shows the induction of transcription from this TSS when
human monocyte-derived macrophages were treated with LPS. The lower part

of the panel illustrates the fact that at least eight of these enhancers showed
detectable activation of production of eRNAs detected by CAGE tags. Note that
the enhancers were activated around 1–1.5 h, where the peak of DUSP1
transcripts was detected around 2.5 h. The primary data summarized in this
image are derived from Arner et al. (100) and may be freely downloaded. The
CAGE data were extracted and the diagram produced by Albin Sandelin and
Erik Arner. The original data were produced in collaboration with Kenneth Baillie.

peaks around 30–60min prior to peak induction of DUSP1
transcripts, and some evidence of secondary peaks.

(6) Population-level analyses assay the average behavior of cells
in a population and obscure the massive underlying hetero-
geneity. At a single cell level, there is essentially bimodal
variation; genes are either induced by LPS or they are not
(102). One consequence is that the autocrine loops mediated
by inducible cytokines are, in fact, paracrine and the response
to LPS in closed systems, in cell culture or in defined inflam-
matory sites, can vary with cell density. Although some of
this variation could arise through covariance of transcrip-
tion factor expression, the major driver of heterogeneity is
the intrinsic probabilistic nature of transcriptional regula-
tion (103). Variation occurs even at the single allele level.
Indeed, the LPS receptor, TLR4, is expressed from only one
allele in individual cells, with an allele-counting mechanism
similar to that of the X chromosome (104). This finding
explains the semidominance of theTlr4mutation in C3H/HeJ
mice, since in heterozygotes, 50% of cells express the non-
functional protein.When one allele is deleted, all cells express
Tlr4. Furthermore, because of the complex feedback loops in

stimulated cells, in which LPS rapidly induces inhibitors that
block signaling and degrade induced mRNAs and proteins
(60), individual cells show an oscillating response with rel-
atively short time frames, eventually reaching a new steady
state (105).

The signaling pathway from the LPS receptor, TLR4, leading to
transcriptional activation, has been reviewed in detail by others
(106, 107). The target genes of the signaling cascade are bound by a
set of regulated transcription factors. Themost obvious, of course,
are NFkB and the IRFs, mentioned above. Genome-scale analysis
revealed others. For example, motif over-representation among
LPS-inducible promoters identified ATF3 as a novel inducible
feedback regulator of the response to LPS (54). They also iden-
tified the stress response factors, NRF1 and NRF2, as candidate
regulators, based upon the presence of binding sitemotifs in active
promoters (55). We compared the motif over-representation in
the promoters of LPS-inducible macrophage genes in humans and
mice (67). The motifs over-represented in the promoters, and
their relative over-representation, was conserved suggesting that
in both species the promoters sample a common transcriptional
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milieu. However, there was a little conservation of individual
elements between the species. So, the gain and loss of individ-
ual motifs, including the TATA box, is a significant driver of
evolution, and few individual motifs/binding sites have indis-
pensible functions. Those data also support the model in which
each transcription factor-binding site contributes independently
to the probability of transcription (108). But the “big names”
of transcription are not the only players in the LPS-inducible
transcriptional network. Around two-thirds of all transcription
factors can be detected in primary macrophages, and they form
a scale-free or small-world interaction network (55). Amit et al.
(109) disrupted the candidate regulators using lentiviral transduc-
tion of short hairpin RNAs and identified many novel regulators,
including circadian clock genes, that could not inferred frommotif
analysis.

Transcriptional network analysis reached a pinnacle in a
study of a model system of human macrophage differentiation
(110). Nearly half of all transcription factors were detected at
some time point during differentiation and around 200 were
dynamically regulated. Although the well-known macrophage
lineage marker, PU.1, was crucial to differentiation, subsets
of macrophage-expressed genes required different combinations
of transcriptional regulators. Many transcription factors were
rapidly repressed during the differentiation of THP-1 cells. Fifty-
two of these factors were artificially repressed using siRNA. The
knockdowns of myb, HoxA9, CEBPG, GFI1, CEBPA, FLI1, and
MLLT3 were each sufficient to cause partial differentiation of
the THP-1 cells. Additional double knockdowns proved that each
contributed independently to the differentiation process. Several
of these factors have well-documented repressive roles. The func-
tion of myb, in particular, correlates with its known downregula-
tion as progenitor cells differentiate and exit the cell cycle1, and
its ability to repress macrophage differentiation and to directly
repress csf1r transcription (111). Myb is most likely also a direct
repressor of PU.1 expression, since PU.1 was rapidly induced
upon myb knockdown (110).

Databases, Web Sites, and The Future

BioGPS is one example of a new era of emerging user-friendly
portals (see text footnote 1) that enable the analysis of complex
transcriptomic data. Although we disagree with the published
analysis, the gene expression data produced by the ImmGen is
an important resource for mouse functional genomics2. The web
site, www.macrophages.com, was established as a community
web site for sharing access to macrophage-related genomic and
other information including the promoter-related datasets arising
from the FANTOM projects (112). The site provides access to
web-start versions of the Biolayout analysis of large macrophage
datasets. The FANTOM5 consortium produced a comprehensive
overview of the human and mouse promoterome, including
mouse and human mononuclear phagocytes and other blood cell
types analyzed in hundreds of different states, accessible through
a convenient portal3. We developed a specialized portal for the
myeloid data at www.myeloidome.roslin.ed.ac.uk. The PrESSTo
system provides an intuitive promoter and enhancer selection
interface on top of the FANTOM data. It permits the selection of
promoters expressed in specific sets of tissues or cells based on
slider thresholding, where the number of promoter adhering to a
given combination of expression thresholds for cells or tissue can
be updated in real time4. With completed genomes, comparable
datasets are becoming available species such as the domestic pig,
chickens, sheep, and cattle. As we have already seen, mice are not
small humans when it comes to macrophage biology. Studies of
the evolution of macrophage transcriptional networks will also
reveal the points of weakness that are exploited by pathogens in
specific species, and which may also be the points for therapeutic
intervention.
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