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Invariant natural killer T (iNKT) cells are a unique population of lipid-reactive CD1d-
restricted innate-like T lymphocytes. Despite being a minor population, they serve as an
early source of cytokines and promote immunological crosstalk thus bridging innate and
adaptive immunity. Diseases ranging from allergy, autoimmunity, and cancer, as well as
infectious diseases, including viral infection, have been reported to be influenced by INKT
cells. However, it remains unclear how iNKT cells are activated during viral infection, as
virus-derived lipid antigens have not been reported. Cytokines may activate iNKT cells
during infections from influenza and murine cytomegalovirus, although CD1d-dependent
activation is evident in other viral infections. Several viruses, such as dengue virus,
induce CD1d upregulation, which correlates with iNKT cell activation. In contrast, herpes
simplex virus type 1 (HSV-1), human immunodeficiency virus (HIV), Epstein—-Barr virus, and
human papilloma virus promote CD1d downregulation as a strategy to evade iNKT cell
recognition. These observations suggest the participation of a CD1d-dependent process
in the activation of iINKT cells in response to viral infection. Endogenous lipid ligands,
including phospholipids as well as glycosphingolipids, such as glucosylceramide, have
been proposed to mediate iINKT cell activation. Pro-inflammatory signals produced during
viral infection may stimulate iINKT cells through enhanced CD1d-dependent endogenous
lipid presentation. Furthermore, viral infection may alter lipid composition and inhibit
endogenous lipid degradation. Recent advances in this field are reviewed.
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Introduction

Since they were first described in the late 1980s, invariant natural killer T (iNKT) cells have been
recognized as a minor, but unique lipid-reactive population of T cells with diverse functions in the
immune system. The number of iNKT cells in human peripheral blood is highly variable and ranges
from 0.03 to 0.78% of lymphocytes (1). They function similarly to the cells of the innate immune
system as they display less specificity and more rapid activation compared to adaptive immune cells
(2). The term “invariant” comes from the expression of almost invariant T cell receptors (TCR),
Vol4Jol8 in mice and V24 Jou18 in human, paired with limited V3 chain (3). Unlike conventional
T cells, which recognize peptide antigens presented on MHC molecules, iNKT cells recognize lipid
antigens presented on CD1d. A member of the CD1 family, CD1d is a non-polymorphic MHC class
I-like molecule, expressed on antigen-presenting cells (APCs). CD1d is present on dendritic cells
(DC), B cells, monocytes, and macrophages and also on cells of non-hematopoietic origin, such as
lung, gastrointestinal and cervical epithelial cells, and hepatocytes (4, 5).
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Although not the main focus of this review, it should be noted
that in addition to iNKT or type 1 NKT cells, there is another
NKT cell population called diverse NKT (dNKT) or type 2 NKT
cells. The dANKT cells express TCRs that are more diverse and
recognize different sets of lipid antigens compared to iNKT cells
(6). Furthermore, other CD1 family members, such as CD1a, b,
¢, present other types of lipid structures and are able to activate
CD1-reactive, non-NKT T cells, such as yOT cells (7).

Activated iNKT cells can rapidly produce various T helper cell
cytokines and crosstalk with other populations of cells in the
immune system. Thus, they are an important factor in deter-
mining the outcome of the overall immune responses in various
disease models, such as asthma (8), autoimmune diseases (9),
cancer (10), and infectious diseases (11). The diverse roles of
iNKT cells from anti-microbial immunity to regulatory functions
in autoimmune diseases are partly due to the bidirectional acti-
vation between iNKT cells and DCs. In the presence of infection
or pattern recognition receptor stimulation, iNKT-DC interac-
tions, through CD40-CD40L, induce NF-kB activation, enhanc-
ing pro-inflammatory DC maturation and IL-12 production (12).
Simultaneously, DCs present lipid on CD1d and produce IL-12
activating iNKT cells. The activation of these pathways results in
the induction of innate and adaptive immune responses, includ-
ing transactivation of NK cells (13) and enhanced response of
CD4" and CD8™ classical T cells to peptide antigens (2, 14,
15). In contrast, interactions between iNKT cells and immature
DC, without other stimuli, trigger tolerogenic DC maturation.
Tolerogenic DCs in turn induce regulatory T cells preventing
autoimmunity (12).

