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It is now clear that human neoplasms form, progress, and respond to therapy in the context 
of an intimate crosstalk with the host immune system. In particular, accumulating evidence 
demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents 
commonly employed in the clinic critically depends on the (re)activation of tumor-targeting 
immune responses. One of the mechanisms whereby conventional chemotherapeutics, tar-
geted anticancer agents, and radiotherapy can provoke a therapeutically relevant, adaptive 
immune response against malignant cells is commonly known as “immunogenic cell death.” 
Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of 
immunostimulatory signals upon the activation of intracellular stress response pathways. The 
emission of these signals, which are generally referred to as “damage-associated molecular 
patterns” (DAMPs), may therefore predict whether patients will respond to chemotherapy or 
not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-
associated stress responses might have prognostic or predictive value for cancer patients.
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introduction

For a long time, tumors were considered as highly homogenous 
entities resulting from the clonal expansion of a single cell with 
specific genetic or epigenetic defects (1). Now, it is clear that both 
hematopoietic and solid neoplasms are highly heterogenous, 
not only because malignant cells with distinct phenotypic and 
behavioral features generally co-exist, but also because multiple 
non-transformed cells are co-opted by growing cancers to sup-
port their needs. This is especially true for solid tumors, which 
contain an abundant non-malignant cellular compartment 
encompassing stromal, endothelial, and immune components 
(2, 3). The immune compartment of the tumor mass is per  se 
very heterogenous, varying not only with tumor type, stage, and 
therapeutic regimen, but also on an inter-individual basis (4). 
Evidence accumulating over the last decade indicates indeed that 
human tumors form, progress, and respond to therapy in the 
context of an intimate, bidirectional interaction with the immune 
system (5, 6). Thus, clinically manifest neoplasms can develop 
only when they are able to escape immunosurveillance (7, 8), and 
they do so by evolving under the selective pressure imposed by 
the immune system (6, 9). Moreover, the composition, density, 
and intratumoral localization of the immune infiltrate have been 
ascribed with a robust prognostic or predictive value in several 
cohorts of cancer patients (10–12). Finally, the efficacy of most, 
if not all, therapeutic regimens commonly employed in cancer 
patients has been etiologically linked to the (re)elicitation of an 
adaptive immune response targeting malignant cells (13, 14).

Conventional chemotherapeutics and targeted anticancer 
agents can favor the (re)elicitation of anticancer immune 
responses through several mechanisms (13–15). A precise 
description of all these immunostimulatory pathways goes largely 
beyond the scope of this review, and can be found in Ref. (13, 14). 
However, it is useful to note that anticancer therapy can boost 
immunosurveillance by either of two mechanisms. First, it can 
directly modulate the functions of immune cells, including den-
dritic cells (DCs), myeloid-derived suppressor cells (MDSCs), 
tumor-associated macrophages (TAMs), CD8+ cytotoxic T 
lymphocytes (CTLs), and CD4+CD25+FOXP3+ regulatory T 
(TREG) cells (14). Second, it can promote the immunogenicity or 
adjuvanticity of cancer cells as it subjects them to a state of stress 
(which sometimes leads to their death) (14, 16). In particular, 
some chemotherapeutic agents like anthracyclines, oxaliplatin, 
and bortezomib, as well as specific forms of radiation therapy and 
photodynamic therapy, are able to trigger a functionally peculiar 
variant of caspase-dependent cell death that per se is perceived as 
immunogenic by the immune system (17–21). This means that, 
upon inoculation in immunocompetent hosts, cells succumb-
ing to such an immunogenic form of cell death are sufficient to 
elicit an adaptive immune response against dead cell-associated 
antigens associated with the establishment of immunological 
memory (22, 23).

Mechanistically, immunogenic cell death (ICD) relies on the 
pre-mortem activation of several stress response pathways that 
are associated with the emission of a well-defined set of danger 
signals by dying cancer cells (24–26). When delivered in the 
correct spatiotemporal order, such damage-associated molecular 

patterns (DAMPs) recruit specific cellular components of the 
innate and adaptive immune system to the tumor bed and activate 
them, ultimately resulting in the elicitation of a tumor-targeting 
immune response (22, 26). Conversely, in physiological condi-
tions DAMPs are generally inaccessible to the immune system, 
and serve metabolic, structural, or enzymatic functions (26–28). 
Of note, DAMPs are not only involved in ICD-associated antican-
cer immunosurveillance, but also play a key role in the etiology 
of shock conditions triggered by trauma and other non-microbial 
stimuli (29, 30).

So far, four DAMPs have been ascribed a non-redundant, 
essential function in the context of anthracycline-induced ICD, 
namely (1) the pre-apoptotic exposure of the endoplasmic 
reticulum chaperone calreticulin (CALR) and various heat-shock 
proteins (HSPs) on the outer leaflet of the plasma membrane, 
which ensues the activation of an ER stress response orches-
trated around the phosphorylation of eukaryotic translation 
initiation factor 2A, 65 kDa (EIF2A) and the overgeneration of 
reactive oxygen species (ROS) (31–36); (2) the production of 
type I interferons (IFNs), which depends on Toll-like receptor 3 
(TLR3) signaling (37–40); (3) the secretion of ATP, which relies 
on the activation of autophagy (41, 42); and (4) the release of 
the non-histone chromatin-binding protein high mobility group 
box 1 (HMGB1) into the extracellular space, which correlates 
with cell death induction (43, 44). The role of other DAMPs 
such as mitochondrial DNA (mtDNA), N-formylated peptides, 
cardiolipin, and filamentous (F)-actin in ICD signaling has not 
yet been investigated in detail (30, 45).

Accumulating preclinical evidence indicates that monitoring 
DAMPs or DAMP-associated stress responses in cancer patients 
may have prognostic or predictive value. Here, we review clinical 
data lending further support to this hypothesis.

