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Lipid raft-mediated regulation of
hyaluronan–CD44 interactions in
inflammation and cancer
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Hyaluronan is a major component of the extracellular matrix and plays pivotal roles in
inflammation and cancer. Hyaluronan oligomers are frequently found in these pathological
conditions, in which they exert their effects via association with the transmembrane
receptor CD44. Lipid rafts are cholesterol- and glycosphingolipid-enriched membrane
microdomains that may regulate membrane receptors while serving as platforms for
transmembrane signaling at the cell surface. This article focuses on the recent discovery
that lipid rafts regulate the interaction between CD44 and hyaluronan, which depends
largely on hyaluronan’s size. Lipid rafts regulate CD44’s ability to bind hyaluronan in T cells,
control the rolling adhesion of lymphocytes on vascular endothelial cells, and regulate
hyaluronan- and CD44-mediated cancer cell migration. The implications of these findings
for preventing inflammatory disorders and cancer are also discussed.

Keywords: extracellular matrix remodeling, oligosaccharides, cholesterol, membrane raft, membrane dynamics,
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Introduction

Hyaluronan is a linear glycosaminoglycan consisting of repeating disaccharide units of -glucuronic
acid (GlcUA) and N-acetyl--glucosamine (GlcNAc) with the structure [β1,4-GlcUA-β-1,3-
GlcNAc-]n, and a physiological molecular weight (relative molecular mass) ranging from 1× 105

to 1× 107 with polydispersity (1) (Figure 1). Hyaluronan was first purified from bovine vitreous
humor in 1934 (2). It is now known to be ubiquitous in vertebrate tissues, with particular abundance
in connective tissues, such as synovial fluid, Wharton’s jelly in the umbilical cord, and the vitreous
humor of the eye, where it plays a mechanical role determined by its viscous features. While
hyaluronan is traditionally regarded as a space filling, structural molecule involved in lubricating
joints or holding connective tissues in place (3), it also functions as a microenvironmental cue in
inflammation and cancer (4).

Hyaluronan: A Size-Dependent Bioactive Molecule

Structure and Physicochemical Properties
Hyaluronan has a simple structure that lacks a core protein linkage or sulfation. It is synthesized
as a large, negatively charged linear polymer with multiple carboxyl groups on GlcUA residues.
Both the GlcUA and GlcNAc residues are in the β configuration, which allows their bulky groups,
including the hydroxyl and carboxyl groups, to reside in sterically unhindered equatorial positions,
and thus hyaluronan forms particularly stable tertiary structures in aqueous solution that exhibit
remarkable hydrodynamic properties, including non-Newtonian viscosity and water retention.
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FIGURE 1 | The structure and size of hyaluronan, and its interaction
with CD44 in the lipid raft. (A) Chemical structure of hyaluronan.
Hyaluronan is a linear glycosaminoglycan consisting of repeating disaccharide
units of D-glucuronic acid (GlcUA) and N-acetyl-glucosamine (GlcNAc) with
the structure [β1,4-GlcUA-β-1,3-GlcNAc-]n. (B) Hyaluronan size and its
relevance to inflammation and cancer. The sizes of hyaluronan are
categorized according to Weigel’s nomenclature (5), and shown in the log
scale of the molecular weight: oligomeric hyaluronan (oHA; 1×103–1×104),
small hyaluronan (sHA; 1×104–1×105), intermediate hyaluronan (iHA;
1×105–1×106), and large hyaluronan (LHA; 1×106–1×107). Hyaluronan’s
molecular weight in normal physiological conditions ranges from 1×105 to
1×107, whereas the low-molecular weight hyaluronan has relevance to
inflammation and cancer. The very high-molecular weight hyaluronan from
naked mole rat (molecular weight, 6×106–1.2×107) has an anti-malignant
activity (6). (C) CD44 structure. CD44 consists of four regions;
hyaluronan-binding domain (HABD), stalk domain, transmembrane region,
and cytoplasmic tail.

