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Coronary artery disease (CAD) as part of the cardiovascular diseases is a pathology 
caused by atherosclerosis, a chronic inflammatory disease of the vessel wall characterized 
by a massive invasion of lipids and inflammatory cells into the inner vessel layer (intima) 
leading to the formation of atherosclerotic lesions; their constant growth may cause 
complications such as flow-limiting stenosis and plaque rupture, the latter triggering ves-
sel occlusion through thrombus formation. Pathophysiology of CAD is complex and over 
the last years many players have entered the picture. One of the latter being chemokines 
(small 8–12 kDa cytokines) and their receptors, known to orchestrate cell chemotaxis 
and arrest. Here, we will focus on the chemokine CXCL12, also known as stromal 
cell-derived factor 1 (SDF-1) and the chemokine-like function chemokine, macrophage 
migration-inhibitory factor (MIF). Both are ubiquitously expressed and highly conserved 
proteins and play an important role in cell homeostasis, recruitment, and arrest through 
binding to their corresponding chemokine receptors CXCR4 (CXCL12 and MIF), ACKR3 
(CXCL12), and CXCR2 (MIF). In addition, MIF also binds to the receptor CD44 and the 
co-receptor CD74. CXCL12 has mostly been studied for its crucial role in the homing 
of (hematopoietic) progenitor cells in the bone marrow and their mobilization into the 
periphery. In contrast to CXCL12, MIF is secreted in response to diverse inflammatory 
stimuli, and has been associated with a clear pro-inflammatory and pro-atherogenic role 
in multiple studies of patients and animal models. Ongoing research on CXCL12 points 
at a protective function of this chemokine in atherosclerotic lesion development. This 
review will focus on the role of CXCL12 and MIF and their differences and similarities in 
CAD of high risk patients.
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introduction

Worldwide, cardiovascular disease (CVD) is the leading cause of death, accounting for more than 
15 million deaths annually (1, 2). CVD is a collection of various diseases, but the most common and 
most severe are coronary artery disease (CAD) and cerebrovascular disease. In a high percentage 
of patients, these diseases eventually result in a myocardial infarction (MI) or stroke, respectively. 
CVD has not only a major impact on personal health, but also the economic burden is quite high. 
Besides the high mortality rates, patients who do survive are often hospitalized or should receive 
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lifelong treatment, leading to high healthcare costs. In the United 
States alone, these costs are even more than $312 billion per year, 
indicating the magnitude of economic burden caused by CVD 
(3). Finally, the social burden on the direct environment of CVD 
patients should not be underestimated.

In recent years, or even decades a lot of research has been per-
formed to better understand the exact pathology behind CVDs. 
Currently, atherosclerosis, a chronic inflammatory disease mainly 
affecting medium and large-sized arteries, has been identified as 
the main underlying cause of CVD (4). Upon activation of the 
vascular endothelial layer, lipids, immune cells, and cell debris 
start to accumulate in the vessel wall, forming initial lesions. 
These lesions will over time progress and grow in size, thereby 
partially or even fully occluding the artery. More often, however, 
the full occlusion of the vessel is caused by a rupture of the ath-
erosclerotic lesion resulting in thrombus formation (4). Excessive 
growth or rupture of the lesion both result in ischemic areas in 
downstream tissues. Most commonly this occurs in arteries from 
the heart or the brain, leading to MI or stroke, respectively. To 
date, there is still no absolute suitable therapy available to cure or 
reverse atherosclerosis. Better understanding of this pathology 
will increase the ability to prevent it, and create opportunities to 
develop therapeutic strategies to cure it, or at least slow down the 
disease progression.

This review will give a short overview of the current knowl-
edge about atherosclerosis, mainly focusing on the inflammatory 
aspects and the role of chemokines. Subsequently, the role of 
two important inflammatory mediators that recently have been 
connected with CVD and atherosclerosis will be discussed and 
put into clinical perspective, namely the chemokines CXCL12 
and macrophage migration-inhibitory factor (MIF, Table 1 and 
Figure 1).

Atherosclerosis

Risk Factors
Already a multitude of risk factors have been described for CVDs, 
mainly derived from epidemiological studies. Main risk factors 
include psychosocial factors, hypertension, changes in low-
density lipoproteins (LDL) and high-density lipoproteins (HDL) 
cholesterol levels, physical inactivity, smoking, obesity, lack of 
fruits and vegetables consumption, and alcohol and diabetes 
mellitus (20–22). All these risk factors vary greatly in prevalence 
and potency to influence CVD and are often combined in patients 
with severe atherosclerosis, supporting the concept that athero-
sclerosis is a multifactorial, complex disease (22). A worldwide 
case-control study showed that these nine factors combined 
account for more than 90% of the cardiovascular risk (21), where 
smoking and abnormal lipids already account for two-thirds of 
the risk. Additionally, many patients, especially high risk patients, 
have genetic predispositions for atherosclerosis (23). Some of 
these risk factors should be relatively easy to prevent with life-style 
adjustments. However, due to the multifactorial characteristics of 
the disease, identification of the precise mechanisms of action, 
whereby these risk factors influence atherosclerosis, is a key and 
crucial step in the road toward therapeutic strategies. This way 
for example statins, lipid modulating drugs, have been developed 

that lower LDL cholesterol levels and thereby inhibit the progres-
sion of atherosclerosis. Recently, Nahrendorf and Swirski very 
nicely reviewed the possible influence of various risk factors 
on the crosstalk between hematopoiesis, immune cells, and the 
cardiovascular system (22).