Calreticulin, HSPs, and the eR Stress 
Response

Cancer cells undergoing ICD exhibit several manifestations 
of the so-called unfolded protein response (UPR) (34, 46), i.e., 
the ensemble of mechanisms aimed at the re-establishment of 
intracellular homeostasis following the accumulation of unfolded 
proteins within the ER lumen (47). In particular, ICD is etiologi-
cally associated with the phosphorylation of EIF2A on S51 (48), 
and this appears to be required for the exposure of CALR and 
HSPs on the surface of dying cells (34). On the cell surface, 
CALR, heat shock 70 kDa protein 1A (HSPA1A, best known as 
HSP70) and heat shock protein 90 kDa alpha (cytosolic), class 
A member 1 (HSP90AA1, best known as HSP90) play partially 
overlapping (but not identical) immunostimulatory functions. 
Indeed, CALR, HSP70 and HSP90 all bind to low density lipo-
protein receptor-related protein 1 (LRP1, best known as CD91) 
on antigen-presenting cells (APCs), hence stimulating the uptake 
of dead cell-associated antigens in the form of apoptotic bodies 
(32, 33). HSP70 and HSP90 favor CTL cross-priming by APCs 
upon interaction with Toll-like receptor 4 (TLR4) and CD14 
(33, 49–51). In some settings, soluble HSPs and CALR oper-
ate as cytokines, stimulating the NF-κB-dependent secretion 
of pro-inflammatory mediators like interleukin-6 (IL-6) and 
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tumor necrosis factor α (TNFα) (52, 53). HSP70 boosts the 
cytotoxic functions of natural killer (NK) cells by binding to 
killer cell lectin-like receptor subfamily D, member 1 (KLRD1, 
best known as CD94) (54, 55). Moreover, ecto-HSP70 binds to 
phosphatidylserine (PS), a phospholipid that is exposed in the 
course of regulated cell death owing to the caspase-dependent 
activation of phospholipid scramblase 1 (PLSCR1) (56). The 
actual relevance of this interaction for ICD, however, has not been 
determined yet. Along similar lines, it remains obscure whether 
additional CALR receptors such as CD69; thrombospondin 1 
(THBS1); complement component 1, q subcomponent (C1q); 
lectin, mannose-binding, 1 (LMAN1); and various integrins of 
the CD49 family are etiologically implicated in the perception 

of ICD (57). Of note, ecto-CALR has been suggested to act as a 
DC receptor for the tumor-associated antigen (TAA) NY-ESO-1, 
hence facilitating the interaction between DCs and malignant 
cells (58). To the best of our knowledge, however, this finding has 
not been confirmed by independent investigators.

Accumulating clinical evidence indicates that various param-
eters linked to ICD-associated CALR and HSP signaling may 
have prognostic or predictive value for cancer patients (Table 1). 
In addition, the results of multiple clinical trials suggest that HSPs 
can be harnessed as a means to boost the efficacy of anticancer 
vaccines. High CALR levels in malignant cells have been shown 
to correlate with favorable disease outcome in a cohort of 68 
neuroblastoma patients (irrespective of treatment) (59), and in a 

TABLe 1 | Clinical studies assessing the prognostic and predictive value of iCD-associated CALR and HSP signaling in cancer patients.

Parameter Cancer Treatment No Note(s) Reference

CALR AML Anthracyclines-based 
chemotherapy

20 CALR exposure on blasts correlated with improved RFS (63)

Bladder carcinoma Surgery 195 High CALR levels correlated with poor disease outcome (67)
Breast carcinoma Surgery 23 High CALR levels correlated with poor MFS (68)
CRC Surgical resection and 

chemotherapy
68 High CALR levels correlated with improved 5-y survival rate (61)

Gastric carcinoma Gastrectomy and 
lymphadenectomy

79 High CALR levels correlated with poor disease outcome (69)

Lung carcinoma n.a. 58 High CALR levels correlated with malignancy and tumor grade (64)
Radiotherapy 23 High CALR levels correlated with prolonged OS (60)

Mantle cell lymphoma Surgery 163 High CALR levels correlated with poor disease outcome (67)
Neuroblastoma Surgery alone or 

combined with 
chemotherapy

729 High CALR levels correlated with poor disease outcome (67)
68 High CALR levels correlated with favorable disease outcome (59)

Non–Hodgkin’s  
lymphoma

Autologous cancer  
cell-based vaccine

18 CALR exposure was associated to clinical responses (62)

Ovarian carcinoma Paclitaxel-based 
chemotherapy

220 High CALR levels correlated with prolonged DFS and OS (60)

CD47 AML n.a. 137 High CD47 levels correlated with shortened OS (70)
Esophageal carcinoma Surgery 102 High CD47 levels correlated with shortened OS (71)
Ovarian carcinoma Surgery 86 Low CD47 levels correlated with improved disease outcome (72)

CD91 Melanoma n.a. 16 High CD91 levels were associated with slow progression (73)

ER stress AML Anthracycline-based 
chemotherapy

105 XBP1 splicing correlated with prolonged DFS and OS (74)

Breast carcinoma Anthracycline-based 
chemotherapy

60 Cancer cells from non-responders had high phosphorylation of 
EIF2A

(75)

Surgical resection  
and/or hormonotherapy

100 XBP1 splicing correlated with poor disease outcome (76)

DLBCL Bortezomib 119 High HSPA5 levels correlated with worsened OS (77)
HNC Surgery 79 High HSPA5 levels correlated with improved OS (78)
Lung cancer Surgery 132 High HSPA5 levels correlated with improved disease outcome (79)
NSCLC Surgery 193 PKR activation and EIF2A phosphorylation correlated with 

improved OS
(80)

HSP90 CRC n.a. 182 Increased serum levels were associated with oncogenesis (65)
Non–Hodgkin’s  
lymphoma

Autologous cancer  
cell-based vaccine

18 CALR exposure was associated to clinical responses (62)

HSPA1A Gastric carcinoma n.a. 39 patients SNPs in HSPA1A affected disease incidence (81)
186 controls

LMAN1 Ovarian carcinoma n.a. 289 patients SNPs in LMAN1 affected disease incidence (82)
126 controls

THBS1 Gastric carcinoma n.a. 275 patients SNPs in THBS1 affected disease incidence (83)
275 controls

AML, acute myeloid leukemia; CRC, colorectal carcinoma; DFS, disease-free survival; DLBCL, diffuse large B-cell lymphoma; ER, endoplasmic reticulum; HNC, head and neck 
cancer; ICD, immunogenic cell death; MFS, metastasis-free survival; NSCLC, non-small cell lung carcinoma; n.a., not applicable or not available; OS; overall survival; RFS, relapse-
free survival; SNP, single nucleotide polymorphism.
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cohort of 23 lung cancer patients and 220 ovarian cancer patients 
treated with ICD inducers (i.e., radiotherapy and paclitaxel, 
respectively) (60). Moreover, increased CALR expression by can-
cer cells has been associated with tumor infiltration by CD45RO+ 
memory T cells and improved 5-year overall survival amongst 
68 subjects with Stage IIIB colorectal carcinoma (CRC) (61). 
Elevated levels of HSP90 and CALR on the surface of neoplastic 
cells have been associated with clinical responses amongst 18 
patients with relapsed indolent non-Hodgkin‘s lymphoma treated 
with an autologous cancer cell-based vaccine (62). Moreover, 
CALR exposure by malignant blasts has been linked to prolonged 
relapse-free (but not overall) survival in a cohort of 20 individuals 
with acute myeloid leukemia (AML) (63). Of note, the blasts of 
some of these patients exposed CALR spontaneously, and this 
correlated not only with the degree of EIF2A phosphorylation 
in malignant cells, but also with the ability of autologous T cells 
to secrete IFNγ on stimulation (63). Along similar lines, healthy 
individuals have been shown to differ from lung carcinoma 
patients with respect to the circulating levels of soluble CALR, 
as well as to the amount of CALR expressed on the surface of 
pulmonary (normal versus malignant) cells (64). Moreover, 
increased concentrations of soluble HSP90 have been detected 
in the serum of CRC patients (n = 172) as compared to healthy 
individuals (n = 10) (65). Interestingly, soluble HSP90 appears 
to activate cancer cell-intrinsic signaling pathways that promote 
disease progression (65, 66). These data indicate that cancer cells 
expose and/or shed CALR as well as HSPs even in the absence 
of chemotherapy (at least to some degree), possibly as a result of 
oncogenic stress and/or adverse microenvironmental conditions. 
Moreover, they suggest that membrane-bound CALR and HSPs 
have a different biological activity than their soluble counterparts.