In dilute solution, hyaluronan forms an expanded random coil
due to the mutual repulsion of its carboxyl groups, and at higher
concentrations it forms an entangled meshwork, the size of which
depends on its concentration and molecular weight, and on the
ionic strength and pH of the solution (7). At physiological ionic
strengths, hyaluronan’s polyanionic structure causes the partition
and diffusion of monovalent ions, such as Na+ and Cl− as well as
the divalent cation Ca2+ at a nearly ideal Donnan equilibrium (8).

Biosynthesis
While most glycosaminoglycans are synthesized in the Golgi
apparatus, hyaluronan is synthesized at the cell surface, from
uridine 5′-diphosphate (UDP)-GlcUA and UDP-GlcNAc by
hyaluronan synthases (HASs), a class of membrane-integrated
gylcosyltransferases (EC 2.4.1.212). There are three HAS isoforms
in mammals, such as HAS1, HAS2, and HAS3 (9), which have

different tissue- and cell-specific expression patterns and Km
values for their substrates; they also synthesize hyaluronan of
different sizes in vitro (10). Various growth factors, including
epidermal growth factor (EGF), platelet-derived growth factor
(PDGF), and transforming growth factor-β (TGF-β), induce the
transcription of HAS genes and enhance hyaluronan synthesis
(11, 12). Dysregulated HAS expression or activity is sometimes
associated with tissue injury and immune diseases (13).

Degradation
Hyaluronan is enzymatically degraded mainly by hyaluronidases.
The mammalian hyaluronidases (EC 3.2.1.35) are endo-β-
acetyl-hexosaminidases, which hydrolyze the hexosaminidic
β1,4-linkages between GlcNAc and GlcUA residues (14). Six
hyaluronidase-like sequences are present in the human genome;
the five genes, i.e., HYAL1, HYAL2, HYAL3, HYAL4, and SPAM1
genes, which encode Hyal-1, Hyal-2, Hyal-3, Hyal-4, and PH-
20, respectively, and a pseudogene PHYAL1 that is transcribed
but not translated (15). Among these isoforms, Hyal-1 and Hyal-
2 are predominantly active in somatic tissues (16). Hyal-1 is
an acid-active lysosomal enzyme, and catalyzes the hydrolytic
degradation of hyaluronan with any molecular weight, gener-
ating predominantly tetrasaccharides (17). Hyal-2 is an acid-
active glycosylphosphatidylinositol (GPI)-anchored enzyme, and
digests hyaluronan polymers to products with a molecular weight
of approximately 2× 104, i.e., 100 saccharides (18). In addition
to enzymatic degradation, hyaluronan can be depolymerized by
reactive oxygen species generated by oxidative stress (and/or
reactive nitrogen species), which cause random cleavage of the
endoglycosidic linkages (19).

The degradation of large hyaluronan to low-molecular weight
hyaluronan occurs at sites of inflammation including atheroscle-
rosis, rheumatoid arthritis, and tumorigenesis, and low-molecular
weight hyaluronan promotes inflammation (20). Low-molecular
weight hyaluronan arises by the action of hyaluronidases, and
the upregulation of expression and activity of hyaluronidases
have been noticed in such inflammation conditions (13). Reac-
tive oxygen species accumulate at sites of inflammation, where
low-molecular weight hyaluronan can arise also by oxidative
degradation.

Size
Hyaluronan is a major component of extracellular matrix and
plays important roles in development and tissue remodeling.
Under normal physiological conditions, hyaluronan has a high
average molecular weight (>1× 106) and exhibits immunosup-
pressive effects: high-molecular weight hyaluronan suppresses
septic responses to lipopolysaccharides (21), inhibits lymphocyte-
mediated cytolysis (22), and has anti-angiogenic effects (23).
Under pathological conditions, such as inflammation and cancer,
extracellular matrix remodeling is upregulated. In this situation,
the hyaluronan is more polydispersed, showing a preponderance
of low-molecular weight forms (13). In general, low-molecular
weight hyaluronan is highly immunostimulatory, inflammatory,
and angiogenic.

Table 1 summarizes the biological activities associated with
different sizes of hyaluronan. The terms used in the literature

Frontiers in Immunology | www.frontiersin.org August 2015 | Volume 6 | Article 4202

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Murai Lipid rafts and hyaluronan–CD44 axis

TABLE 1 | Size-dependent biological activities of hyaluronan.