Atherosclerosis initiation
Formation of atherosclerotic lesions occurs predominantly 
at predisposed sites, i.e., sites of disturbed laminar flow, like 
bifurcations and curvatures (24), thereby disturbing the normal, 
quiescent state of the endothelium. The resulting increased perme-
ability of the endothelial layer leads to the accumulation of lipids, 
more specifically LDL, in the subendothelial layer of the arterial 
wall (25). LDL is very susceptible to oxidation, mainly caused 
by myeloperoxidase, lipoxygenenases or by reactive oxygen spe-
cies such as HOCl, resulting in oxidized-LDL particles (oxLDL) 
(26). The modification of LDL can activate the endothelial cells 
(ECs) and tissue-resident macrophages (27). Subendothelial/
extravasated LDL will be oxidized and taken up by resident 
macrophages via scavenger receptors (SRs), mainly SR-A, SR-B1, 
and cluster of differentiation (CD) 36 (28, 29). Intracellularly, 
oxLDL will be hydrolyzed into free cholesterol and fatty acids in 
late endosomes (30). Free cholesterol is subsequently transported 
to the endoplasmic reticulum where it undergoes re-esterification 
to cholesteryl esters by the acyl-CoA:cholesterol ester transferase 
(ACAT) enzyme (31). This accumulation of cholesteryl esters will 
transform the macrophages into foam cells, a characteristic hall-
mark of early atherosclerosis. Not only the uptake and storage of 
cholesterol are disturbed, but also the excretion mechanisms are 
disturbed. ATP binding cassette transporters A1 and G1 (ABCA1 
and ABCG1) are the major contributors to this cholesterol efflux 
through reverse cholesterol transport (RCT) (32, 33). Cholesterol 
will efflux toward HDL, making HDL beneficial for atherosclero-
sis development (32). Normally, this efflux mechanism is upregu-
lated upon lipid loading, however, during hypercholesterolemia 
this route is compromised via TLR4-induced downregulation of 
the cholesterol transporters, further favoring the conversion of 
macrophages to foam cells (34).

This macrophage activation, due to the lipid loading, together 
with the activation of ECs will lead to more vascular inflam-
mation, by the secretion of various cytokines, chemokines, and 
adhesion molecules (35). The inflammation will result in the 
attraction of mainly monocytes but also other immune cells, like 
T- and B-lymphocytes and neutrophils to the site of injury and 
lesion formation (26). In humans, two main subsets of circulat-
ing monocytes have been described based on their expression of 
CD14 and CD16 (36). Over 90% of the circulating monocytes 
are CD14high/CD16− and are called the classical monocytes (37). 
The other population, the non-classical monocytes are CD14low/
CD16high (36). These distinct subsets also show differential 
expression of chemokine receptors (38). The classical monocytes 
express, for example, high levels of CCR2, a receptor for CCL2 
(39). CX3CR1 is expressed on both subtypes, but the expression 
on non-classical monocytes is twofold higher compared to that 
on the classical monocytes (40, 41). In mice, also two main sub-
types of circulating monocytes can be identified, discriminated 
mainly by the expression of Ly6C, i.e., the Ly6Chigh (classical) and 
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Ly6Clow (non-classical) monocytes (42). Similar to the human 
subpopulations mouse classical monocytes express high levels 
of CCR2, while non-classical monocytes express CX3CR1 (43). 
Hypercholesterolemia, a common characteristic of atheroscle-
rosis increases Ly6Chigh monocyte levels (44, 45). Additionally, 
Ly6Chigh classical monocytes form the main subtype that will 
migrate to the site of injury (46).

The mechanism of monocyte recruitment and adhesion 
consists of complex interactions between various adhesion mol-
ecules and chemokines. The exact role of various chemokines in 
atherosclerosis will be discussed later. In short, the monocyte 
adhesion cascade consists of several steps. The first step in 
this cascade is the capture and rolling phase, where various 
chemokines and selectins on the luminal side of the activated 
endothelium play a crucial role (35, 47). The second step is the 
firm adhesion of these monocytes to the endothelium. In this 
phase, vascular cell adhesion molecule 1 (VCAM1) and intercel-
lular adhesion molecule 1 (ICAM1) present on the endothelium 
are essential, since they attach firmly to the integrins very late 
antigen 4 (VLA4) and lymphocyte function-associated antigen 
1 (LFA1), respectively, present on the monocytes (47). VCAM1, 
ICAM1, and E-selectin form clusters to initiate cytoskeletal 
reorganization, necessary for subsequent transmigration (48). 
These clusters, also called docking structures, have been shown 
to be located on upright endothelial membrane processes and 

TABLe 1 | Overview of human studies on CXCL12 and MiF in CvD.

Study design Outcome Reference

CXCL12
Genome-wide association studies in over 100,000 patients CXCL12 locus on chromosome 10q11 is clearly associated with CAD, indicating that 

CXCL12 may be involved in CVD development
(5)

Western blot analysis and immunohistochemical analysis of 
human plaques

Atherosclerotic lesions express high levels of CXCL12, in contrast to vascular cells of 
healthy vessels, associating CXCL12 with CVD

(6)

Cohort study of 904 patients with CAD Platelet CXCL12 expression is increased in angina patients, though clinical significance 
remains to be elucidated

(7)

Cohort study of 215 patients with symptomatic CAD 
undergoing percutaneous coronary intervention

CXCR4 and ACKR3 are more highly expressed on platelets from CAD patients, 
associating receptors of CXCL12 to CVD

(8)

Plasma CXCL12 evaluation of 60 CAD patients Plasma CXCL12 levels and surface expression of CXCR4 in peripheral blood mononuclear 
cells are decreased in angina patients, indicating that CXCL12 could be beneficial for CVD

(9)

Cohort study of 785 patients undergoing angiography Plasma CXCL12 levels are superior to traditional risk factors in predicting CAD outcomes (10)
Evaluation of 1,000 patients hospitalized due to chest pain Platelet-derived CXCL12 expression occurs fast after injury in CAD patients, as early as 

30 min, indicating that CXCL12 might be very useful as biomarker
(11)

MiF
Single nucleotide polymorphism (SNP) evaluation of 459 MI 
patients and healthy controls

MIF single nucleotide polymorphism (rs755622) is associated with MI risk (12)