Apparently at odds with the abovementioned clinical findings, 
total CALR levels have been positively associated with accelerated 
disease progression and poor outcome in a cohort of 79 gastric 
cancer patients (69), in 23 women with breast carcinoma upon 
surgery (68), as well in large cohorts of neuroblastoma (n = 729), 
bladder carcinoma (n = 195) and mantle cell lymphoma (n = 163) 
patients, irrespective of treatment type (67). Moreover, CALR 
expression by malignant cells failed to affect overall survival in 88 
patients with esophageal squamous cell carcinoma treated with 
neo-adjuvant chemoradiotherapy and surgical resection (84). 
These results may reflect the intracellular functions of CALR in 
the preservation of reticular homeostasis, which is particularly 
important for malignant cells owing to their highly accelerated 
anabolic metabolism (85), or the fact that CALR exposure is 
generally associated with an increased expression of CD47, a very 
potent anti-phagocytic signal (67).

The phosphorylation of EIF2A as well as the activation 
of eukaryotic translation initiation factor 2-alpha kinase 2 
(EIF2AK2, best known as PKR) have been associated with 
favorable disease outcome in a cohort of 193 non-small cell lung 
carcinoma (NSCLC) patients (80). On the contrary, elevated 
degrees of EIF2A phosphorylation in neoplastic cells have been 
correlated with nuclear size (a surrogate marker of DNA content), 
preferential tumor infiltration by TREG cells, and poor disease 
outcome in a cohort of 60 breast carcinoma patients treated with 
anthracycline-based chemotherapy and tested longitudinally (75). 

Other manifestations on an ongoing UPR have been ascribed with 
prognostic or predictive value, including (but not limited to): (1) 
the expression levels of the ER chaperone heat shock 70 kDa pro-
tein 5 (HSPA5, best known as GRP78), as demonstrated in cohorts 
of 132 lung carcinoma patients (79), 79 individuals with head and 
neck cancer (78) and 119 patients with diffuse large B-cell lym-
phoma treated with the proteasome inhibitor bortezomib (which 
is a bona fide ICD inducer) (77); and (2) the splicing of X-box 
binding protein 1 (XBP1) (48), as demonstrated in a cohort of 
105 AML patients tested at diagnosis (74). Of note, both CALR 
and GRP78 expression levels are also indirect manifestations of 
the activation of another branch of the ER stress response, i.e., the 
derepression of activating transcription factor 6 (ATF6) (74, 86). 
Finally, some studies have associated markers of an ongoing UPR 
with dismal disease outcome. For instance, Davies and colleagues 
have linked low levels of unspliced XBP1 as well as a high spliced/
unspliced XBP1 ratio with poor disease outcome in 100 primary 
breast carcinoma patients treated with adjuvant hormonal therapy 
(76). The apparent discrepancy in these observations may reflect 
the differential reliance of distinct tumor types (or similar tumors 
at distinct stages of progression) on the ER stress response for 
survival in adverse microenvironment conditions (87).

Other processes and parameters linked to CALR and/or HSP 
exposure and their immunostimulatory effects have been shown 
to influence disease outcome in cancer patients. For instance, high 
CD47 levels have been reported to constitute an independent nega-
tive prognostic factor in cohorts of 86 patients with ovarian clear 
cell carcinoma (72), 102 individuals with esophageal squamous 
cell carcinoma (71), and 137 subjects with karyotypically normal 
AML (70). Along similar lines, the monocytes of 8 advanced 
melanoma patients progressing in an unusually slow fashion have 
been found to express increased amounts of CD91 as compared 
to those of 8 patients progressing normally (73). Moreover, 
single nucleotide polymorphisms (SNPs) affecting HSPA1A have 
been linked to an increased incidence of gastric carcinoma (as 
determined in a cohort of 39 patients and 186 controls) (81), a 
SNP affecting THBS1 has been correlated with gastric cancer 
occurrence and progression in a cohort of 275 patients and 275 
healthy individuals (83), while a SNP in LMAN1 as well as the 
consequent decrease in LMAN1 levels appear to be associated 
with an increased risk for ovarian carcinoma (as determined in a 
cohort of 289 women seen in gynecologic oncology practice and 
126 healthy volunteers) (82).

The robust immunostimulatory activity of HSPs has been har-
nessed to develop various anticancer vaccines that are nowadays 
in clinical development. These preparations generally consist in 
HSP-enriched (autologous or heterologous) cancer cell lysates 
that are administered directly to patients, in the presence of 
adequate immunological adjuvants (88, 89). The most common 
of these approaches relies on heat shock protein 90  kDa beta 
(Grp94), member 1 (HSP90B1, best known as GP96) and is often 
referred to as HSPPC-96 (Oncophage® or Vitespen®) (90). So far, 
the safety and clinical profile of HSPPC-96 have been tested in 
cohorts of patients with metastatic melanoma (n = 36–322) (91–
94), CRC (n = 29) (95), non-Hodgkin’s lymphoma (n = 20) (96); 
pancreatic adenocarcinoma (n = 10) (97), metastatic renal cell 
carcinoma (n = 84–409) (98, 99), glioma (n = 12) (100), recurrent 
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glioblastoma (n = 41) (101), and assorted advanced malignancies 
(n = 16) (102). These studies demonstrate that the administration 
of HSPPC-96 to cancer patients is safe and is generally associated 
with markers of immunostimulation. However, most often such 
effects are weak and unable to mediate long-term therapeutic 
activity (99). Thus, further studies are required for translating 
the well-established ability of HSPs to stimulate the priming of 
TAA-specific immune responses into a therapeutic reality.

Taken together, these clinical observations suggest that CALR, 
HSPs and various processes associated with their exposure, secre-
tion and signaling functions may have prognostic, predictive and 
therapeutic value.