Cell type Hyaluronan sizea Receptor Activity Reference

oHA (1×××103–1×××104)
Human glioblastoma 6, 8, 10, 12-mer, 6.9×103 CD44 Enhance CD44 shedding and cell migration (24)
Human ovarian carcinoma 2.5×103 (4∼20-mer) CD44 Inhibit the RTK–CD44 association (25)
Human peripheral nerve sheath tumor 2.5×103 (4∼20-mer) CD44 Inhibit the BCRP–CD44 association (26)
Human breast carcinoma 2.5×103 (6∼20-mer) CD44 Inhibit lactate influx (27)
Rat glioma 2.5×103 (6∼20-mer) CD44 Suppress growth (28)
Human prostate, colon, and breast carcinoma 2.5×103 (6∼20-mer) CD44 Inhibit the activation of RTKs (29)
Human colon carcinoma 2.5×103 (6∼20-mer) CD44 Inhibit ErbB2 phosphorylation (30)
Human colon, mouse mammary carcinoma 2.5×103 (6∼20-mer) CD44 Suppress PI3K/Akt cell survival pathway (31)

(8×104, 2×106) – No effect (31)
Human breast cancer 2.5×103 (6∼20-mer) CD44 Abrogate CD44 clustering and stimulate ERK (32)
Rat fibroblast 6-mer, 10-mer CD44 Inactivate ERM (33)
Mouse and human glioma 10-mer CD44 Enhance hyaluronan synthesis (34)
Mouse brain capillary EC 12-mer CD44 Induce differentiation (35)
Rat dermal fibroblast 6-mer, 8-mer CD44, RHAMM Stimulate wound repair (36)

(4×104) CD44, RHAMM Inhibit wound closure (36)
Bovine aortic EC 1.4×103–4.5×103 CD44, RHAMM Activate PLCγ1, Src, and ERK (37)
Human dermal microvascular EC 4–6-mer TLR4 Increase chemokine production (38)
Mouse Lewis lung carcinoma 4–6-mer Unknownb Induce MMP expression (39)

(4×106) – No effect (39)
Human dendritic cells 4–14-mer Unknownc Induce production of TNF-α, IL-1β, and IL-12 (40)

(8×104–2×105,
2×105–1×106)

– No effect (40)

sHA (1×××104–1×××105)
Human vascular SMC 2×104–5×105 CD44 Stimulate cell-cycle progression (41)

(4×106) CD44 Inhibit cell-cycle progression (41)
Human cervical cancer 2.3×104 CD44 Enhance chemokinesis (42)

(9.2×105) – No effect (42)
Mouse macrophage cell line 2.5×104–7.5×104 CD44 Facilitate GAS phagocytosis (43)

(8×105–1.2×106) CD44 Limit GAS phagocytosis (43)
Human colon carcinoma 3.5×104 TLR4 Induce HβD2 expression (44, 45)

(4.7×103, 2×106) – No effect (45)
HEK293 transfectant 8×104–1.8×105 HARE Activate NF-κB-mediated gene expression (5)

(<6.6×103, >4.4×105) – No effect (5)
iHA (1×××105–1×××106)
Mouse macrophage cell line 4.7×105 CD44 Induce chemokine production (46)

(6×106) – No effect (46)
Human primary monocyte 5×104–6×105, 2×105 TLR4 Stimulate arachidonic acid release (47)

(4×103, 2.5×106) – No effect (47)

LHA (1×××106–1×××107)
Naked mole rat fibroblast 6×106–1.2×107 CD44 Transformation resistant (6)

(3×103) CD44 Transformation susceptible (6)