MIF analysis in healthy and diseased internal mammary 
arteries

MIF is abundantly expressed in human atherosclerotic lesions, throughout lesion 
development, associating MIF with CVD

(13)

Immunohistochemical analysis of human atherosclerotic 
plaques

MIF is associated with fibrous cap weakening, by inducing protease expression and 
activity, associating MIF with plaque instability

(14)

Evaluation of 286 patients with symptomatic CAD 
undergoing percutaneous coronary intervention

Plasma MIF levels are increased in CVD patients, associated with inflammatory marker 
expression

(15)

Prospective study of 617 patients with CAD High plasma MIF levels are an independent risk factor for future coronary events in CVD 
patients with impaired glucose tolerance or type 2 diabetes mellitus, associating MIF with 
CVD development

(16)

Plasma MIF and Grem 1 evaluation in 286 patients with 
CVD

High plasma Grem1/MIF ratio is associated with CVD and the grade of plaque stability, 
indicating MIF as a possible novel risk marker in CVD patients

(17)

Evaluation of MIF levels in patients with chronic stable 
angina

MI patients have higher plasma MIF levels which are predictive of final infarct size and 
remodeling, suggesting a role for MIF as biomarker

(18)

Prospective case–control study nested in the EPIC-Norfolk 
cohort in people without prior history of MI or stroke

Association of MIF with MI risk or death due to CVD is not very strong in humans without 
prior history of CVD, indicating that more research is necessary before choosing MIF as 
therapeutic target

(19)

are organizes as the so-called transmigratory cups by tetraspa-
nins (49). Monocyte transmigration across the endothelial layer 
is mainly directed by various chemokines and their receptors 
(50). Next to these chemokines, also the endothelial junc-
tion molecules, platelet endothelial cell adhesion molecule 1 
(PECAM1), VE-Cadherin, and junctional adhesion molecules 
(JAMs) play a crucial role as regulators of EC permeability 
and leukocyte transmigration (51). Monocytes have two ways 
to transmigrate, a paracellular route and a transcellular route. 
The paracellular route leads monocytes through the endothelial 
junctions, whereas the transcellular route uses fusing vesicles 
in the endothelium cell cytoplasm for transmigration (52). 
Once inside the vessel wall, monocytes can differentiate into 
macrophages, driven by macrophage colony-stimulating factor 
(M-CSF) (53). Macrophages are a heterogeneous cell popula-
tion, consisting of two main groups, the classically activated, 
inflammatory M1 macrophages and the alternatively acti-
vated, inflammation resolving M2 macrophages (54). Various 
cytokines play a role in this polarization of macrophages, such 
as IL-10 and interferon-γ (55). Both types of macrophages are 
present in atherosclerotic lesions, where the balance between 
them is of great importance for either plaque development or 
resolving inflammation (56). These attracted leukocytes will 
again be exposed to the oxidized-lipid-rich environment of the 
developing lesion, forming foam cells. Thereby a vicious circle of 
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leukocyte attraction and lipid accumulation is formed, stimulat-
ing atherosclerosis development.

Plaque Progression
When lesional macrophages take up so many lipids and debris, 
many will eventually go into apoptosis. In early plaque develop-
ment apoptosis is not considered detrimental, since neighboring 
macrophages will take up and eliminate the apoptotic debris, a 
process called efferocytosis (56). However, when plaque devel-
opment progresses, the excessive uptake of lipids and debris 
continues and eventually leads to cellular stress and impaired 
efferocytosis (57). This will result in the accumulation of apop-
totic debris and apoptotic macrophages will go into secondary 
necrosis, leading to the formation of the necrotic core which is 
characteristic of more advanced lesions (56, 58). The necrotic 
core will significantly contribute to the lesional inflammation, 
and thus progression, and also contains pro-thrombotic factors 
that will lead to a thrombus when it comes into contact with plate-
lets (59). To prevent this from happening, a fibrous cap is formed 
between the necrotic core and the lumen, by deposition of mainly 
collagen and elastin by intimal smooth muscle cells (SMCs) (60). 
Various cytokines and growth factors, produced by leukocytes, 
are important for the migration of intimal SMCs to the intima 
and for the extracellular matrix production (60). Plaques with a 
big fibrous cap are considered to be more stable atherosclerotic 

FiGURe 1 | Similarities and differences of CXCL12 versus MiF function in 
cardiovascular disease. Both CXCL12 and MIF can bind to CXCR4. 
Additionally, CXCL12 can bind to ACKR3 (CXCR7), while MIF binds to CXCR2 and 
CD74/CD44. Although MIF interaction with ACKR3 has been described for 

platelets, it is still unclear whether this is via direct binding or via receptor 
heterodimerization. Both chemokines have an important role in leukocyte 
recruitment, although cell-type-specific effects remain unknown. Besides this, 
CXCL12 and MIF have individual functions associated with cardiovascular disease.

lesions, i.e., less prone to rupture. However, macrophages can also 
produce matrix metalloproteinases (MMPs), which are capable of 
degrading extracellular matrix proteins (59). Fibrous cap degra-
dation and thus thinning makes the lesion more vulnerable and 
can eventually lead to a plaque rupture, releasing pro-thrombotic 
material into the bloodstream resulting in thrombus formation 
and obstruction of blood flow. This can cause ischemia to distal 
regions and result in a MI or stroke (58).

