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The pleiotropic chemokine (C–X–C motif) ligand 12 (CXCL12) has emerged as a crucial 
player in several diseases. The role of CXCL12 in diabetes promotion and progression 
remains elusive due to its multiple functions and the overwhelming complexity of diabetes. 
Diabetes is a metabolic disorder resulting from a failure in glucose regulation due to β-cell 
loss and/or dysfunction. In view of its ability to stimulate the regeneration, proliferation, and 
survival of β-cells, as well as its capacity to sustain local immune-isolation, CXCL12 has 
been considered in approaches aimed at attenuating type 1 diabetes. However, a note 
of caution emerges from examinations of the involvement of CXCL12 in the development 
of diabetes and its complications, as research data indicate that CXCL12 displays effects 
that range from protective to detrimental. Therefore, as a beneficial effect of CXCL12 in 
one process could have deleterious consequences in another, a more complete under-
standing of CXCL12 effects, in particular its functioning in the cellular microenvironment, 
is essential before CXCL12 can be considered in therapies for diabetes treatment.
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introduction

The worldwide prevalence of diabetes has increased six-fold over the past 20 years, with diabetes 
assuming the proportions of an epidemic. Therefore, research devoted toward improving the steps 
that could be undertaken in the prevention and treatment of diabetes and its complications is a 
scientifically and socially significant task. Diabetes mellitus is a complex metabolic disorder that is 
presented in two major forms, type 1 diabetes (T1D) and the more common type 2 diabetes (T2D). 
While these conditions have different etiologies, both types of diabetes are characterized by hyper-
glycemia resulting either from insufficient insulin levels as in T1D, or by an insensitivity of target cells 
to insulin as in T2D. In T1D, hyperglycemia occurs as a result of destruction of insulin-producing 
pancreatic β-cells in an autoimmune process. T2D is a metabolic disease characterized by β-cell 
dysfunction and peripheral insulin resistance. Genetic predisposition and environmental factors, 
such as diet, physical inactivity, and viral infections contribute to the etiology of diabetes. Early 
exposure to hyperglycemia predisposes individuals to the development of diabetic complications, 
a phenomenon which is referred to as “metabolic memory” (1). At present, diabetes management 
is focused on lowering hyperglycemia and treating its pathological consequences, rather than its 
initial triggers.
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CXCL12 and its Receptors

Current research has positioned CXCL12 as an important molecule 
in potential treatment of diabetes and its complications. CXCL12 
belongs to the CXC group of chemokines. It is a potent chemoat-
tractant involved in angiogenesis, leukocyte trafficking, cancer, 
inflammatory disorders, atherosclerosis, and HIV pathology (2, 3).  
CXCL12 is a ligand for two transmembrane receptors: CXCR4 
and CXCR7 (4, 5). Interaction between CXCL12 and its receptor 
CXCR4 induces downstream signaling involved in chemotaxis, 
cell survival, proliferation, increase in intracellular calcium, and 
gene transcription (3). CXCR7 is an atypical chemokine receptor 
that does not signal through the canonical G-protein pathway. 
CXCL12 binds CXCR7 with even higher affinity than CXCR4. 
CXCR7/CXCL12 interaction triggers CXCR7 association with 
β-arrestin 2 and CXCL12/CXCR7 internalization, implying capa-
bility of CXCR7 to decrease the level of CXCL12 from the sur-
roundings (6). The observed promotion of cell survival, adhesion, 
and tumor growth by CXCR7 points to signaling pathways that lie 
downstream of this receptor (7). This may be in correlation with 
its ability to heterodimerize with CXCR4 and regulate CXCR4/
CXCL12-mediated processes. The role of CXCR7 in mediating 
the anti-apoptotic effect of CXCL12 has been documented (8). 
CXCR7 has also emerged as a determinant of autoimmunity and 
β-cell destruction which underlies diabetic progression (9).