BCRP, breast cancer resistance protein/ABCG2; EC, endothelial cells; ERK, extracellular signal-regulated kinase; ERM, ezrin/radixin/moesin; GAS, group A Streptococcus; HARE,
hyaluronic acid receptor for endocytosis; HβD2, human β-defensin 2; IL-12, interleukin-12; IL-1β, interleukin-1β; MMP, matrix metalloproteinase; NF-κB, nuclear factor-κB; PI3K,
phosphoinositide 3-kinase; PLCγ1, phospholipase Cγ1; RHAMM, receptor for hyaluronan-mediated motility; RTK, receptor tyrosine kinase; SMC, smooth muscle cell; TLR4, Toll-like
receptor 4; TNF-α, tumor necrosis factor-α.
aMolecular weight or number of saccharides (mer).
bThe effect of hyaluronan was independent of CD44, RHAMM, and TLR4 (39).
cThe effect of hyaluronan was independent of CD44 and RHAMM (40).

to describe hyaluronan’s sizes are confusing and inconsistent.
Therefore, this article uses the system proposed by Weigel
(5), in which hyaluronan’s sizes are categorized according to
the log of the molecular weight: oligomeric hyaluronan (oHA;
1× 103–1× 104), small hyaluronan (sHA; 1× 104–1× 105), inter-
mediate hyaluronan (iHA; 1× 105–1× 106), and large hyaluro-
nan (LHA; 1× 106–1× 107) (Figure 1B). As shown in Table 1,
low-molecular weight hyaluronans (oHA, sHA, and iHA) gen-
erally exhibit inflammation- and cancer-promoting activities (5,
6, 24–47). The other effects of low-molecular weight hyaluro-
nan on gene expression are well summarized elsewhere (13).
Notably, studies in the naked mole rat (Heterocephalus glaber), an

extraordinarily long-lived rodent with low cancer incidence, show
that while low-molecular weight hyaluronan has pro-malignant or
pro-inflammatory effects, very high-molecularweight hyaluronan
(6× 106–1.2× 107) has an anti-malignant activity (6) (Figure 1B).
Another study shows that oligomeric hyaluronan of 6–40 sac-
charides, which is frequently found in tumor-bearing patients,
enhances cleavage of the hyaluronan receptor CD44 in malignant
tumor cells, and concomitantly upregulates CD44-dependent
tumor cell migration, whereas larger polymers of hyaluronan
fail to enhance CD44 cleavage and migration (24). Collectively,
low-molecular weight hyaluronan tends to function as a “danger
signal” (48).
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Receptors for Hyaluronan
The major cell-surface receptor for hyaluronan is CD44, a widely
distributed type-I transmembrane glycoprotein that is implicated
in a wide variety of biological processes, including cell adhesion
and migration, as well as in inflammation and cancer (49). CD44
mediates the adhesion and dissemination of immune and cancer
cells through its association with hyaluronan (50, 51) (Figure 1C).
In addition to hyaluronan, CD44’s interaction with certain growth
factors also plays important roles in cancer progression (52).
Receptor for hyaluronan-mediated motility (RHAMM)/CD168 is
another major hyaluronan receptor expressed in a variety of cell
types, and it plays important roles in tissue injury and repair and
in tumor cell motility (53). Other hyaluronan receptors include
lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) (54)
and hyaluronan receptor for endocytosis (HARE)/stabilin-2 (55).
LYVE-1 is mainly restricted to the endothelium of lymph nodes
and lymphatic vessels, while HARE is expressed in sinusoidal
endothelial cells of the liver, spleen, and lymph nodes, and it
mediates the systemic clearance of hyaluronan from the vascular
and lymphatic circulatory systems.

Lipid Rafts

Lipid Raft Structure
The plasmamembrane is a dynamicmixture of proteins and lipids
that forms the boundary and interface between the intracellular
space and the cellular environment. The traditional model of
cellular membrane structure was the fluid mosaic model pro-
posed by Singer and Nicolson, in which globular proteins float
in a lipid bilayer with an amphipathic structure (56). Later, non-
homogenously distributed assemblies of lipids were found in
the plasma membrane of many cell types, and the model was
improved by Simons and van Meer, who suggested the existence
of small domains called lipid rafts (57). In the understanding
of the lipid raft model, cholesterol- and sphingolipid-enriched
microdomains of the plasma membrane assumed a biophysi-
cal state resembling a liquid-ordered (Lo) phase floating within
a liquid-disordered (Ld) membrane phase (58). In that model,
the representative proteins with raft affinity were GPI-anchored
proteins. The finding that GPI-anchored proteins were isolated
in a low-density detergent resistant membrane (DRM) fractions
contributed to the expectation of their residence in lipid rafts (59).