Type i iFN and TLR3 Signaling

Cancer cells responding to anthracyclines secrete type I IFNs 
as a consequence of TLR3 activation (39), and this is required 
for cell death to initiate adaptive immunity (39). By binding to 
homodimeric or heterodimeric receptors expressed on several 
immune effector cells, type I IFNs mediate multipronged 
immunostimulatory effects (40). In particular, type I IFNs 
promote cross-priming (103), boost the cytotoxic functions of 
CTLs and NK cells (104), and increase the survival of memory 
CTLs (105). Moreover, type I IFNs can protect antigen-activated 
CD8+ CTLs from elimination by NK cells (106, 107), trigger the 
secretion of pro-inflammatory mediators by macrophages (108), 

and counteract the immunosuppressive functions of TREG cells 
(109). Besides such immunostimulatory effects, type I IFNs can 
ignite a cancer cell-intrinsic signal transduction pathway leading, 
amongst various effects, to the synthesis of the chemotactic factor 
chemokine (C–X–C motif) ligand 10 (CXCL10) (39). Indeed, at 
odds with their wild-type counterparts, Ifnar1−/− cancer cells suc-
cumbing to anthracyclines are unable to prime adaptive immune 
responses, even upon inoculation in wild-type hosts (39). Thus, 
type I IFN signaling in cancer cells appears to be critical for 
anthracycline-induced cell death to be perceived as immuno-
genic (39). Conversely, the efficacy of other immunotherapeutic 
agents such as the TLR7 agonist imiquimod requires type I IFN 
signaling in the host (110).

So far, only a few studies addressed the prognostic or predictive 
value of parameters reflecting the proficiency or activation status 
of TLR3 or type I IFN signaling (Table 2). High expression levels 
of TLR3 and/or toll-like receptor adaptor molecule 1 (TICAM1, 
a component of the TLR3 signaling apparatus best known as 
TRIF) have been associated with improved disease outcome in 
two cohorts of 85 and 172 subjects with hepatocellular carcinoma 
(HCC) (111, 112), as well as amongst 99 patients with neuroblas-
toma (113). Along similar lines, TLR3 expression levels have been 
shown to predict the response of 194 breast carcinoma patients 
treated with adjuvant radiotherapy plus a TLR3 agonist (114). SNPs 
affecting TLR3 have been shown to influence prognosis in cohorts 
of 582 patients with CRC, especially among untreated individuals 

TABLe 2 | Clinical studies assessing the prognostic and predictive value of TLR3 status and type i iFN signaling in cancer patients.

Parameter Cancer Treatment No Note(s) Reference

IFNAR1 CRC n.a. 1327 patients A SNP in IFNAR1 was linked to increased risk for oncogenesis (122)
758 controls

Glioma n.a. 304 A SNP in IFNAR1 was shown to affect patient OS (123)

TLR3 Breast carcinoma n.a. 102 patients A SNP in TLR3 was linked to increased risk for oncogenesis (118)
72 controls

polyA:U plus radiotherapy 194 High TLR3 levels predicted clinical responses to therapy (114)
Cervical carcinoma n.a. 130 patients A SNP in TLR3 was linked to increased risk for oncogenesis (117)

200 controls
CRC n.a. 582 SNPs in TLR3 were shown to influence disease outcome (115)

2309 patients SNPs in TLR3 were linked to increased disease incidence (121)
2915 controls

HCC n.a. 466 patients A SNP in TLR3 was linked to increased risk for oncogenesis (120)

482 controls
172 High TLR3 levels correlated with prolonged OS (111)

Surgery 85 High TLR3 levels correlated with prolonged OS (112)

Neuroblastoma n.a. 99 High TLR3 levels correlated with favorable disease outcome (113)

NSCLC Surgery 568 SNPs in TLR3 were shown to influence disease outcome (116)

Oral squamous cell 
carcinoma

n.a. 93 patients SNPs in TLR3 were linked to increased risk for oncogenesis (119)

104 controls

240 patients A SNP in TLR4 was linked to increased risk for oncogenesis (124)

223 controls

TRIF HCC Surgery 85 High TRIF levels correlated with prolonged OS (112)

Type I IFN Breast carcinoma Anthracycline-based 
chemotherapy

50 A type I IFN-related signature predicted improved disease 
outcome

(39)

CRC n.a. 483 A SNP in IFNA7 was shown to affect patient OS (122)
Glioma n.a. 304 A SNP in IFNA8 was shown to affect patient OS (123)

CRC, colorectal carcinoma; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung carcinoma; n.a., not applicable or not available; OS; overall survival; SNP, single nucleotide 
polymorphism.
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with Stage II disease (115) and 568 NSCLC patients (116). Along 
similar lines, TLR3 SNPs have been associated with an altered risk 
for cervical cancer amongst 330 Tunisian women (117), breast 
carcinoma amongst 174 African-American women (118), oral 
squamous cell carcinoma amongst 197 individuals (119) HCC 
amongst 948 subjects (120), and CRC amongst more than 5,000 
individuals (121). A type I IFN-related transcription signature 
centered around the expression of MX dynamin-like GTPase 1 
(MX1) has been shown to predict the likelihood of 50 breast car-
cinoma patients to respond to neo-adjuvant anthracycline-based 
chemotherapy (39). Moreover, SNPs affecting interferon (alpha, 
beta and omega) receptor 1 (IFNAR1) have been associated with 
an increased risk for the development of CRC amongst 2085 indi-
viduals (122), as well as with significantly reduced overall survival 
in a cohort of 304 glioma patients (123). Similar results have been 
obtained for SNPs affecting the genes coding for two variants of 
IFNα (i.e., IFNA7 and IFNA8) (122, 123).