The Role of CXCL12/CXCR4 Axis in 
Diabetes Pathophysiology

Type 1 Diabetes
Type 1 diabetes is an autoimmune disease triggered by environ-
mental factors in genetically susceptible persons. In T1D, pancre-
atic β-cells are targeted by the individual’s own immune system 
resulting in reduced or complete elimination of insulin produc-
tion. Discouraging, long-term studies of islet transplantation 
stress the need for new strategies to counteract autoimmunity, and 
CXCL12 has emerged as a key molecule in this process. CXCL12 
plays a particularly important role in directing T cell migration 
and therefore in immune processes. Recruitment of autoreactive 
T cells into pancreatic islets leads to inflammation (referred to 
as insulitis) that initiates T1D development. Several reports have 
revealed that neutralization of CXCL12 inhibits insulitis and 
diabetes development (10, 11). It was proposed that retention of 
regulatory T cells (Tregs) in the bone marrow by CXCL12 dis-
turbs the balance of T cells in favor of autoreactive T cells, which 
intensifies disease progress. However, a reverse effect of CXCL12 
inhibition was reported by Aboumarad et al. who showed that 
a population of CXCR4+ T cells attracted by CXCL12 protects 
recipient mice from the adoptive cell transfer of diabetes (12). The 
beneficial effects of CXCL12 could be explained by several prop-
erties specific to this chemokine. CXCL12 induces bi-directional 
movement of T cells, toward lower concentration and away from 
higher CXCL12 concentration (13). CXCL12 also exerts a chem-
orepulsive effect on diabetogenic T cells, while mediating firm 
adhesion of normal T cells (14). Moreover, CXCL12 expression in 
islets was shown to cause the selective repulsion of autoreactive T 
cells and retention of Tregs at the site (15). Tregs play a crucial role 

in suppressing autoimmunity and data support their relevance 
in T1D pathogenesis (16). It was reported that pancreatic lymph 
nodes (PLNs) of non-obese diabetic (NOD) mice lack Tregs, while 
the recovery of euglycemia in these mice was associated with the 
restoration of the Treg population in PLNs (17). The absence of 
Tregs correlates with the locally decreased expression of CXCL12, 
suggesting that improved function of the CXCL12/CXCR4 axis 
and subsequent retention of Tregs in the PLNs could serve as the 
basis for an alternative therapeutic approach for treating T1D. 
Selective repulsion of autoreactive T cells and attraction of Tregs 
have been proposed as a mechanism for a recently reported novel 
strategy in islet transplantation. It has been shown that immune-
mediated rejection of transplanted islets could be delayed by their 
local immune-isolation achieved through coating or encapsula-
tion of islets with CXCL12, thus excluding the need for systemic 
immunosuppression (18). Despite the evidence importance 
of this finding for T1D treatment, it should be noted that local 
immunosuppression achieved through CXCL12 has also been 
observed in cancer models where this mechanism protects cancer 
cells from immune attack (19).

Type 2 Diabetes
Type 2 diabetes is a metabolic disorder characterized by insu-
lin resistance in adipose tissue, liver and skeletal muscle, and 
defective pancreatic insulin secretion. Experimental and clinical 
data describe diabetes as a chronic inflammatory disease (20). 
More than 20 years ago, it was shown that the pro-inflammatory 
cytokine TNF-α was capable of inducing insulin resistance (21). 
It is now known that the plasma levels of pro-inflammatory 
cytokines, such as TNF-α, IL-6 or IL-1β, and chemokines are 
elevated in T2D patients, while in vivo studies have revealed that 
inhibition of key inflammatory cytokines protects rodents from 
insulin resistance (22). The inflammatory cytokines promote 
insulin resistance by interfering with insulin signaling through 
activation of JNK kinase and NFκB pathways (23). Pancreatic 
β-cells respond to insulin resistance by increasing insulin secre-
tion. However, when β-cells fail to compensate for increased 
insulin demands, T2D develops.