Since then, accumulating evidence has improved the under-
standing of lipid rafts, also called membrane rafts, and rafts are
currently viewed as fluctuating nanoscale assemblies enriched in
sphingolipid, cholesterol, and proteins that can be stabilized to
coalesce, forming platforms that function in membrane signaling
and trafficking (60).

Lipid Raft Function
Themost important properties of lipid rafts are that they are small,
dynamic, and heterogeneous, and can selectively recruit certain
classes of proteins (61, 62). However, the underlying mechanism
for the formation and functionality of lipid rafts has been largely
unclear. Using single-molecule fluorescence tracking, Kusumi and
colleagues recently found that GPI-anchored proteins formed
dynamic, transient homodimer rafts in the plasmamembrane, in a

manner dependent on the interactions between their ectodomain
protein portions (63). The homodimer formation seems to be
the basic units for the organization and functions of membrane
raft domains containing GPI-anchored proteins. Schütz and col-
leagues observed the relation between the physical state of the
membrane domains and the partition of GPI-anchored proteins,
and showed that GPI-anchored proteins do not reside in ordered
domains (64). This report suggests that the phase partitioning is
not a fundamental element of GPI-anchored protein organization
in the plasma membrane, and also suggests the heterogeneity in
the structure and function of membrane rafts.

Proteins with raft affinity include doubly acylated proteins
such as Src family kinases, palmitoylated type-I transmembrane
proteins, such as CD44 (65, 66), and receptor tyrosine kinases with
two transmembrane subunits, such as inslulin receptor (67) and
EGF receptor (68). Lipid rafts are implicated in many physiolog-
ical cellular processes, such as protein membrane trafficking and
signal transduction (62, 69). Cholesterol depletion is often used as
a method for investigating the role of lipid rafts in vitro, although
these studies are limited by non-specific effects. Nevertheless,
these studies indicate that cholesterol is a crucial component
of cell membranes that contributes to the organization of lipid
rafts, and particularly to lipid rafts that contain large numbers of
cancer-related signaling and adhesion molecules.

Hyaluronan–CD44 Interaction and
Lipid Rafts in Cancer

The dynamics of extracellular matrix production, degradation,
and remodeling are carefully regulated during organ development;
the dysregulation of extracellular matrix turnover and mainte-
nance leads to abnormal cell behaviors and to failure of organ
homeostasis and function, one of the most severe clinical out-
comes in cancer (70). Altered cell adhesion and enhanced cell
migration are the most prominent features of malignant tumor
cells (71). The migratory properties of invasive tumor cells are
affected by the interaction of their adhesion molecules with the
surrounding extracellular matrix, and by growth factor signaling
(72). The proteolytic cleavage and release (shedding) ofmembrane
proteins’ ectodomain is a critical regulatory step in both physio-
logical andpathological processes (73, 74). It was recently reported
that oligomeric hyaluronan induce CD44 shedding from tumor
cells (24).

Ectopic hyaluronan production is a frequent feature of colorec-
tal, gastric, and breast cancers (75–77). Under normal physio-
logical conditions, hyaluronan exists as a long polymer with a
molecular weight of around 1× 105–1× 107 (1), whereas low-
molecular weight hyaluronan is frequently detected in certain
pathological conditions, such as inflammation (78) and cancer
(79, 80), possibly due to the dysregulated expression of HASs
and hyaluronidases. Hyaluronidase expression in prostate cancer
tissues increased with tumor grade and metastasis, suggesting
that prostate tumor cell-derived hyaluronidase might help the
accumulation of low-molecular weight hyaluronan (80).