The results of these studies suggest that monitoring biomarkers 
of TLR3 and type I IFN signaling may not only have prognostic/
predictive relevance for cancer patients, but also inform on the 
risk for cancer development in healthy subjects. Of note, recom-
binant IFN-α2a (Roferon-A®) is approved by the US Food and 
Drug Administration and other regulatory agencies worldwide 
for use in subjects with hairy cell leukemia and Philadelphia 
chromosome-positive chronic myelogenous leukemia upon 
minimal pretreatment, while recombinant IFN-α2b (Intron A®) 
is currently employed for the treatment of hairy cell leukemia, 
AIDS-related Kaposi’s sarcoma, follicular lymphoma, multiple 
myeloma, melanoma, condyloma acuminata and cervical 
intraepithelial neoplasms.(125, 126) It remains to be determined 
to which extent, if any, the therapeutic efficacy of type I IFNs 
reflects their ability to promote the initiation of adaptive immune 
responses against dying cancer cells.

extracellular ATP and Autophagy

ATP is secreted during ICD through a mechanism that involves 
pannexin 1 (PANX1) channels and lysosomal exocytosis (127, 
128). Importantly, autophagy is required for cancer cells suc-
cumbing to anthracyclines to release ATP in immunostimulatory 
amounts (42, 129, 130). Thus, the ability of anthracyclines to cause 
bona fide ICD is lost when cancer cells are rendered autophagy-
deficient by genetic manipulations or engineered to overexpress 
ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, 
best known as CD39), an enzyme that degrades extracellular ATP 
(42, 129). In line with this notion, the administration of CD39 
inhibitors or CD39-neutralizing monoclonal antibodies report-
edly relieves tumor-mediated immunosuppression (131), and (at 
least in some models) allows autophagy-deficient cells treated 
with anthracyclines to elicit normal immune responses upon 
inoculation in immunocompetent mice (42, 129). Extracellular 
ATP exerts immunostimulatory functions via at least three 
mechanistically distinct pathways: (1) by promoting the recruit-
ment of APCs or APC precursors to sites of cell death, upon bind-
ing to purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) 
(132–134); (2) by activating the so-called NLRP3 inflammasome 
and hence triggering the secretion of pro-inflammatory IL-1β 

(135, 136), an effect that relies on purinergic receptor P2X, ligand 
gated ion channel, 7 (41); and (3) by boosting the proliferation 
and cytotoxic activity of NK cells (26). Notably, extracellular ATP 
is sequentially metabolized by CD39 and 5′-nucleotidase, ecto 
(NT5E, best known as CD73) into ADP, AMP and adenosine, 
the latter of which has robust immunosuppressive effects (137).

Accumulating clinical evidence ascribes to parameters linked 
to the capacity of cancer cells to recruit and activate immune 
effectors (through extracellular ATP) a prognostic or predictive 
value for cancer patients (Table  3). A SNP compromising the 
function of P2RX7 has been associated with decreased time-to-
metastasis in a cohort of 225 breast carcinoma patients treated 
with adjuvant anthracycline-based chemotherapy (41), with 
worsened clinicopathological parameters amongst 121 subjects 
with papillary thyroid cancer (138), and with an increased risk 
for the development of chronic lymphocytic leukemia (CLL), as 
determined in a cohort of 40 patients and 46 age-matched healthy 
individuals (139). Contrasting with these latter findings, however, 
the same SNP has been associated with increased overall survival 
in a cohort of 170 subjects with CLL (140), or found to have 
no correlation with disease incidence and/or outcome in inde-
pendent cohorts of 144 CLL patients and 348 healthy controls 
(141), 121 individuals with CLL (142) 111 CLL patients and 97 
controls (143), and 136 subjects with multiple myeloma (144). 
These apparently discrepant observations may reflect the cancer 
cell-intrinsic functions of P2RX7, which is known to control 
proliferation and regulated cell death (145). Of note, increased 
P2RY2 mRNA levels have also been detected in gastric cancer 
biopsies from 14 patients (as compared to the adjacent healthy 
mucosa) (146), but these findings do not allow to determine 
whether gastric neoplasms were infiltrated by P2RY2+ immune 
cells or whether they overexpressed P2RY2.

Further corroborating the advantage conferred to malignant 
cells by an increased ability to convert immunostimulatory 
extracellular ATP into immunosuppressive AMP and adenosine, 
several studies ascribed a negative prognostic or predictive value 
to increased CD39 or CD73 levels. For instance, elevated amounts 
of CD39 and CD73 have been detected in 29 endometrial tumor 
samples as compared to the adjacent non-malignant tissues, and 
expression levels correlated with tumor grade (152). Along similar 
lines, CD39 (but not CD73) levels on the surface of CD4+ and CD8+ 
T cells have been shown to positively correlate with disease stage in 
two independent cohorts of 34 and 62 patients with CLL (150, 151), 
while CD73 downregulation has been associated with prolonged 
disease-free survival amongst 500 individuals with glioblastoma 
(154). At stark contrast with these findings, high levels of CD39 
mRNA have been linked to improved disease outcome in a cohort 
of 28 pancreatic cancer patients treated with surgery (153). The 
reasons underlying this discrepancy have not yet been clarified.

Of note, quantifying functional autophagy in tissue biopsies 
is rather complex, because most autophagic markers accumulate 
both when the autophagic flux is increased and when lysosomal 
degradation is blocked (155). Moreover, autophagy often serves 
a dual role in the course of tumor progression: (1) on the one 
hand it favors the survival of cancer cells exposed to adverse 
microenvironmental conditions (including nutritional, metabolic 
and therapeutic cues); (2) on the other hand, it is required for 
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ICD-associated ATP secretion and for the elicitation of robust TAA-
targeting immune responses (130, 156, 157). Notwithstanding 
these caveats, immunohistochemistry has been employed to study 
the prognostic or predictive value of autophagic markers such as 
the expression and lipidation of microtubule-associated protein 1 
light chain 3 (MAP1LC3, best known as LC3) (158), with mixed 
results. For instance, LC3 expression has been associated with 
prolonged overall survival in a cohort of 190 HCC patients (148), 
but with lymph node involvement and high TNM score amongst 
79 individuals with head and neck cancer (78). Along similar lines, 
reduced expression of beclin 1 (BECN1), a key component of the 
molecular machinery for autophagy, has been associated with poor 
prognosis in two independent cohorts of 1067 and 1992 breast 
carcinoma patients (147), but with improved disease outcome in a 
cohort of 73 patients with pancreatic cancer (149). These are only 
two examples of an abundant scientific literature correlating the 
expression of autophagy proteins in biopsies from patients affected 
with virtually all types of malignancies to clinicopathological 
features and/or markers of disease progression. The development 
of assays to monitor the functionality of the autophagic apparatus 
in clinical samples is urgently awaited to properly assess the prog-
nostic and predictive value of autophagy for cancer patients.

HMGB1 and Cell Death

According to current models, HMGB1 gets released in the course 
of cell death passively, upon the breakdown of the nuclear and 

plasma membrane (145, 159). Thus, besides differences in expres-
sion level, the extent of HMGB1 release generally correlates with 
the degree of cell death (160). However, changes in the oxidation 
status of extracellular HMGB1 have been suggested to dramati-
cally alter its biological activity (161–163). Indeed, while reduced 
HMGB1 efficiently dimerizes with CXCL12 and mediate potent 
chemotactic functions upon binding to chemokine (C–X–C 
motif) receptor 4 (CXCR4) (164, 165), its oxidized counterpart 
fails to do so (162). Rather, oxidized HMGB1 signal via TLR2, 
TLR4 and advanced glycosylation end product-specific recep-
tor (AGER, best known as RAGE) to stimulate the production 
of pro-inflammatory cytokines (162, 166–168). In addition, 
TLR4 signaling promotes cross-priming by inhibiting the 
fusion of antigen-containing endosomes with lysosomes (169). 
Interestingly, HMGB1 also binds to TLR9 (170) and hepatitis 
A virus cellular receptor 2 (HAVCR2, best known as TIM-3) 
(171), in particular when complexed with DNA. However, while 
TLR9 promotes cytokine secretion by plasmacytoid DCs and B 
cells (170), TIM-3 signaling blunts the ability of DCs to respond 
efficiently to inflammatory stimuli (171). Thus, extracellular 
HMGB1 mediates multipronged and context-dependent immu-
nomodulatory functions.