Chronic low levels of inflammation in the pancreas and 
insulin-responsive tissues of diabetics are accompanied by 
infiltration of lymphocytes and macrophages. The latter process 
is associated with a switch from an anti- to a pro-inflammatory 
profile. Namely, diabetes is linked to a disturbed balance between 
pro-inflammatory (Th1 and Th17) and anti-inflammatory (Th2 
and Tregs) subsets of T cells in favor of the pro-inflammatory 
phenotype. As a result, Th1 and Th17 promote the polariza-
tion of M1 macrophages, which are the main producers of 
pro-inflammatory cytokines (24). CXCL12 has a controversial 
role in inflammation, as a result of its ability to orchestrate the 
trafficking of a variety of immune cells. Based on the reports 
describing CXCL12-promoted recruitment of immune cells to 
inflamed tissues in autoimmune diseases such as rheumatoid 
arthritis (RA) and lupus erythematosus in lung inflammation 
and inflammatory bowel disease (25), CXCL12 has been pro-
posed to have a pro-inflammatory role. Also, CXCL12 recruits 
monocytes into adipose tissue, which after differentiation secrete 
pro-inflammatory cytokines in obesity. It was suggested that the 
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CXCL12/CXCR4 axis induces M1 macrophage accumulation, 
subsequent inflammatory cytokine production, and finally insulin 
resistance (26). However, CXCL12 was also found to possess an 
anti-inflammatory role by mediating T cell polarization toward 
Tregs, and by stimulating IL-10 production in anti-inflammatory 
M2 macrophages (27). Moreover, CXCL12 promotes migration 
of monocytes and their polarization toward the M2 phenotype 
(28), which points to the potential role of CXCL12 in reducing 
inflammation in diabetes. Once again, we should be aware that 
promotion of the anti-inflammatory Treg/M2 phenotype by 
CXCL12 is part of the mechanism involved in suppression of 
anti-tumor immunity mediated by this chemokine (29).

Given the strong correlation between inflammation and T2D, 
anti-inflammatory strategies for T2D treatment have been pro-
posed and some have been clinically tested. Encouraging results 
were observed with salsalate, an inhibitor of the NF-κB pathway, 
and IL-1β antagonists. Potential targeting of CXCL12 for T2D 
treatment requires additional studies and a better understanding 
of the role of CXCL12 in T2D and inflammation.

Potential Utilization of the CXCL12/CXCR4 
Axis in Diabetes Management 
Through Promotion of Pancreatic β-Cell 
Differentiation, Regeneration,  
and Survival

Current limitations in diabetes treatment have stimulated efforts 
toward β-cell replacement therapy. Preservation of β-cell mass, 
stimulation of β-cell differentiation from embryonic stem cells 
(ESCs), regeneration of the impaired endocrine pancreas from 
remaining β-cells, and cellular reprograming of other endocrine 
or exocrine cell types in pancreas could provide a long-term 
solution in diabetes treatment (30–32). This strategy requires 
understanding of the molecular mechanisms that control β-cell 
maturation, growth, and survival.

The CXCL12/CXCR4 Axis in β-Cell Differentiation 
and Regeneration
CXCL12/CXCR4 signaling is crucial for β-cell differentiation 
and pancreatic islet genesis (31). CXCL12 is expressed in the 
gut endoderm and attracts CXCR4 expressing angioblasts which 
induce pancreatic and duodenal homeobox 1 (Pdx1) expression 
in the pre-pancreas region (33). Pdx1 plays a key role in the 
expression of neurogenin 3 (Ngn3) which is essential for the 
formation of all islet cell types (34). During human fetal β-cell 
development, CXCR4 is necessary for the in vivo differentiation 
of islet-like clusters into β-cells while CXCL12 directs the pro-
liferation of epithelial endocrine precursors through activation 
of phosphatidyl inositol (PI)-3 and Akt kinases (31). Expression 
of interferon (IFN) γ, which is under the control of the insulin 
promoter, promotes ductal hyperplasia and regeneration of new 
islets in the pancreas of transgenic mice (35), providing an excel-
lent model for studding pancreas regeneration. When NOD mice 
were used as an IFNγ transgenic model, their pancreas displayed 
three- and four-fold elevated expression of CXCL12 and CXCR4, 
respectively, in comparison to non-transgenic NOD mice (36). 

CXCL12 expression in IFNγ-NOD mice stimulated pancreatic 
ductal cell migration and activation of the Akt, Src, and extra-
cellular signal regulated protein kinase (ERK1/2) in duct cells, 
revealing the essential role of CXCL12 in their survival, prolif-
eration, and migration during pancreatic regeneration. These 
insights could help in developing new therapeutic protocols 
for stimulating the differentiation of pancreatic stem cells into 
β-cells, proliferation of existing β-cells and transdifferentiation of 
particular cell types in diabetic patients (31, 32, 37). Furthermore, 
in vitro treatment of human ESCs with appropriate signals could 
direct their differentiation into β-cells that could be transplanted 
in diabetic patients.