Invariant natural killer T cells can be activated directly by the
cognate interactions between their invariant TCRs and CD1d-
loaded with exogenous or endogenous lipid antigen, and indi-
rectly by the combination of pro-inflammatory cytokines (11).
The first identified exogenous lipid antigen for iNKT cells was
o-galactosylceramide (oi-GalCer), a glycosphingolipid. Subse-
quently, pathogenic bacteria-derived glycolipids from Borrelia
burgdorferi (16) and Streptococcus pneumoniae (17) were found
to bind CD1d and be presented to iNKT cells. In the absence
of microbial-derived or exogenous lipid antigens, such as in the
case of Gram-negative Salmonella infection (18, 19), iNKT cell
activation can also be mediated by presentation of endogenous
lipid antigens via cognate interaction between CD1d and iNKT
cell TCR, as well as cytokine-mediated activation (11).

Viruses are another example of microbes that lack lipid anti-
gens, yet there is growing evidence for the involvement of iNKT
cells in several viral infections (20). The mechanisms underly-
ing iNKT cell activation during viral infection remain ambigu-
ous. While some studies suggest cytokine-mediated activation,
others indicate possible lipid-loaded CD1d-dependent activa-
tion. Several lines of study have clearly demonstrated that some
viruses downregulate surface CD1d expression, attenuating the
iNKT cell response as an evasion strategy, supporting a role
for CD1d-dependent iNKT cell activation in viral clearance
(21-25).

In this review, we summarize the current information on the
role of iNKT cells, CD1d, and lipid antigens during viral infection.
Importantly, potential CD1d-loaded lipid antigens as iNKT cell
ligands in viral infection will be discussed and proposed.

iNKT Cells in Viral Infection

Both protective and pathogenic roles of iNKT cells in various
viral infections have been demonstrated in mice and human.
Mice lacking iNKT cells displayed worsened disease outcomes for
several viral infections including herpes simplex virus type 1 and
2 (HSV-1, 2) (24, 26, 27), murine cytomegalovirus (MCMYV) (28),
respiratory syncytial virus (RSV) (29), and influenza virus (30-
32). In human, human immunodeficiency virus (HIV) is known
to infect CD1d-restricted T cells (33), resulting in reduced iNKT
cell numbers in HIV-infected patients after seroconversion (34).
Moreover, X-linked lymphoproliferative syndrome patients, who
have mutations in SLAM-associated protein, an adaptor protein
important for iNKT cell development, are more susceptible to
severe Epstein-Barr virus (EBV) infection suggesting a protective
role for iNKT cells against EBV infection (35-37).

Beneficial roles of iNKT cells are also demonstrated by the
enhanced anti-viral immunity and improved clinical outcomes
following treatment with o-GalCer, a potent iNKT cell stimulant,
in HIV (38), MCMV (39), RSV (29), hepatitis B virus (HBV)
(40), and influenza virus infections (41). Co-administration of o-
GalCer with inactivated influenza virus resulted in boosted anti-
body production and enhanced cellular responses to subsequent
infections in immunized mice (42). In contrast, iNKT cells are also
known to have pathogenic roles following hepatitis C virus (HCV)
infection (43), and promote chronic lung disease in Sendai virus-
infected mice (44). Recently, iNKT cells have been shown to play
a deleterious role in dengue virus (DENV) infection in mice (45),
and iNKT cell activation was found to be correlated with poor
clinical outcomes in dengue infected patients (46).