A prominent abnormality of certain malignant tumor cells,
e.g., gliomas, is overexpression of the EGF receptor, and
EGF induces CD44 shedding, that concomitantly enhance
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hyaluronan-mediated cell migration (81). PDGF and bradykinin
also induce CD44 shedding, indicating that the Rho family of
small GTPases plays crucial roles in the regulation of CD44
cleavage (81). TGF-β induces CD44 shedding in breast cancer
cells (82), and this cleavage is MT1-MMP-dependent as previ-
ously described (83, 84). Granulocyte-colony stimulating factor
(G-CSF) stimulates the MT1-MMP-mediated CD44 proteolysis
in hematopoietic progenitor cells (85). Although the molecular
mechanisms of the intracellular signaling in the tumormicroenvi-
ronment that lead to CD44 shedding have been partially clarified
(81, 86), the mechanism that triggers CD44’s shedding at the
membrane is not understood.

There is growing interest in targeting lipid rafts for cancer
prevention and treatment, because of their role in regulating
various steps of cancer progression, including cancer cell migra-
tion and invasion (87), and because cancer-related proteins were
listed in an unbiased proteomics analysis of these structures (88).
Cell adhesion is a key factor in the metastatic spread of cancer
cells, and regulating this process holds promise as an important
therapeutic intervention for cancer. CD44 is the principal cell
adhesion receptor expressed in cancer cells and implicated in can-
cer cell migration, invasion, and metastasis (89). Several reports
recently demonstrated that CD44 is present in lipid rafts (90–100)
(Table 2), and the role of lipid rafts in cancer cell adhesion and
migration is being elucidated.

Lipid rafts play a pivotal role in CD44’s localization and func-
tion (97). Cholesterol depletion form human glioma cells using
methyl-β-cyclodextrin (MβCD), an agent frequently used to dis-
rupt lipid rafts, results in increased CD44 shedding, which was
mediated by a transmembrane protease a disintegrin and met-
alloproteinase 10 (ADAM10). The CD44 shedding induced by
cholesterol depletion is also seen in other tumor cells, such as
pancreatic cancer cells. CD44 shedding can also be induced by
a polyene macrolide antibiotic filipin that binds cholesterol and
disperses it in the membrane, thereby disrupting lipid rafts by
a different mechanism from MβCD. The cholesterol-lowering
medication simvastatin also enhances CD44 shedding; it also
blocks the stimulation of glioma cell migration by oligomeric
hyaluronan or EGF. Taken together, these results suggest that

TABLE 2 | Hyaluronan-related proteins associated with lipid rafts.

Protein Cell type Function in lipid rafts Reference

CD44 Mammary adenocarcinoma NHE1 activation (93)
Mammary adenocarcinoma EGFR signaling (94)
Mammary adenocarcinoma Cell migration (95)
Colon adenocarcinoma Src-integrin signaling (96)
Glioblastoma Cell migration (97)
Lung adenocarcinoma Lamellipodia formation (98)
Lymphoma Cell adhesion (99)
Myofibroblast EGFR signaling (100)

Hyal-2 Mammary adenocarcinoma ECM degradation (93)
Mammary adenocarcinoma N/A (101)

HAS3 Mammary adenocarcinoma Cell-surface protrusion (102)

TLR4 Monocytic cell line Cellular activation (103)

ECM, extracellular matrix; EGFR, epidermal growth factor receptor; HAS3, hyaluronan
synthase 3; Hyal-2, hyaluronidase-2; NHE-1, Na+-H+ exchanger 1; TLR4, toll-like
receptor 4.

cholesterol-lowering causes disordered CD44 localization, raft-
dependent CD44 shedding, and the suppression of tumor cell
migration that is dependent on hyaluronan’s size. CD44’s affili-
ation with lipid rafts is likely to occur through its palmitoylation,
which may play a role in breast cancer malignancy (95).

In addition toCD44, several hyaluronan-related proteins, Hyal-
2, HAS3, and toll-like receptor 4 (TLR4), have been reported
to be associated with lipid rafts in cell membranes (93, 101–
103) (Table 2). These membrane proteins are also likely to be
involved in the regulation of lipid raft-associated interactions
between hyaluronan and CD44. In addition, CD147 was found
to regulate the lipid raft-associated CD44 function in cancer cell
invasion (94, 104).