The CXCL12/CXCR4 Axis in β-Cell Survival
Diabetes-related studies have provided evidence for an important 
role of CXCL12 in anti-apoptotic and anti-necrotic protection of 
β-cells from diabetogenic agents. Transgenic mice overexpressing 
CXCL12 in β-cells are protected from streptozotocin (STZ)-
induced diabetes via activation of Akt kinase (38). CXCL12-
stimulated Akt signaling activates anti-apoptotic signals in 
β-cells through increased expression of the anti-apoptotic B cell 
lymphoma 2 (Bcl-2) protein and anti-apoptotic phosphoryla-
tion of the proapoptotic Bcl-2-associated death (BAD) protein. 
CXCL12-mediated induction of Akt activity also promotes 
activation and stabilization of beta-catenin/transcription factor 
7-like 2 (TCF7L2) that contributes to the survival of isolated islets 
and INS-1 cells (39). Activation of the CXCL12/CXCR4 axis by 
STZ, cytokines and in thapsigargin injury of human and mouse 
islets promotes intra-islet GLP-1 production and enhances 
β-cell survival (40). It has been proposed that the paracrine 
action of CXCL12 from β-cells activates Akt in adjacent α-cells, 
promoting their proliferation and production of GLP-1 instead 
of glucagon. CXCL12 and GLP-1 signal from α-cells together 
control the growth and viability of β-cells. These findings raise 
the possibility that the anti-apoptotic/prosurvival CXCL12 and 
progrowth GLP-1 signaling act either additively or synergistically 
to conserve or possibly enhance β-cell mass in response to injury.

CXCL12 overexpression considerably improves insulin 
expression and viability of isolated rat islet cells and Rin-5F pan-
creatic β-cells after hydrogen peroxide treatment (41). CXCL12 
overexpression in pancreatic cells switches hydrogen peroxide-
induced cell death from the necrotic to the apoptotic pathway 
through Akt kinase-mediated reduction of poly(ADP-ribose) 
polymerase-1 (PARP-1) activity (Figure  1). These findings are 
in correlation with the documented role of PARP-1 in necrotic 
cell death (42) and with the observation that pharmacological 
inhibition or genetic deletion of PARP-1 protects animals against 
chemically induced and spontaneous diabetes development (43). 
The anti-necrotic effect of CXCL12 could prevent an additional 
pro-inflammatory burden of β-cells provoked by necrosis and 
could therefore be used for diabetes treatment.

Transcriptional Regulation of the CXCL12 Gene
Considering the involvement of CXCL12 in β-cell differentiation, 
growth, and survival, an understanding of CXCL12 transcrip-
tional regulation offers possibility to improve β-cell mass in 
diabetes. PARP-1 is involved in rat CXCL12 gene (Cxcl12) 
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downregulation during the early stage of STZ-induced oxidative 
stress (44). During later stages of oxidative stress and intensive 
pancreatic β-cell injury, Cxcl12 expression is upregulated by Yin 
Yang 1 (YY1). Multiple protein–protein interactions between  
C/EBPα, C/EBPβ, STAT3, p53, FOXO3a, and HMG I/Y transcrip-
tion factors that bind to the Cxcl12 promoter in the rat pancreatic 
Rin-5F cell line suggest that multi-subunit protein complexes are 
responsible for the regulation of Cxcl12 transcription (44). Targeted 
stimulation or suppression of specific transcription factors involved 
in the regulation of genes engaged in the proper functioning of 
β-cells could improve therapeutic approaches in diabetes.

The Controversial Role of CXCL12 in 
Diabetic Complications

Along with the promotion of cell survival, the biological effects of 
CXCL12, such as angiogenesis induction and recruitment of bone 
marrow-derived progenitor cells suggest that this chemokine 
assumes a central position in tissue repair and regeneration. Since 
diabetes is accompanied by dysfunction and life-threatening 
damage of several organs, the potential of CXCL12 to create a 
microenvironment that supports repair processes is particularly 

FiGURe 1 | Proposed mechanism of the CXCL12/Akt-mediated 
anti-necrotic effect that leads to pancreatic β-cells survival. Under 
basal conditions, interaction between activated Akt (pAkt) and PARP-1 leads 
to PARP-1 phosphorylation that results in partial inhibition of PARP-1 in wild 
type (wt) and CXCL12 overexpressing Rin-5F cells. After hydrogen 
peroxide-induced oxidative stress and in response to severe DNA damage in 
wt cells, the loss of pAkt-PARP-1 interaction allows PARP-1 hyperactivation, 
followed by extensive PARP-1 auto-poly(ADP-ribosyl)ation, NAD+ and ATP 

depletion, and final necrotic cell death. In CXCL12 overexpressing cells, 
pAkt-PARP-1 interaction persists after hydrogen peroxide treatment, 
maintaining partial inhibition of PARP-1. Consequently, cellular energy 
depletion is prevented and a switch from the necrotic to the apoptotic cell 
death is ensured. With CXCL12-mediated suppression of PARP-1 
overactivation in stress conditions, cell still operates with the active PARP-1 
that is essential player in many cellular processes. The mechanism is based 
on the findings presented in Ref. (41).