Modes of iINKT Cell Activation During Viral
Infection

As viruses contain no known exogenous lipid antigens, it is pos-
sible that they may activate iNKT cells using cytokine signals
alone or through CD1d-bound endogenous lipid antigens. For
some viruses, such as influenza (31) and MCMYV (47), cytokines
secreted during infection alone could potentially activate iNKT
cells. While the significance of CD1d-dependent iNKT cell activa-
tion in viral infection remains controversial, APC stimulation by
viral toll-like receptor (TLR) agonists has been shown to lead to a
shift in cellular lipid metabolism toward antigenic lipids as well as
CD1d-dependent iNKT cell activation (48, 49). Moreover, some
viruses downregulate CD1d expression, presumably to evade
iNKT cell recognition, suggesting that CD1d-bound endogenous
lipid antigens might be involved in iNKT cell response during viral
infection. Because dNKT cells are also reactive to CD1d-loaded
lipids, the up- or downregulation of CD1d in viral infection could
also affect dNKT cells. Likewise, the expression of different CD1
isoforms could also affect the functions of other CD1-reactive T
cells such as yoT cells.

Regulation of CD1d in Viral Infection

CD1d Upregulation
CD1d expression is upregulated in response to viral danger sig-
nals, and the increase in expression could lead to higher iNKT
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cell response (23, 50). DC maturation in response to viral TLR
agonists leads to higher cell surface CD1d expression (49). The
increase in cell surface CD1d in response to viral TLR agonists
was shown to be mediated both at the transcriptional level and
through enhanced cellular distribution of CD1d toward the sur-
face (50). Apart from viral TLR stimulation, type I interferons,
known for their anti-viral function, can also induce higher levels of
CD1d mRNA transcripts (50). In actual viral infections, CD1d was
upregulated in cardiac endothelial cells in mice infected with cox-
sackievirus B3 virus (51), hepatocytes from HCV infected patients
(52), and in monocytes from DENV-infected patients (46).

The upregulation of CD1d in response to viral danger signals
could therefore be a possible mechanism for initiating the iNKT
cell response to the viral infection. This notion has been supported
by experiments demonstrating that iNKT cell cytokine production
in response to attenuated HSV was reduced upon blocking CD1d
with a monoclonal antibody (50). In addition, induction of CD1d
expression in EBV-transformed B cells has also been shown to
rescue IFN-y production in iNKT cells (23). However, blocking of
CD1d through the use of an antibody in attenuated HSV-infected
DC could not completely abrogate the iNKT cell response (50).
Moreover, induction of CD1d expression in healthy B cells did
not result in an enhanced iNKT cell response (23). These findings
suggest that additional soluble factors, such as cytokines produced
during viral infection, might act in concert with CD1d antigen
presentation to optimize the iNKT cell response.

CD1d Downregulation: A Strategy to Subvert
iNKT Cell Recognition?

Another piece of evidence supporting a CDId-dependent
response during viral infection is the finding that some viruses
downregulate surface CD1d. This ability has been hypothesized
to be a strategy to subvert iNKT cell recognition. The earliest
reports of viral-infection-induced CD1d downregulation were
from lymphocytic choriomeningitis virus (LCMV), vaccinia
virus (VV), and vesicular stomatitis virus (VSV) (53) infections.
Mice with acute LCMV, V'V, and VSV infections showed reduced
surface CD1d expression on DCs and macrophages (53). A
subsequent analysis demonstrated that the VSV protein could
affect cellular CD1d distribution resulting in inhibition of
CDl1d-mediated antigen presentation (54). HSV-1 (21, 55-57)
and Kaposi sarcoma-associated herpes virus (KSHV) (25) also
utilize their viral proteins to disturb CD1d trafficking, in these
cases, through interaction with the CD1d cytoplasmic tail, a site
important for CD1d sorting. While HSV viral proteins modify
and signal CD1d for lysosomal degradation (57), interaction
with KSHV proteins increases CD1d internalization from the
cell surface (25). EBV, another member of herpes viruses, has
recently been shown to downregulate CD1d expression on EBV-
transformed B cells abrogating the recognition by iNKT cells (23).
In contrast to HSV and KSHYV, the decrease in CD1d expression
during EBV infection is a result of altered CD1d transcription
(23). Human papillomavirus (HPV) employs yet another strategy
to suppress surface CD1d expression, utilizing a viral protein E5
to trap CD1d molecules inside the ER-promoting proteasomal
degradation (58). Three different HIV proteins VpU (59), Nef
(22, 60), and gp120 (61) participate in CD1d downregulation, but

whether CD1d downregulation results in the loss of iNKT cell
recognition in HIV-infected patients is still unknown.