Chemokines in Atherosclerosis
Chemokines are the largest family of cytokines, consisting of 
small molecules (8–12 kDa) that exert chemotactic effects on cells 
(61). This large family is divided into four subclasses, being C, 
CC, CXC, and CX3C. This classification is based on the position 
of the N-terminal cysteine residues (62). In addition to these 
four canonical chemokine classes, a fifth subclass consisting of 
molecules that share functional similarities with chemokines 
has emerged, referred to as “chemokine-like function” (CLF) 
chemokines (63). These non-canonical chemokines do exert 
some CLFs, but do not contain the specific N-terminal cysteine 
residue characteristic of canonical chemokines (63). Chemokines 
can bind to chemokine receptors, which are classified according 
to the chemokine they bind. Most chemokine receptors will acti-
vate G proteins and intracellular signaling upon binding and are 
therefore part of the G protein-coupled receptor family. However, 
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several receptors, the so-called atypical chemokine receptors, are 
G protein signaling independent and rather play a role in the 
scavenging of chemokines (64). Chemokines and chemokine 
receptors are expressed on various cell types, like ECs, SMCs, 
and leukocytes. Originally, chemokines were discovered for their 
capacity of directing leukocytes toward sites of inflammation (65). 
Thereby, chemokines also play a crucial role in atherosclerosis.

Chemokines already play a role in a very early stage of athero-
sclerosis development. Recently, it was shown that lysophospha-
tidic acid, a component of LDL mediates the release of CXCL1 
from ECs (66). Studies in atherosclerotic prone ApoE−/− mice fed 
a cholesterol-rich diet show that CXCL1 is not only important 
for the mobilization of the classical, or inflammatory, monocytes 
to the site of inflammation, but also important for neutrophil 
recruitment via the receptor CXCR2 (66–68).

The involvement of various chemokines and their receptors 
in monocyte recruitment has already been well described (69). 
However, during the recent decade these described involvements 
have been revised and are still being greatly debated. Using a 
highly sophisticated technique of transferring atherosclerotic 
aortic arches from ApoE−/− mice into specific chemokine recep-
tor knockout mice, it was shown that inflammatory monocytes 
require CCR2, CCR5, and CX3CR1 to migrate into the athero-
sclerotic lesion, while the patrolling monocytes used CCR5 for 
recruitment (70). However, this view again changed recently 
using adoptive transfer experiments with pharmacological inhi-
bition of the specific chemokine receptors. Here it was shown 
that the inflammatory Ly6Chigh monocytes use CCR1 and CCR5 
for recruitment, rather than the previously shown CCR2 and 
CX3CR1 (68). CCR2-deficient mice on an atherosclerosis-prone 
background did, however, result in a significantly reduced lesion 
size in mice. Based on the adoptive transfer study and the fact that 
CCR2-deficient mice show reduced circulating monocyte counts, 
it can be suggested that the beneficial effect on atherosclerosis 
is due to its effects on monocyte release from the bone marrow, 
rather than directs effects on monocyte recruitment (71, 72). Also 
for CX3CR1-deficient mice, it was observed that these animals 
have reduced atherosclerosis development, implicating CX3CR1 
in atherogenesis (73). However, instead of effects on monocyte 
recruitment, CX3CR1 seemed to play an important role in cell 
survival. Thus, deficiency of this chemokine resulted in increased 
apoptosis of plaque macrophages, thereby reducing lesion devel-
opment (73). CCR1 and CCR5, which do seem to be involved 
in leukocyte recruitment, both have several specific ligands, 
but also share ligands like CCL3 and CCL5. However, looking 
at the exact effects of both receptors on atherogenesis, there are 
distinct differences. CCR5 deficiency results in a clear reduction 
of diet-induced atherosclerosis in mice, while CCR1 deficiency 
increased lesion development (74, 75).

In the later stages of atherosclerotic lesion development, 
chemokines also still play an important role. The best-studied 
chemokine receptor in this stage, especially with respect to plaque 
regression, is CCR7. It has been shown in various studies that 
CCR7 is necessary for the egress of macrophages during lesion 
regression (76–78). However, CCR7 in T cells seems to play a pro-
atherogenic role. CCR7-deficient T cells show an impaired entry 
and exit capacity from atherosclerotic lesions (79). Combined, 

CCR7 is thus involved in macrophage egress from lesions and 
T cell migration. In these later stages of lesion development 
also CXCL10 is crucially involved, especially in plaque stability. 
Inhibition of CXCL10 resulted in relatively more SMCs and a 
more stable plaque phenotype (80).

These results clearly show that the chemokine system plays an 
important role in all stages of atherosclerotic lesion development, 
but underlines that these interactions are very complex and elabo-
rate. Additional research is still needed to even further elucidate 
the role of this system in atherosclerosis and CVD in general. 
Besides the already described chemokines involved in athero-
sclerosis, in the recent years, more and more research has been 
focusing on two yet undiscussed chemokines, being CXCL12 and 
MIF. The remainder of this review will specifically focus on the 
role of these two chemokines in atherosclerosis and CVD.

CXCL12

Ligand/Receptor Characteristics
CXCL12, also known as stromal cell-derived factor 1 (SDF-1), 
is one of the 17 members of the CXC chemokine family (5). 
Structurally, this group of chemokines can be further subdivided 
into two groups, depending on the presence of a specific amino 
acid motif [glutamic acid–leucine–arginine (ELR)] before the 
first cysteine group (81). Interestingly, this subdivision showed 
also to be a functional separation since ELR-positive chemokines 
attract neutrophils, while ELR-negative chemokines, such as 
CXCL12, attract T lymphocytes and natural killer cells (82, 83). 
CXCL12 consists on its turn again of six isoforms, derived from 
alternative splicing (84). The classical isoforms are CXCL12-α 
and CXCL12-β, which are expressed throughout the body and so 
far functionally indistinguishable (84). Other isoforms are called 
CXCL12-γ, -δ, -ε, and -φ, which show a more restricted expres-
sion pattern and are until now much less studied. All isoforms 
share the same N-terminal sequence, but differ in the C-terminal 
region (84).

The most important receptor for CXCL12 is CXCR4, which 
is also expressed on a wide variety of cells (85, 86). CXCR4 is a 
G protein-coupled receptor and binding of CXCL12 will induce 
intracellular signaling via a classical heterotrimeric G protein 
(86). Receptor activation has been shown to trigger MAPK and 
PI3K signaling, but also calcium mobilization (87). Additionally, 
activation of CXCR4 results in β-arrestin recruitment, resulting in 
the endocytosis of CXCR4 and thus receptor desensitization (88).