important. Indeed, CXCL12 accelerates wound healing in diabe-
tes by recruiting endothelial progenitor cells (EPCs) and through 
improved angiogenesis (45, 46). However, the same injury 
response mechanisms could also promote disease progression, as 
in diabetic retinopathy, which starts with damage to small blood 
vessels in the eye and leads to reduced blood flow and ischemia. 
The ischemia promotes aberrant neovascularization that destroys 
the normal retinal architecture, causing impaired vision. In agree-
ment with the fact that the expression of CXCL12 is controlled by 
hypoxia-inducible factor-1 (47), the level of CXCL12 increases as 
diabetic retinopathy progresses and contributes to angiogenesis 
by recruiting EPCs to the site of vascular injury (48). Blocking the 
function of CXCL12 prevents neovascularization and progression 
of proliferative retinopathy.

Diabetic nephropathy is characterized by the development 
of albuminuria with a subsequent decline in glomerular filtra-
tion rate, usually followed by failure of renal function. CXCL12 
expression in the kidney increases during acute renal failure, 
resulting in homing of progenitor cells to the injured kidney (49). 
Although CXCL12 is considered as one of the major mediators 
involved in kidney repair after ischemic acute renal failure, data 
regarding the role of this chemokine in diabetic nephropathy 
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TABLe 1 | Yin-Yang nature of CXCL12 in diabetic complications.

effects of activated CXCL12/CXCR4 axis  
(in a mouse model system)

Role of the 
CXCL12/

CXCR4 axis 
in diabetes

Reference

Accelerates wound healing in diabetes, improves 
angiogenesis

(45, 46)

Promotes diabetic retinopathy, contributes to 
angiogenesis via recruitment of EPCs to the site 
of vascular injury

(48)

Improves diabetes progression in NOD mice by 
sequestering Tregs in the bone marrow, which 
disturbs the balance in favor of autoreactive T cells

(10)

Prevents insulitis and autoimmune diabetes via 
recruitment of Th2-type cells to the pancreas of 
NOD mice

(12)

Mediates kidney repair by homing of progenitor 
cells to the injured kidney in acute renal failure

(49)

Contributes to progression of diabetic 
nephropathy through involvement in 
glomerulosclerosis, podocyte loss and 
albuminuria

(50)

Induces M1 macrophage accumulation in 
adipose tissue which leads to secretion of pro-
inflammatory cytokines in obesity, associated with 
insulin resistance

(26)

Balanced ( ) CXCL12 expression and distribution is indispensable for the final 
outcome of physiological action that can produce either protective ( ) or detrimental 
effects ( ) during diabetes onset and in diabetic complications.
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are limited. A study on the mouse model of T2D revealed that 
CXCL12 contributes to glomerulosclerosis, podocyte loss, and 
albuminuria, implicating the pathogenic role of CXCL12 in 
diabetic nephropathy (50). The same group proposed a novel 
strategy for the prevention of glomerulosclerosis in T2D. This is 
based on the protective effect of dual chemokine CCL2-CXCL12 
blockage: inhibition of CCL2-mediated glomerular leukocyte 
recruitment and CXCL12-mediated loss of podocytes (51).

Diabetes dramatically increases the risk of various cardiovas-
cular problems, including coronary artery disease with myocar-
dial infarction and atherosclerosis (52). Although the importance 
of CXCL12 in cardiovascular disease has been intensively studied, 
current findings once again suggest a double-edged role of this 
chemokine in ischemic heart and atherosclerosis (53). Since this 
issue has been extensively reviewed elsewhere in Ref. (53), it will 
not be considered here in more detail. It is worth mentioning 
that genome-wide association studies revealed a significant 
association of two SNPs downstream of the CXCL12 gene with 
cardiovascular disease (54).