These examples highlight several strategies employed by viruses
to achieve one goal, to prevent CD1d from reaching or accumu-
lating at the cell surface (Figure 1). The downregulation of CD1d
can diminish the iNKT cell response and worsen the outcome
of several viral infections, suggesting that iNKT cells might be
a significant player in combating against certain viral infections.
Together, these findings demonstrate the importance of CD1d-
dependent iNKT cell activation in the cellular response to viral
infection even though viruses contain no known exogenous lipid
antigens. The next challenge in understanding how iNKT cells
are modulated by viral infections is the identification of potential
endogenous lipid antigens that could serve as iNKT cell ligands.

Possible Self-Lipid Ligands for iNKT Cells

Due to the lack of virus-derived lipid antigens, host cellular lipids
are the most likely source of CD1d ligands that are presented
to activate iNKT cells during viral infection. Endogenous lipid
antigens are required for iNKT cell selection in the thymus and
possibly play a role in activating iNKT cells in the periphery (3).
The advancement in the search for endogenous lipid ligands has
begun to provide insights into the biology of CD1d-bound mam-
malian lipids that could induce the iNKT cell response. However,
the role of endogenous lipids as well as their regulation during
viral infection remains largely unknown.

Cellular Lipid Antigens
Glycosphingolipids
Several lines of evidence have suggested a role for mammalian
glycosphingolipids (GSLs) in the development and peripheral
activation of iNKT cells. Among these GSLs, isoglobotrihexosyl-
ceramide (iGb3) was proposed to be involved in thymic iNKT cell
selection and peripheral iNKT cell activation (18, 62). However,
its importance in these processes remains to be clarified (63, 64).
Glucosylceramide (GlcCer) derivatives can initiate an iNKT
cell response in CD1d-dependent manner (48, 49, 65). B-
anomeric GSLs were previously considered as the candidate
endogenous iNKT ligands as these lipids are the most abun-
dant form of GSLs in mammalian tissues. In addition, only B-
transferases for GlcCer and galactosylceramide are present in the
mammalian genome (66) and oi-anomeric GSLs were not thought
to be present in mammals (67). However, recent findings, using
more sensitive lipid detection methods, suggest that oi-anomeric
GSLs might be sparingly present in the mammalian cells (66,
68). Interestingly, the activity of GlcCer from mammalian tissue,
formerly ascribe as B-GlcCer (48), is now found to account for
a low level of o-anomeric GSL that appears to impact iNKT
activity. Removal of 3-GlcCer from the lipid fraction using glu-
cocerebrosidase treatment did not alter iNKT cell activity while
inhibition of oi-anomeric GSL with a monoclonal antibody dimin-
ished the effect (66, 68). In addition, only a-GalCer but not -
GluCer-loaded CD1d tetramer could stain splenocytes and DN32
NKT hybridoma (66). Consistent with these observations, mice
treated with an antibody against o.-linked monoglycosylceramide
exhibited impaired iNKT cell development (66). This suggests

Frontiers in Immunology | www.frontiersin.org

July 2015 | Volume 6 | Article 378


http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive

Opasawatchai and Matangkasombut

iINKT lipid ligand in viral infection

Nucleus

FIGURE 1 | Cellular trafficking of CD1d molecules in an
antigen-presenting cell (APC) and the strategies viruses employed to
interfere with successful antigen presentation to iNKT cells. Step O:
CD1d gene is transcribed. EBV infection results in the association of LEF-1 at
the CD1d promoter region interfering with its transcription (23). Step 1: newly
synthesized CD1d molecules assemble with the B,-microglobulin subunit in the
endoplasmic reticulum (ER). HPV utilizes its E5 protein to retain CD1d in the ER
(58). Step 2: endogenous lipid antigen is loaded on CD1d. Step 3: loaded CD1d