More recently, a second receptor for CXCL12 was identified, 
being ACKR3 (CXCR7) which is highly expressed on monocytes 
and mature B cells (89). This receptor has even a 10-fold higher 
affinity for CXCL12 than CXCR4. Binding of CXCL12 to the 
receptor does, however, not result in the classical leukocyte 
chemotaxis response or coupling with G proteins to induce intra-
cellular signaling. ACKR3 is implicated in cell growth and sur-
vival (90). However, the main function of ACKR3 seems to be as 
a decoy receptor, since receptor stimulation by CXCL12 enhances 
internalization of ACKR3 and thereby delivery of its ligands to 
the lysosomes for degradation (91, 92). This way, ACKR3 activa-
tion would reduce CXCL12/CXCR4 signaling. However, since 
CXCL12 scavenging also prevents the downregulation of CXCR4, 
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ACKR3 could also well be beneficially influencing CXCR4-
mediated effects (93). However, ACKR3 stimulation has also 
been shown to result in downregulation of CXCR4 (94). On the 
other hand, CXCR4 seems also to be influencing ACKR3, since 
the widely used antagonist for CXCR4 AMD3100 has recently 
been shown to have agonistic effects on ACKR3 (95). ACKR3 can 
have intracellular signaling effects on MAPK, but these are purely 
β-arrestin mediated (96). Altogether, these results clearly show 
that there is a complex interaction between CXCL12/CXCR4 and 
ACKR3.

CXCL12 and Stem-/Progenitor-Cell Mobilization
The importance of CXCL12 in general has been clearly shown 
in mice that have a total CXCL12 deficiency. These animals die 
already perinatally due to major defects in hematopoiesis, vas-
culo-, cardio-, and neurogenesis (97). These embryonic defects 
are indicative for the important role of the CXCL12/CXCR4 axis 
in progenitor cell migration, but also for survival and chemotaxis 
of murine embryonic stem cells during embryogenesis (98). The 
role of CXCL12/CXCR4 in this mobilization from the bone mar-
row has already been well studied, not only for hematopoietic 
stem cells, but also for EC and SMC progenitor cells (99). In 
physiological conditions, hematopoietic stem cells are retained 
in the bone marrow by high expression of CXCL12 by stromal 
cells (97). In the clinic, modulation of the CXCL12/CXCR4 axis 
by granulocyte colony-stimulating factor (G-CSF) is already used 
to mobilize stem cells from the bone marrow to the circulation. 
G-CSF has various ways of modulating this axis, reviewed in (97). 
Additionally, the role of CXCL12/CXCR4 is confirmed by using 
the CXCR4 antagonist AMD3100, which results in decreased 
bone marrow CXCL12 levels, thereby favoring mobilization of 
stem cells (100).

CXCL12 in Atherosclerosis
Mobilization of hematopoietic stem cells, but also progenitor 
cells like endothelial progenitor cells (EPCs) and smooth muscle 
progenitor cells (SPCs), has also been implicated in various 
pathologies like atherosclerosis (101, 102). A recent study showed 
that injections of CXCL12 in mice developing atherosclerosis 
resulted in more stable lesions, characterized by more SMCs 
and a thicker fibrous cap (103). These plaque-stabilizing effects 
were mediated by an increased recruitment of SPCs to these 
lesions. Supporting this finding, direct injection of SPCs in 
mice reduces atherosclerotic lesion development and improves 
the stability (104). Besides SPCs, also EPCs were shown to be 
involved in atherogenesis, since infusion of EPCs, or AMD3100 
treatment triggering EPC mobilization resulted in a beneficial 
effect on lesion regression (105). Together, these studies show 
atheroprotective effects of the CXCL12/CXCR4 axis, mediated 
by progenitor mobilization.

Besides these effects on progenitor cells, mediating beneficial 
effects on atherosclerosis, CXCL12/CXCR4 may also influence 
disease development by influencing various atherosclerosis-
related cells. This is especially interesting, since CXCR4 is 
expressed on basically every cell-type related to atherogenesis, 
like monocytes, macrophages, neutrophils, ECs, SMCs, and T- 
and B-cells (106–110). However, until now there have been no 

studies directly investigating the causal cell-type-specific effects 
of CXCL12/CXCR4 in relation to atherosclerosis. Though there 
are already various studies at least associating this axis with 
atherogenesis.