The general conclusion regarding the role of CXCL12 in 
diabetic complications is that CXCL12 walks a thin line between 
protective and detrimental effects. Therapies that rely on either 
promotion of CXCL12 or blocking of its activity have been sug-
gested for a variety of conditions. The above-mentioned findings 
indicate that CXCL12-based therapy should be used with extreme 
caution and by precise targeting of CXCL12 action to specific tis-
sue (Table 1). Proper functioning of the immune system provides 
a balance between protection from pathogens and tissue damage, 
and between autoimmunity and cancer suppression. Disturbance 
of this balance might be beneficial in one process, while at the 
same time detrimental in another.

Conclusion

The role of CXCL12 in diabetes is very complex. For a better 
understanding of the biological effects of CXCL12, additional 
studies are needed to clarify several issues. As has already been 
mentioned, aside from CXCR4, CXCL12 also binds to its second 
receptor CXCR7, whose downstream signaling is elusive. The 
reported heterodimerization of these receptors has introduced 
additional complexity to CXCL12 signaling (55). CXCR7 also 
binds CXCL11 (56), while CXCR4 has been shown to be a receptor 
for the cytokine MIF and chemokine CXCL14 (57, 58). Therefore, 
the biological functions of CXCL12 must be considered in the 

context of a specific microenvironment, taking into account the 
site of CXCL12 expression, the expression of other chemokines, 
and all receptors on target cells. A complete understanding of 
the complex CXCL12 network is a prerequisite for the safe 
application of CXCL12-based therapy in diabetes.

Acknowledgments

This work was supported by the Ministry of Education, Science 
and Technological Development of the Republic of Serbia, Grant 
No. 173020. We are very grateful to Professor Dr. Ludwig Wagner 
(Department of Internal Medicine III, Medical University of 
Vienna, Vienna, Austria) for all scientific help, suggestions, and 
unlimited support. We are grateful to Dr. Goran Poznanović for 
the English editing of the manuscript and scientific discussion. 
This work is part of COST Action CM1406.

References

 1. Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to 
diabetic complications. Nat Rev Endocrinol (2010) 6:665–75. doi:10.1038/
nrendo.2010.188 

 2. Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee Y, Mantel C, et al. Transgenic 
expression of stromal cell-derived factor-1/CXC chemokine ligand 12 
enhances myeloid progenitor cell survival/antiapoptosis in vitro in response 
to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol 
(2003) 170:421–9. doi:10.4049/jimmunol.170.1.421 

 3. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin 
Cancer Res (2010) 16:2927–31. doi:10.1158/1078-0432.CCR-09-2329 

 4. Balabanian K, Lagane B, Infantino S, Chow KYC, Harriague J, Moepps 
B, et  al. The chemokine SDF-1/CXCL12 binds to and signals through the 

orphan receptor RDC1 in T lymphocytes. J Biol Chem (2005) 280:35760–6. 
doi:10.1074/jbc.M508234200 

 5. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, et al. The 
lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks 
HIV-1 entry. Nature (1996) 382:829–33. doi:10.1038/382829a0 

 6. Berahovich RD, Zabel BA, Lewen S, Walters MJ, Ebsworth K, Wang Y, et al. 
Endothelial expression of CXCR7 and the regulation of systemic CXCL12 
levels. Immunology (2014) 141:111–22. doi:10.1111/imm.12176 

 7. Sanchez-Martin L, Sanchez-Mateos P, Cabanas C. CXCR7 impact on 
CXCL12 biology and disease. Trends Mol Med (2013) 19:12–22. doi:10.1016/j.
molmed.2012.10.004 

 8. Bakondi B, Shimada IS, Peterson BM, Spees JL. SDF-1alpha secreted by human 
CD133-derived multipotent stromal cells promotes neural progenitor cell survival 
through CXCR7. Stem Cells Dev (2011) 20:1021–9. doi:10.1089/scd.2010.0198 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1038/nrendo.2010.188
http://dx.doi.org/10.1038/nrendo.2010.188
http://dx.doi.org/10.4049/jimmunol.170.1.421
http://dx.doi.org/10.1158/1078-0432.CCR-09-2329
http://dx.doi.org/10.1074/jbc.M508234200
http://dx.doi.org/10.1038/382829a0
http://dx.doi.org/10.1111/imm.12176
http://dx.doi.org/10.1016/j.molmed.2012.10.004
http://dx.doi.org/10.1016/j.molmed.2012.10.004
http://dx.doi.org/10.1089/scd.2010.0198


August 2015 | Volume 6 | Article 4036
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