Plasma membrane

% Cd1d molecule

Endogenous
lipid antigen

Translational
complex

wwavn CD1d promoter

Early
endosome

Step 5
HSV-1

d
Recycling
endosome

Lysosome Step 6

traffics to the plasma membrane. Step 4: CD1d is internalized into the endocytic
compartments. The MIR protein of KSHV can promote endocytosis (25). The
HIV protein Nef accelerates CD1d internalization (22, 60), while VpU retains it in
early endosome (59). HSV-1 infection results in CD1d retention in the lysosomal
limiting membrane (21), and two HSV-1 proteins gB and US3 direct CD1d to
lysosomal degradation (55). Step 5: the exchange for the antigenic lipid occurs
in the lysosome. Step 6: CD1d returns to the plasma membrane to present lipid
antigen to iINKT cell membrane to present lipid antigen to iNKT cells.

that o-linked monoglycosylceramides, such as o-GalCer and
o.-GlcCer, might be the iNKT cell selecting self-antigen in the
thymus (66). The availability of a-GlcCer is tightly regulated by
degradation with catabolic enzymes of the ceramide and glycol-
ipid pathway (66). However, the detailed mechanisms underlying
the synthesis of oi-anomeric GSLs in mammals remain largely
unknown.

Non-Glycosphingolipids

Apart from GSLs, other lipid species have also been suggested as
possible iNKT cell stimuli (69). Phosphatidylinositol (PI) (70) and
phosphatidylcholine (PC) (71) were among the first endogenous
CD1d-bound lipids reported. Mammalian lysophospholipids and
lysosphingomyelin stimulate iNKT cell hybridomas with varying
strength among the clones examined (72). A recent study also
demonstrated that ether-bonded phospholipids generated in the
peroxisomes of mouse thymus could serve as iNKT cell selecting
ligands, as mice lacking the enzyme required for their generation
displayed a marked decreased in iNKT cell number (73).

Regulation of Endogenous Lipid Antigens
Presented in Response to TLR Stimulation and
Infection

Limited evidence is available regarding CD1d-dependent endoge-
nous lipid presentation to iNKT cells during viral infection. By
presenting self-lipid antigens, the host is at risk for undesirable
auto-reactivity, necessitating tight control of this process. Unre-
solved questions regarding endogenous lipid antigens utilized in

the response to viral infection include what are the correct form of
lipid antigen, the appropriate magnitude of release, as well as loca-
tion, and temporal control that would provide a beneficial effect
but limit adverse consequences to the host. Several studies sug-
gested the possible involvement of the pro-inflammatory signals
that enhance CD1d-dependent self-lipid presentation (48, 49, 74),
self-lipids “alteration” during viral infection (75), or the inhibition
of enzymes that degrade endogenous lipid antigens (76).

Several innate pro-inflammatory signals may induce iNKT cell
activation through CD1d presentation of endogenous lipid anti-
gens. Once DCs are stimulated with agonists for endosomal TLRs
known to recognize viral genomes, such as TLR3 (77), TLR7 (74),
and TLRO (49, 78), they may mount an iNKT cell response by the
presentation of endogenous lipid antigen in concert with the pro-
duction of cytokines such as IL-12 (74, 77, 78) and type I interferon
(49). Although several enzymes involved in the biosynthesis of
GSLs including GlcCer synthase and sialyltransferases were found
upregulated in response to TLR stimulation (Figure 2), the lipid
antigen being presented remains elusive (49, 74). B-GlcCer was
proposed to be the endogenous ligand involved in the iNKT cell
response to TLR stimulation (48) but whether low levels of o.-
GlcCer contamination could be the active ligand in this situation
was not examined (66, 68). Although o.-linked monoglycosylce-
ramide has been suggested as the selecting ligand for iNKT cell
development (66), it is not known whether it plays a role in viral
infection.