For macrophages, it has been shown that oxLDL, also in large 
amounts present in atherosclerotic lesions, upregulated CXCR4 
expression which could contribute to macrophage migration 
(111). The CXCL12/CXCR4 signaling in macrophages was also 
implicated in macropinocytosis, indicating a possible influence 
on lipid accumulation in these cells (112). Furthermore, it has 
also been associated with neutrophils as it regulates the release 
of neutrophils from the bone marrow (113). Not only the release 
is mediated by this axis, but also the clearance of circulating 
neutrophils as senescent neutrophils shows increased expres-
sion levels of CXCR4-mediating effective clearance (114). By 
contrast, activated neutrophils downregulate CXCR4 levels, 
leading to postponed clearance (97). Treatment of ApoE−/− mice 
with AMD3100 resulted in an increased neutrophil mobiliza-
tion, thereby increasing atherosclerotic lesion areas (44, 45). 
ECs also release more CXCL12 after oxLDL stimulation (115). 
Additionally, laminar shear stress appeared to influence CXCR4 
expression, where high shear suppresses CXCR4 expression 
(116). CXCL12 can also increase vascular endothelial growth 
factor (VEGF) expression in ECs, which promotes angiogenesis 
(117). As angiogenesis is inducing a more vulnerable plaque 
phenotype, CXCL12 could have lesion destabilization effects. 
Chemotaxis of both T- and B-cell is also positively influenced by 
CXCL12/CXCR4 (118–121). Besides CXCL12/CXC4 effect on all 
these different cell-types, expression of CXCL12/CXCR4 has also 
been shown on platelets (6, 122). Platelets are the first to arrive 
at a site of vascular injury, where its glycoproteins Ib and IIb/IIIa 
engage surface molecules on the ECs, contributing to endothelial 
activation (4). Platelets also produce and store CXCL12 in their 
α-granules. Upon release, platelet-derived CXCL12 has been 
implicated in cell adhesion and chemotaxis (123). Furthermore, 
CXCL12 is able to induce platelet aggregation, a crucial step in 
thrombus formation after atherosclerotic plaque rupture (6). 
Platelets also express the receptor CXCR4, and blocking studies 
indicated that this receptor is crucially involved in the aggregation 
effects of CXCL12 (6). Additionally, CXCL12 is able to stimulate 
platelet migration and transmigration (124). Together, these 
results show that CXCL12/CXCR4 have interactions with many 
cells that are relevant in atherosclerosis and is thereby modulating 
atherosclerosis development. Recently, also a role for ACKR3 in 
atherosclerosis development has been described, showing that 
activation of ACKR3 by a synthetic ligand reduced lesion forma-
tion and ameliorated hyperlipidemia. ACKR3 seemed to play an 
important role in the regulation of blood cholesterol levels, by 
promoting VLDL uptake in adipose tissue (125).

CXCL12 in Atherosclerosis-Related Pathologies
As previously described, atherosclerotic plaques eventually, either 
block an artery by growth or by rupture and subsequent thrombus 
formation. The result is ischemia in downstream tissues. One of 
the most common places for this to occur is in the heart, result-
ing in a MI. It is known that hypoxia results in an upregulation 
of CXCL12 and CXCR4 (126). Various studies have revealed a 
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protective role for CXCL12/CXCR4 signaling after MI through 
survival effects on resident cardiomyocytes and recruitment of 
protective circulating cells (97). Direct injection of CXCL12, for 
example, reduced myocardial infarct size after ischemia, which was 
associated with increased neo-angiogenesis (127). Recruitment 
of progenitor cells was crucial for this improved vessel growth 
(128). Supporting a role for CXCL12/CXCR4 in MI are studies 
using AMD3100, an antagonist for CXCR4. However, results 
from these studies are quite contradictory. A study using a single 
injection of AMD3100 showed improved cardiac function and 
enhanced progenitor cell accumulation and neovascularization 
(129, 130). However, more chronic administration of AMD3100 
showed reduced incorporation of progenitor cells and cardiac 
outcome after MI (131).

CXCL12/CXCR4 has also been shown to play a role in vascular 
restenosis. The main treatment of choice after arterial blockage 
is percutaneous coronary intervention, where a stent is placed at 
the site of lesion development. However, neointimal hyperplasia 
often causes restenosis of these stents mainly driven by SMCs, 
thereby again occluding the artery. Systemic treatment of mice 
that underwent wire-induced arterial injury with CXCL12 or 
CXCR4 antagonists showed clear reductions of neointimal size 
and SMC content (132, 133). This reduced SMC content was 
caused by a reduction in progenitor mobilization toward the 
site of injury (132, 133). Additionally, CXCR4 blockage reduced 
cellular proliferation at sites of neointimal lesions (134). A sig-
nificant decrease in EPC mobilization was recently also observed 
using genetic EC-specific knockout of CXCR4, although mice 
showed larger neointimal lesions consisting of more inflamma-
tory macrophages, but less SMCs (135).

Human and Clinical implications for CXCL12
Genome-wide association studies showed clear associations 
of CXCL12 with CVD (5) (Table 1). Previously, it was already 
shown that vascular cells express high levels of CXCL12 in human 
atherosclerotic lesions, but not in normal vessels (6). Various 
human studies supported the idea that CXCL12 is a potential 
regulatory agent in atherosclerosis. A study, comparing plasma 
CXCL12 levels of angina patients with healthy controls, showed 
decreased levels of CXCL12 in the patient group (9). Patients 
with unstable angina had even lower CXCL12 levels than those 
with stable angina. Additionally, these patients showed decreased 
surface protein expression of CXCR4 in peripheral blood mono-
nuclear cells, while the RNA expression was increased probably 
as compensatory mechanism (9). Combined, this study suggests 
anti-atherogenic properties of CXCL12. In contrast, another study 
observed significantly increased CXCL12 expression on platelets 
of stable angina patients, compared to healthy controls. Plasma 
CXCL12 levels also correlated with platelet activation (7), sug-
gesting a more atherogenic and pro-thrombotic role for CXCL12. 
In addition, both CXCR4 and ACKR3 are more highly expressed 
on platelets from CVD patients, compared to healthy controls 
(8). It is suggested that platelet-derived CXCL12 expression 
occurs relatively fast after vessel injury, being as early as 30 min 
(136). Currently, used biomarkers for acute coronary syndrome, 
like troponin-I are much slower. Therefore determination of 
CXCL12 might be very useful as early additional biomarker (11). 

Recently, it was shown that CXCL12 is also associated with heart 
failure (137), and that plasma CXCL12 levels are even superior to 
 traditional risk factors in predicting adverse cardiovascular out-
comes (10). Although there are still some contradictory clinical 
results, it is clear that CXCL12 does play a role in atherosclerosis 
and CVD.