Various clinical studies indicate that monitoring parameters 
linked to HMGB1 release and signaling may convey prognostic 
or predictive information for cancer patients (Table  4). High 
expression levels of HMGB1 in malignant cells have been shown 
to correlate with improved overall survival in 88 patients with 

TABLe 3 | Clinical studies assessing the prognostic and predictive value of ATP release and extracellular ATP signaling in cancer patients.

Parameter Cancer Treatment No Note(s) Reference

Autophagy Breast carcinoma n.a. 1067 patients Low BECN1 levels correlated with worsened disease outcome (147)
1992 patients

HCC Surgery 190 High LC3 levels correlated with prolonged OS (148)
HNC Surgery 79 High LC3 levels correlated with node involvement and TNM score (78)
Pancreatic carcinoma Surgery 73 High levels of BECN1 and other autophagy-related proteins  

correlated with poor outcome
(149)

CD39 CLL n.a. 34 patients High CD39 levels on T cells correlated with late disease (150)
31 controls

62 High CD39 levels on T cells correlated with late disease (151)
Endometrial cancer Surgery 29 High CD39 levels correlated with tumor grade (152)
Pancreatic carcinoma Surgery 28 High CD39 levels were linked to improved disease outcome (153)

CD73 Endometrial cancer Surgery 29 High CD73 levels correlated with tumor grade (152)
Glioblastoma n.a. 500 CD73 downregulation was associated with improved DFS (154)

P2RX7 Breast carcinoma Anthracycline-based 
chemotherapy

225 A SNP in P2RX7 was linked to shortened MFS (41)

CLL n.a. 40 patients A SNP in P2RX7 was linked to increased risk for oncogenesis (139)
46 controls
144 patients Lack of correlation between P2RX7 status and disease incidence (141)
348 controls
111 patients Lack of correlation between P2RX7 status and disease incidence (143)
97 controls

170 A SNP in P2RX7 was associated to increased OS (140)
121 Lack of correlation between P2RX7 status and pathological features (142)

Multiple myeloma n.a. 136 patients Lack of correlation between P2RX7 status and disease incidence (144)
95 controls

Papillary thyroid cancer n.a. 121 A SNP in P2RX7 was linked to poor clinicopathological features (138)

P2RY2 Gastric cancer n.a. 14 patients Increased expression of P2RY2 in malignant cells (146)

CLL, chronic lymphocytic leukemia; DFS, disease-free survival; HCC, hepatocellular carcinoma; HNC, head and neck cancer; MFS, metastasis-free survival; n.a., not applicable or 
not available; OS; overall survival; SNP, single nucleotide polymorphism.
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TABLe 4 | Clinical studies assessing the prognostic and predictive value of HMGB1 release and extracellular HMGB1 signaling in cancer patients.

Parameter Cancer Treatment No Note(s) Reference

CASP3 Endometrial 
carcinoma

n.a. 1028 patients A SNP in CASP3 was linked to increased risk for oncogenesis (182)
1003 controls

CASP7 Endometrial 
carcinoma

n.a. 1028 patients SNPs in CASP7 were linked to increased risk for oncogenesis (182)
1003 controls

CASP9 CRC n.a. 402 patients SNPs in CASP9 were linked to decreased risk for oncogenesis and 
improved disease outcome

(183)
480 controls

HMGB1 Bladder carcinoma n.a. 164 High HMGB1 levels correlated to worsened disease outcome (175)
Breast  
carcinoma

Anthracycline-based 
chemotherapy

232 Loss of nuclear HMGB1 positively correlated with tumor size (173)
41 Increases in circulating HMGB1 were linked to clinical response (184)

CRC n.a. 219 patients High levels of serum HMGB1 correlated with disease incidence (185)
75 controls

n.a. 192 High HMGB1 levels correlated with worsened disease outcome (177)
Radioembolization 
therapy

49 High levels of serum HMGB1 correlated with decreased OS (186)

Surgery 72 Co-expression of HMGB1 in the nucleus and in the cytoplasm of 
malignant cells was linked to worsened 5-year survival rate

(174)

Esophageal 
carcinoma

Chemoradiotherapy  
and surgery

88 High HMGB1 levels correlated with improved OS (84)

Gastric 
adenocarcinoma

Surgery 76 High HMGB1 levels in malignant cells correlated with improved OS (172)

HCC n.a. 208 High HMGB1 levels correlated with worsened disease outcome (179)
161 High HMGB1 levels correlated with worsened disease outcome (178)

HNC n.a. 71 patients High levels of serum HMGB1 correlated with disease progression (187)
50 controls

103 High HMGB1 levels correlated with worsened disease outcome (180)
Malignant 
mesothelioma

n.a. 61 patients High levels of serum HMGB1 correlated with disease incidence (188)
45 controls

Nasopharyngeal 
carcinoma

n.a. 166 High HMGB1 levels correlated with worsened disease outcome (176)

Pancreatic 
carcinoma

Multicomponent 
chemotherapy

78 High circulating HMGB1 correlated with poor therapy response (189)

n.a. 70 High levels of serum HMGB1 correlated with decreased OS (190)
Prostate 
carcinoma

n.a. 85 High HMGB1 levels correlated with worsened disease outcome (181)

Solid tumors Virotherapy 17 Increases in circulating HMGB1 levels were linked to clinical response (191)
202 Increases in circulating HMGB1 levels were linked to clinical response (192)

MYD88 CRC Surgery 108 High MYD88 levels correlated with shortened DFS and OS (193)
Lymphoma Conventional 

chemotherapy
29 MYD88 mutations were involved in the pathogenesis of the disease (194)

Ovarian carcinoma Surgery 123 High MYD88 levels correlated with worsened disease outcome (195)
109 High MYD88 levels correlated with shortened DFS and OS (196)

RAGE Breast carcinoma n.a. 509 patients A SNP in AGER was linked to increased risk for oncogenesis (197)
504 controls
120 patients High levels of circulating RAGE correlated with advanced disease 

stage but improved outcome
(198)