The alteration of self-lipid antigens to “antigenic” lipids that
could activate CD1d-restricted NKT cells was reported in the
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FIGURE 2 | GSL synthetic pathways. Accumulation of GlcCer (48) and iGb3
(18, 76), two potential endogenous iINKT cell stimuli in response to infection or
TLR stimulation. Consistent with the proposed self-lipids, ceramide
glucosyltransferase (GlcCer synthase) (48, 49), GM3 synthase (49), iGb3

Ceramide _____, B-GlcCer —> LacCer

Lacto & Neolacto
Series

GA2
Ganglio Series
(a, b, 0)

iGb4
synthase
iGb4 Isoglobo
B-hexosaminidase A Series
B-hexosaminidase B
(—
Gb3 = Gb4 Globo
Gb4 o
synthase Series

synthase (49), Gb3 synthase (49), and LC3 (49) are reported to be upregulated
at the transcriptional level in response to TLR stimulation. Downregulation of
B-glucocerobrosidase (48) and decreased activity of a-galactosidase A (o-Gal
A) (76) have also been shown in response to TLR stimulation.

mouse model of HBV infection (75). Hepatocytes infected with
HBV could induce NKT cell activation in a process that required
CD1d, a microsomal triglyceride transfer protein (MTP) and
secretory phospholipases. The antigenic lipids were found to
be lysophospholipids, specifically lysophosphatidylethanolamine
(PE) (75). Surprisingly, in vitro analysis indicated that iNKT cells
were not activated by CD1d-presented lysophospholipids, instead
a dNKT cells appeared to be the target. Moreover, the activation
of iNKT cells was shown to be cytokine mediated during in vivo
murine HBV infection (75). Therefore, the nature of lipid antigens,
differences in TCR structure, and the mode of docking of different
lipid antigens might contribute to their activation efficacy on
different NKT cell subsets.

Decreased degradation of endogenous lipid antigens has been
suggested to mediate iNKT cell auto-reactivity and activation
in response to TLR stimulation (76). The activation of MyD88-
dependent-TLR 4 and 9 could lead to a decrease in the enzymatic
activity of ot-galactosidase A, an enzyme that acts as a rate limiting
step in endogenous lipid degradation and results in the accumula-
tion of lysosomal lipid and iNKT cells activation (76) (Figure 2).
o-Gal-A is proposed to play a role in regulating the cellular levels
of GSLs during physiologic conditions, but decreases in its activity
may allow the level of self-lipid to reach the threshold of iNKT cell
stimulation during infection (76).

Alteration of Lipid Metabolisms During
Viral Infection

Recent findings indicate that viruses can modulate host lipids to
accommodate their life cycle. Several cellular lipids have been
identified to be crucial for their entry, replication, and budding
(79). Altering the host metabolism as a strategy to facilitate their
replication has been reported for human cytomegalovirus (80),
DENYV (81), and HCV (82) infection. Two HCV proteins, NS5A
and NS5B, appear to induce expression of the GlcCer synthase
gene, an enzyme essential for the synthesis of GlcCer, a species of

self-lipid antigen (83) (Figure 2). Whether such alterations by the
virus to accommodate itself could serve as a signal for the immune
response to counteract the infection is not clear. Likewise, whether
changes in lipid metabolism mediated by virus infection can be
employed as an immune evasion strategy by diverting the lipid
profile “away” from the composition that could activate iNKT cells
has not yet been extensively studied.

Concluding Remarks

Despite the rapidly expanding knowledge regarding the roles of
iNKT cells in viral infection, an important question remains:
what are their natural ligands during viral infection? Self-lipid
antigens loaded on CDI1d have been proposed in the absence
of microbial-derived lipid antigens. Recent advances using viral
TLR agonists have identified potential species of cellular lipids
as iINKT cell stimuli. However, iNKT cell lipid ligands impor-
tant in actual viral infections have not been established. As
several viruses are known to interfere with host cellular lipid
metabolism, alteration of cellular lipid regulation may also affect
self-lipid antigen presentation to iNKT cells. A better understand-
ing of self-lipid antigens in viral infection would not only pro-
vide us with a more complete picture of the complex host-virus
interaction but would also reveal potential strategies to manip-
ulate iNKT cells for desirable effects to combat against viral
infections.
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