Macrophage Migration-inhibitory Factor

Ligand/Receptor Characteristics
Discovered almost 50  years ago, macrophage MIF was one of 
the first cytokines to be identified (138). MIF is part of the CLF 
chemokine family, as it is missing the typical N-terminal cysteines 
(139). The name is derived from its discovery as MIF-containing 
supernatant showed to be inhibitory for macrophage migration 
(140). At first, T cells were thought to be the main cellular source 
of MIF. However, since its discovery, expression of MIF has also 
been shown in other immunity cells like monocytes, macrophages, 
neutrophils, dendritic cells, and B cells (13, 141–146). In contrast 
to many other chemokines, MIF is constitutively expressed and 
deposited in intracellular storages. Thus, upon stimulation, MIF 
release does not require de novo synthesis (138). It has already 
been well described that MIF can directly or indirectly stimulate 
a large variety of pro-inflammatory molecules, including various 
cytokines and nitric oxide. Additionally, MIF was shown to over-
ride the immunosuppressive effects of glucocorticoids (147). MIF 
has been implicated in various acute and chronic inflammatory 
diseases, like sepsis, rheumatoid arthritis, and cancer (148–150).

The first receptor identified for MIF was CD74, the membrane-
expressed form of invariant chain and an MHC class II chaperone 
(151). However, besides its role in antigenic peptide loading, 
CD74 can also be expressed in the absence of the MHC class II 
protein, thus exerting functions as membrane receptor (152). 
MIF binds with high affinity to CD74, although CD74 by itself 
is not able to induce intracellular signaling. Therefore, it requires 
the recruitment of signaling-competent co-receptors. CD44 was 
the first described co-receptor of CD74, able to mediate signal 
transduction (153). CXCR2 and CXCR4 have also been described 
as co-receptors for CD74 (154, 155). The combination of CD74 
with CD44 has been linked with MIF’s pro-inflammatory and 
anti-apoptotic functions by the activation of MAPKs (153, 156). 
CD74/CXCR2 complexes have been shown to be involved in 
MIF-mediated monocyte chemotaxis and arrest. In line, a role 
for CD74 in atherogenesis has been identified (157).

CXCR4 has already been discussed previously as receptor for 
CXCL12. It has been found, in monocytes, T cells and fibroblasts, 
that CXCR4 can also form heterodimers with CD74 and induce 
Akt signaling (155). CXCR4 has mainly been shown as the recep-
tor responsible for MIF-induced T cell recruitment (154). Finally, 
CXCR2 has been described as important receptor for MIF. MIF/
CXCR2 interaction mainly triggered the recruitment and arrest 
of monocytes. Furthermore, MIF/CXCR2 has been implicated in 
integrin activation, an important step in leukocyte recruitment. 
Recently, ACKR3 on platelets has also been described as recep-
tor for MIF, although it is still not clear whether this is a direct 
ligand–receptor interaction or indirect interaction via receptor 
heterodimerization such as CXCR2/ACKR3 (158).

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
www.frontiersin.org


July 2015 | Volume 6 | Article 3738

van der Vorst et al. MIF/CXCL12 in cardiovascular disease

Frontiers in Immunology | www.frontiersin.org

MiF in Atherosclerosis
Hyperlipidemia is one of the hallmarks of atherogenesis. It was 
shown that upon hyperlipidemia, MIF expression is greatly 
enhanced in cells crucial for atherosclerosis development, 
like ECs, SMCs, monocytes, and T cells (13, 159, 160). As 
atherosclerotic lesions progressed, MIF expression was even 
further increased. Combined, these data clearly implicate MIF 
not only in atherosclerotic lesion development, but also in plaque 
destabilization.

Leukocyte recruitment into atherosclerotic plaques is one 
of the most important processes during lesion development. 
In vitro adhesion assays under flow clearly showed an increased 
monocyte arrest of monocytes to aortic ECs upon MIF incu-
bation (161). This was confirmed by using MIF neutralizing 
antibodies, which blocked the observed effects. Additionally, 
using small interfering RNA to inhibit endothelial MIF produc-
tion, it was observed that MIF deficiency resulted in a decreased 
expression of E-selectin, ICAM-1, VCAM1, IL-8, and MCP-1, all 
important mediators of leukocyte recruitment (162). Bernhagen 
et  al. clearly showed that MIF can also more directly trigger 
monocyte, neutrophil, and T cell arrest and chemotaxis in an 
integrin-dependent manner (154). They further implicated the 
receptors for MIF in this process, since the integrin activation 
resulted in the triggering of Gαi activities of CXCR2 in monocytes 
and neutrophils and of CXCR4 in T cells. Additionally, CD74 
also contributes to monocyte recruitment by interacting with 
CXCR2 (154).

Various functional animal studies confirmed the role of 
MIF in atherosclerosis development. MIF-deficient mice on 
an atherogenic background showed significantly reduced lipid 
deposition and lesion size compared to control animals (163). 
This was accompanied by a decreased lesion cell proliferation, 
especially of SMCs. Additionally, neutralizing MIF with spe-
cific monoclonal antibodies showed a reduced lesion size and 
especially reduced intimal inflammation (160). MIF blockage 
was even showed to induce regression of already established 
atherosclerotic lesions (154). Additionally, MIF stimulates the 
uptake of oxLDL by macrophages and is associated with the 
expression of proteases (163), which can contribute to the lesion 
destabilization properties of MIF. Recently, also an important 
role for platelet-derived MIF was described (164). MIF was even 
shown to have a stronger chemotactic activity than CXCL12 and 
substantially contributed to monocyte adhesion to an endothelial 
layer. Although in contrast to CXCL12 secretion, MIF secretion 
from platelets was much slower and did not enhance platelet 
activation (164).

Studies with CXCR2-deficient mice also identified important 
roles for CXCR2 in monocyte recruitment into atherosclerotic 
lesions, showing reduced lesion size and lesional macrophage 
content (165). In atherosclerosis studies with other CXCR2 
ligands, like CXCL1 and CXCL8, deficiencies did not exceed half 
the effect of the receptor deficiency on atherogenesis, suggesting 
the presence of other ligands that play a crucial role (166). In 2007, 
MIF was identified as ligand for CXCR2 with pro-atherogenic 
capacities (154). Combined, all these studies clearly identify MIF 
and its receptors as an important mediator of leukocyte recruit-
ment and atherosclerosis development.