Potential Roles of Hyaluronan–CD44
Interactions in Inflammation

The recruitment of lymphocytes from circulating blood to inflam-
matory sites or secondary lymphoid organs involves comple-
mentary receptor–ligand interactions between the lymphocytes
and vascular endothelial cells. A multistep series of sequential
receptor engagements enables the lymphocytes’ recognition of the
endothelial surface and their subsequent extravasation (105). This
process begins with the establishment of transient adhesive inter-
actions that result in the rolling of lymphocytes along the endothe-
lium under blood flow, and rolling is mediated by interactions
betweenCD44 and hyaluronan (106, 107). TheCD44–hyaluronan
interaction is required for the extravasation of activated T cells
from circulating blood to inflammatory sites (108). There is also
evidence that the hyaluronan-binding ability of CD44 is corre-
lated with the suppressor activity of CD4+CD25+ regulatory
T cells (109).

CD44 does not bind hyaluronan constitutively inmost immune
cells, although CD44 is the principal receptor for hyaluronan in
immune cells (89). Considering the ubiquitous distribution of
CD44 and hyaluronan, tight regulation of the hyaluronan-binding
ability of CD44 is likely to play a critical role in immunological
responses: CD44 on resting T cells does not bind hyaluronan, but
can be induced to bind it when the T cell is activated by antigen via
the T-cell receptor (108–112). Various post-translational modifi-
cations on CD44, including glycosylation (113–115), chondroitin
sulfate addition (116, 117), and sulfation (118, 119), are reported
to affect its hyaluronan-binding ability. However, the membrane-
based regulation of CD44’s hyaluronan-binding ability has not
been clarified. A recent study demonstrated that the hyaluronan-
binding ability of CD44 in T cells is upregulated by membrane
cholesterol depletion, which causes CD44 to be dispersed from
lipid rafts, although the effect is small (120). Cholesterol depletion
also enhances the frequency of rolling adhesion under physiolog-
ical flow conditions, suggesting that the CD44’s ligand-binding
ability is governed by its cholesterol-dependent localization to
lipid rafts.

Perspectives

Epidermal growth factor receptor is one of the first reported
growth factor receptors that exhibit raft affinity, and EGF induced
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the coalescence of EGF receptor-containing rafts with different
type of lipid rafts that contain GPI-anchored proteins (68). This
coalescence of different types of nanoscale assemblies possibly
leads to the formation of functional platforms for transmem-
brane signaling and the initiation of the internalization of EGF
receptors. In the case of hyaluronan receptor CD44, the func-
tion of hyaluronan in the regulation of lipid rafts may be in a
similar way as proposed for EGF. As oligomeric hyaluronan can
displace large hyaluronan from cells (4), it may modulate the
raft coalescence that leads to form signaling platforms toward
inflammation and cancer progression. Competitive binding assay
showed that the minimum length of hyaluronan that can compete
large hyaluronan binding to CD44 is 6-mer, and the nuclear
magnetic resonance spectroscopy confirmed that 6-mer is the
shortest oligomeric hyaluronan to give essentially full perturba-
tion of CD44’s spectra (121). The structure of CD44’s hyaluronan-
binding domain (HABD) solved byX-ray crystallography revealed
that CD44 forms two different conformations upon binding to
hyaluronan (122). To understand the molecular mechanism and
associated energetics underlying the hyaluronan–CD44 bind-
ing interaction, Guvench group performed extensive all-atom
explicit-solventmolecular dynamics (MD) simulations employing
the adaptive biasing force free-energy methodology (123). They
determined a clear description for the conformation-dependent
affinity switching of the hyaluronan–CD44 interactions by MD
simulation. These results should help the development of novel

small compounds to therapeutics in inflammation and cancer by
modulating hyaluronan–CD44 interactions, which may regulate
the functionality of lipid rafts.

There has been growing interest in lipid rafts, and the
lipid raft is a potential novel target in inflammation and can-
cer therapy (66, 124). Targeting hyaluronan–CD44 axis is one
of the principal ways, and the lipid raft-targeted delivery of
hyaluronan-grafted liposomes could have important applications
in cancer therapy (125, 126). The modulation of CD44’s partition
to lipid rafts may also offer potential avenues in inflammation
and cancer therapy. Thus, the regulation and manipulation of
hyaluronan–CD44 interactions through lipid rafts have potential
applications for the prevention of inflammatory disorders and
cancer.
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