92 controls
Gastric carcinoma Surgery 180 High RAGE levels were associated with worsened disease outcome (199)
HCC Transarterial 

chemoembolization
71 High levels of circulating RAGE correlated with clinical response (200)

NSCLC Platinum-based 
chemotherapy

562 patients SNPs in AGER were linked to increased risk for oncogenesis and 
differential clinical response

(201)
764 controls

Ovarian carcinoma n.a. 190 patients A SNP in AGER was linked to increased risk for oncogenesis (202)
210 controls

TLR2 CRC n.a. 2309 patients SNPs in TLR2 were associated with decreased 5-year survival rate (121)
2915 controls

Gastric carcinoma n.a. 289 patients A SNP in TLR2 was linked to increased risk for oncogenesis (203)
400 controls

HCC n.a. 211 patients SNPs in TLR2 were linked to increased risk for oncogenesis (204)
232 controls

Lymphoma n.a. 710 patients A SNP in TLR2 was linked to increased risk for oncogenesis (205)
710 controls

Prostate 
carcinoma

n.a. 195 patients A SNP in TLR2 was linked to increased risk for oncogenesis (206)
250 controls

(Continued)
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Parameter Cancer Treatment No Note(s) Reference

TLR4 Breast carcinoma Anthracycline-based 
chemotherapy

280 A SNP in TLR4 was linked to shortened MFS (43)

CRC n.a. 2309 patients SNPs in TLR4 were associated with risk variations and increased OS (121)
2915 controls

Surgery 108 High TLR4 levels were associated with shortened DFS and OS (193)
HNC Adjuvant systemic 

chemotherapy
188 A SNP in TLR4 was linked to shortened DFS and OS (207)

Melanoma Allogenic cancer cell-
based vaccine

72 A SNP in TLR4 was linked to shortened DFS and OS (208)

Various 622 A SNP in TLR4 was linked to shortened DFS and OS (209)
Ovarian carcinoma Surgery 123 High TLR4 levels were associated with worsened disease outcome (195)
Prostate 
carcinoma

n.a. 700 patients A SNP in TLR4 was linked to increased risk for oncogenesis (210)
700 controls
258 patients A SNP in TLR4 was linked to increased risk for oncogenesis (211)
258 controls
157 patients A SNP in TLR4 was linked to increased risk for oncogenesis (212)
143 controls
240 patients A SNP in TLR4 was linked to increased risk for oncogenesis (124)
223 controls

CRC, colorectal carcinoma; DFS, disease-free survival; HCC, hepatocellular carcinoma; HNC, head and neck cancer; MFS, metastasis-free survival; NSCLC, non-small cell lung 
carcinoma; n.a., not applicable or not available; OS; overall survival; RFS, relapse-free survival; SNP, single nucleotide polymorphism.

TABLe 4 | Continued

esophageal squamous cell carcinoma subjected to neo-adjuvant 
chemoradiotherapy and surgical resection (84), as well as in 76 
subjects with reseactable gastric adenocarcinoma (172). In a 
cohort of 232 breast carcinoma patients treated with anthracy-
cline-based adjuvant chemotherapy, loss of nuclear HMGB1 has 
been positively associated with tumor size (173). Along similar 
lines, the co-expression of HMGB1 in the nucleus and in the 
cytoplasm of malignant cells has been shown to inversely cor-
relate with tumor infiltration by CD45RO+ memory T cells and 
5-year survival rate in 72 individuals with Stage IIIB CRC (174). 
Finally, HMGB1 overexpression has been shown to correlate with 
advanced clinical stage or decreased disease-free and/or overall 
survival amongst 164 patients with bladder carcinoma (175), 
166 individuals with nasopharyngeal carcinoma (176), 192 CRC 
patients (177), 208 and 161 individuals with HCC (178, 179), 103 
subjets with head and neck squamous cell carcinoma (180), as 
well as 85 patients with prostate cancer (181).

Notably, circulating HMGB1 and RAGE levels have been 
intensively investigated for their predictive or prognostic value. 
Elevations of HMGB1 in the serum have been correlated with 
incidence, progression or unfavorable disease outcome in cohorts 
of 49 individuals with CRC, or 219 CRC patients and 75 healthy 
controls (185, 186), 70 individuals with pancreatic adenocarci-
noma (190), 71 laryngeal squamous cell carcinoma patients and 
50 healthy controls (187), 61 subjects with malignant pleural 
mesothelioma (188), and 78 pancreatic carcinoma patients 
(189). Conversely, a treatment-related increase in the circulating 
levels of HGMB1 has been associated with pathological complete 
response or partial remission amongst 41 breast carcinoma 
patients treated with neo-adjuvant chemotherapy based on 
epirubicin (an ICD inducer) (184), as well as amongst 17 and 
202 subjects with chemotherapy-refractory tumors treated with 
oncolytic virotherapy (191, 192). High levels of RAGE in the 
serum have been linked to advanced tumor stage but improved 
clinical outcome amongst 120 patients with breast carcinoma 

(198). Along similar lines, serum RAGE concentrations were 
significantly higher in 32 individuals with HCC who favorably 
responded to transarterial chemoembolization therapy than in 
39 patients who progressed upon treatment (200).

Thus, in many (but not all) clinical settings high intratumoral 
and circulating levels of HMGB1 have a negative prognostic or 
predictive value. These findings may reflect the ability of some 
tumors to retain HMGB1 in the course of stress response, the 
intrinsic resistance of such tumors to the induction of cell death, 
or the cancer cell-intrinsic functions of HMGB1 (213). In other 
settings, however, circulating HMGB1 and RAGE levels appear 
to reflect well the death of cancer cells exposed to immunogenic 
treatment modalities (184, 191, 192). Possibly, the timing of detec-
tion plays a critical role in this setting, calling for the development 
of optimized monitoring procedures.

SNPs in TLR2, TLR4 and AGER, as well as the circulating 
levels of a soluble RAGE variant have been shown to affect cancer 
susceptibility as well as disease outcome in several studies. In par-
ticular, TLR2 polymorphisms have been linked to an increased 
risk for lymphoma (as determined in 710 patients and as many 
healthy subjects) (205), gastric carcinoma (as assessed in 289 
patients and more than 400 controls) (203), prostate carcinoma 
(as investigated in 195 patients and 250 healthy individuals) 
(206), HCC (as tested in 211 patients and 232 controls) (204), and 
CRC (as assessed in 2,309 patients and 2,915 healthy individuals) 
(121). Loss-of-function variants of TLR4 have been associated 
with decreased time-to-metastasis amongst 280 women with 
non-metastatic breast carcinoma treated with surgery followed 
by anthracycline-based chemotherapy and local irradiation 
(43), with reduced disease-free and overall survival amongst 
188 head and neck cancer patients receiving adjuvant systemic 
therapy (207), amongst 72 melanoma patients vaccinated with a 
heat-shocked allogeneic melanoma cell line (208), and amongst 
622 melanoma patients subjected to various treatment modalities 
(209). Along similar lines, SNPs affecting TLR4 or AGER have 
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been linked to an increased risk for prostate cancer (as deter-
mined in multiple studies collectively testing more than 1,000 
patients and as many age-matched controls) (124, 210–212), 
ovarian cancer (as assessed in a study testing 190 patients and 210 
controls) (202), breast carcinoma (as investigated in 509 patients 
and 504 healthy women) (197), CRC (as determined in a large 
cohort encompassing 2,309 patients and 2,915 healthy individu-
als) (121), and NSCLC (as tested in 562 patients and 764 controls) 
(201). Notably, this latter study also identified a specific AGER 
SNP associated with a differential response of NSCLC patients to 
chemotherapy (201).