MiF in Atherosclerosis-Related Pathologies
As described earlier, restenosis occurs frequently after stent 
implantation, leading to early stent failure. Carotid artery wire 
injury methods are often used to model this disease, character-
ized by neointimal hyperplasia driven by SMC proliferation. 
Carotid artery injury resulted in a fast induction of MIF expres-
sion in SMCs and later on also in foam cell formation (161, 167). 
To determine the causal role of MIF in neointimal hyperplasia, 
antibody-mediated MIF blockage has been used in various 
studies. MIF blockage indeed resulted in a decreased medial cell 
proliferation, enhanced apoptosis, and smaller inflammatory cell 
content (167). Another study also showed a decreased macrophage 
content and foam cell formation upon MIF blockage (161). This 
was accompanied by an increase in SMC and collagen content in 
the neointimal areas, suggesting a more stable phenotype after 
MIF blockage (168).

Various studies also describe MIF as a protective factor in 
MI-ischemia-reperfusion injury (63). However, recently it has 
been shown that this effect is dependent on the cellular source of 
MIF. Global MIF deficiency protects the heart from post-infarct 
cardiac rupture and remodeling, by suppressing the leukocyte 
infiltration and thus inflammation (169). However, leukocyte-
derived MIF exerts opposing effects by promoting the inflam-
matory response after MI (169). These compartmentalized and 
opposing effects are shown to be mediated by CXCR2 (170).

Human and Clinical implications for MiF
In humans, MIF has been shown to be abundantly produced by 
various cells in different stages of plaque development, indicating 
an important role for MIF in early plaque development but also 
in more advanced complicated lesions (13) (Table  1). Later, it 
was observed in human lesions that MIF plays a more important 
role in vulnerable lesions, compared to fibrous lesions. MIF was 
associated with the weakening of the fibrous cap, by inducing 
MMP-1 expression and activity in SMCs (14). CVD patients, 
more particularly patients with acute coronary syndromes also 
showed enhanced plasma MIF levels. Plasma MIF levels from 
these patients were associated with inflammatory markers 
like CRP and IL-6, but also with the cardiac necrosis marker 
troponin-I (15). High plasma MIF levels have also been identi-
fied as an independent risk factor for future coronary events in 
patients with CVD and impaired glucose tolerance or type  2 
diabetes mellitus (16). Lately, the Grem1/MIF ratio has been 
identified as novel marker associated with CVD and the grade 
of plaque stability. Grem1 was discovered as an endogenous 
inhibitor of MIF (17). Furthermore, human epidemiological 
studies supported a pro-atherogenic role of MIF, by showing 
that a MIF single nucleotide polymorphism was associated with 
an enhanced risk for MI (12). A large group of MI patients also 
had elevated MIF plasma levels and these levels were predictive 
of final infarct size and the extent of cardiac remodeling (18). 
Elevated MIF levels in these patients were already observed after 
4 to 6 h after acute MI, which could be very beneficial for the 
early detection of MI since current used markers or only elevated 
after 6 to 12 h post-MI (18).

There are already several MIF inhibitors developed, which 
show protective effects in various inflammatory models (168). 
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Another attractive therapeutic strategy would be to directly tar-
get the receptors for MIF, CXCR2, or CXCR4, or to manipulate 
the ligand–receptor interaction. However, more research is first 
needed to fully elucidate these precise interactions. Although 
MIF seems like a suitable target for therapy and biomarker 
in patients, the use of MIF as biomarker in healthy persons 
should be approached with caution. Prospective data suggest 
that the relation between MIF and the risk of MI or death due 
to CVD in humans without prior history of CVD is not very  
strong (19).

CXCL12 and MiF Side by Side
Both CXCL12 and MIF play an important role in the develop-
ment of CVDs. However, besides some common effects both 
chemokines vary functionally from each other, partly mediated 
by differential receptor usage (Figure  1). An important com-
mon function that both chemokines have is the induction of 
leukocyte chemotaxis and arrest. However, as MIF seems to have 
more pro-atherosclerotic effects, CXCL12 may have a protective 
function, although results are still contradictory at some level and 
future research should further elucidate the exact role of these 
chemokines in atherosclerosis. Regarding vascular restenosis the 
effects of CXCL12 and MIF are more equal, since blockade stud-
ies showed that inhibition of either CXCL12 or MIF has beneficial 
outcomes on neointimal hyperplasia. Additionally, blockage of 
CXCR4, the receptor for both CXCL12 and MIF, has been shown 
to reduce neointimal formation. Furthermore, both CXCL12 and 
MIF play a protective role in MI-ischemia-reperfusion injury. For 
CXCL12, this beneficial effect upon systemic CXCL12 injection 
was associated with increased recruitment of progenitor cells 
and neo-angiogenesis. However, the beneficial effects of MIF 
seem to be cellular source dependent as global MIF deficiency 
reduced inflammation, while leukocyte-derived MIF promoted 
the inflammatory response after MI.

Concluding Remarks

It has already been well described that chemokines play an impor-
tant role in inflammation, atherosclerosis, and CVD. However, 
the exact involvement of all these chemokines remains very 
complicated and as research in this area advances, current ideas 
and dogmas may still change. In the recent years, more data are 
accumulating pointing toward crucial roles of these chemokines 
in atherosclerosis and CVD. There have also already been some 
studies describing the ligand–receptor interactions and the 
involvement of the receptors, CXCR2, CXCR4, and ACKR3 
in different pathologies, although also in this respect further 
research is needed to identify cell-type-specific effects of CXCR4 
for example, but also to clarify the triggered intracellular signal-
ing. Due to the complexity of this chemokine system, one should 
be very cautious with designing chemokine-based therapeutics, 
since unwanted side effects may occur very easily. Therefore very 
specific targeting approaches, like antibodies or inhibitors, are 
needed to isolate a specific ligand–receptor interaction, perhaps 
even at a specific cell type.
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