Conversely, elevated expression levels of RAGE, TLR4 and/
or components of the TLR signaling machinery like myeloid 
differentiation primary response gene 88 (MYD88) by malignant 
tissues have been correlated with shortened disease-free and 
overall survival in 2 cohorts of 109 and 123 ovarian carcinoma 
patients subjected to surgery (195, 196), in a cohort 108 subjects 
with CRC (193), and amongst 180 individuals with gastric carci-
noma (199). Along similar lines, activating mutations in MYD88 
have been linked to the pathogenesis of primary central nervous 
system lymphomas (194). Most likely, these findings reflect the 
advantage conferred to malignant cells by the expression of RAGE 
and TLR4, which can activate robust pro-survival pathways via 
NF-κB (214).

Finally, distinct SNPs affecting caspase-7 (CASP7) and one 
affecting caspase-3 (CASP3) have been associated with an altered 
risk for endometrial carcinoma (as investigated in a cohort of 
1,028 patients and 1,003 healthy women) (182), whereas SNPs 
affecting caspase-9 (CASP9) have been linked to reduced CRC 
incidence or improved disease outcome (as determined in a 
cohort of 402 patients and 480 healthy controls) (183). It remains 
to be determined whether these SNPs truly compromise the 
ability of cancer cells to emit DAMPs (and hence trigger immu-
nosurveillance mechanisms).

Other DAMPs

The abovementioned molecules and processes may constitute 
only the tip of an iceberg, meaning that several other DAMPs 
may contribute to the immunogenicity of cell death, at least in 
some circumstances. These DAMPs include (but are not limited 
to) various mitochondrial products like mtDNA, cardiolipin 
and N-formylated peptides (30) as well as cytosolic proteins like 
filamentous F-actin (45). Robust preclinical evidence implicates 
mtDNA in the etiology of septic and non-septic shock as well as 
in heart failure (29, 215). Cytosolic, extra-cytosolic and extracel-
lular mtDNA molecules have indeed robust pro-inflammatory 
effects as they trigger type I IFN synthesis via transmembrane 
protein 173 (TM173, best known as STING) (216) or TLR9 
activation (215). In line with this notion, circulating mtDNA 
levels have been shown to reflect the degree of inflammation 
and the extent of tissue damage in patients under maintenance 
hemodialysis (217). Moreover, mtDNA concentrations in the 
plasma of severe sepsis patients admitted to the emergency room 
have been ascribed robust predictive value on disease outcome 
(218). Upon binding to formyl peptide receptor 1 (FPR1), 
N-formylated peptides reportedly attract neutrophils, stimulate 
their degranulation, activate monocytes and favor the produc-
tion of pro-inflammatory cytokines (219–223). Cardiolipin, a 
lipid that is specifically contained in the inner mitochondrial 
membrane, binds CD1D on the surface of APC, thus endowing 
them with the ability of priming CD1D-restricted γδ T cells 
(224). Finally, F-actin becomes accessible upon disruption of 
the plasma membrane and promotes the elicitation of adaptive 
immune responses against dead cell-associated antigens by bind-
ing to C-type lectin domain family 9, member A (CLEC9A, best 
known as DNGR1) on the surface of DCs (45). Studies elucidat-
ing the actual contribution of these DAMPs to ICD are urgently 
awaited.

FiGURe 1 | Prognostic and predictive value of DAMPs and DAMP-
associated processes. (A,B). Monitoring the emission of damage-
associated molecular patterns (DAMPs) or DAMP-associated processes  
may have a multifaceted impact on the clinical management of cancer 
patients. First, it may allow for a prognostic assessment and permit the 

stratification of patients in different risk groups (A). Second, it may allow for 
the identification of patients who are intrinsically capable or uncapable to 
respond to a specific treatment, and amongst the latter, those who may 
benefit from combinatorial therapeutic approaches aimed at restoring normal 
DAMP signaling (B).
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Concluding Remarks

It is now clear that the emission of DAMPs according to a specific 
spatiotemporal pattern is an absolute requirement for the elicita-
tion of immune responses against malignant cells succumbing 
to treatment, and that such responses are necessary for the 
full-blown efficacy of most (if not all) anticancer therapeutic 
regimens. In many settings, however, neoplastic cells exposed to 
conventional chemotherapeutics, radiotherapy or targeted anti-
cancer agents fail to emit DAMPs in a manner compatible with 
the activation of the immune system, calling for the development 
of complementation strategies (16). Several approaches are being 
conceived to address this issue, including the implementation of 
combinatorial therapeutic regimens including (1) ER stressors, 
recombinant CALR or recombinant HSPs, to complement for 
defects in the CALR or HSP exposure pathway; (2) TLR3 agonists 
or recombinant type I IFNs, to correct problems in the secretion 
of type I IFN; (3) autophagy inducers or inhibitors of extracel-
lular ATP-degrading enzymes, to maximize the amount of ATP 
secreted in the course of cell death; and (4) recombinant HMGB1, 
TLR4 agonists or cytotoxic agents, to restore HMGB1-dependent 
immunostimulation (225). Besides, consistent efforts are being 
devoted to the identification of additional strategies that per  se 
induce ICD, in  vivo (with direct therapeutic purposes), and 
in vitro (for instance, for the development of anticancer vaccines) 
(20). Monitoring DAMPs and DAMP-associated processes may 

therefore have a dual clinical relevance (Figure 1). First, it may 
improve patient stratification by allowing for the identification 
of individuals with different prognosis and/or subjects who are 
likely to respond (or are responding) to a particular therapeutic 
regimen. Second, it may instruct therapeutic choices by spotting 
specific molecular or cellular defects that may be corrected phar-
macologically. We surmise that the prognostic and/or predictive 
value of DAMPs and DAMP-associated processes will have a 
significant impact on the clinical management of cancer patients.
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