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Our body handles tissue damage by activating the immune system in response to intracellular 
molecules released by injured tissues [damage-associated molecular patterns (DAMPs)], in 
a similar way as it detects molecular motifs conserved in pathogens (pathogen-associated 
molecular patterns). DAMPs are molecules that have a physiological role inside the cell, 
but acquire additional functions when they are exposed to the extracellular environment: 
they alert the body about danger, stimulate an inflammatory response, and finally promote 
the regeneration process. Beside their passive release by dead cells, some DAMPs can 
be secreted or exposed by living cells undergoing a life-threatening stress. DAMPs have 
been linked to inflammation and related disorders: hence, inhibition of DAMP-mediated 
inflammatory responses is a promising strategy to improve the clinical management of 
infection- and injury-elicited inflammatory diseases. However, it is important to consider that 
DAMPs are not only danger signals but also central players in tissue repair. Indeed, some 
DAMPs have been studied for their role in tissue healing after sterile or infection-associated 
inflammation. This review is focused on two exemplary DAMPs, HMGB1 and adenosine 
triphosphate, and their contribution to both inflammation and tissue repair.
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introduction

Our body evolved mechanisms to detect pathogens through the recognition of conserved molecular 
motifs, called pathogen-associated molecular patterns (PAMPs). The binding of these molecules 
to pattern recognition receptors (PRR), such as Toll-like receptors (TLR), triggers the response of 
the immune system against the intruder (1). However, this “Stranger Theory” could not explain 
why strong immune responses are elicited in sterile conditions such as ischemic injuries, trauma, 
tumors, tissue transplants, and autoimmune diseases. By symmetry to the PAMP concept, Polly 
Matzinger proposed the “Danger Theory” in which the injured tissues were postulated to release 
intracellular molecules [damage-associated molecular patterns (DAMPs)] that activate the immune 
system (2). This concept has roots in a clinical trial on kidney transplantation, in which the oxygen 
free radical scavenger superoxide dismutase was exploited to avoid reperfusion injury (3). However, 
for many years the “Danger Theory” remained a theoretical model, until High Mobility Group Box 
1 (HMGB1) and uric acid crystals were recognized as DAMPs (4, 5). Since then, many more DAMPs 
were identified and their roles in health and disease are now partially understood (Table 1).

Damage-associated molecular patterns are molecules that have a physiological “day-time job” inside 
the cell, and have the additional job of signaling cell damage when they are outside the cell. Location, 
inside vs. outside the cells, is critical: DAMPs are invisible to the immune system when performing 
their day-time job, and become visible only when exposed to the extracellular environment.

Timing is also important. Initially, DAMPs were expected to attest cell death, and therefore 
to be released passively from dead cells. Indeed, HMGB1 was identified as a DAMP because it is 
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passively released by necrotic cells, which undergo an untimely 
death, but not by apoptotic cells, which eliminate themselves in an 
elaborately programed way (4). However, an important addition 
to the DAMP concept is that DAMPs do not necessarily originate 
from dead cells: DAMPs can be secreted or exposed by living cells 
undergoing a life-threatening stress. Indeed, alerting the immune 
system as soon as possible can bring advantages. HMGB1 can 
be secreted by stressed cells via a private secretion pathway, not 
involving the endoplasmic reticulum (12, 13). Adenosine triphos-
phate (ATP) can be actively released via vesicles and connexin or 
pannexin hemichannels (14). Other DAMPs, such as calreticulin 
and heat shock protein 90 (HSP90), are exposed de novo or become 
enriched on the outer leaflet of the plasma membrane (15).

It is now time to recognize another essential feature of 
DAMPs: they are essential for tissue healing after inflammation, 
both sterile and infection-associated. This review will focus on 
two exemplary DAMPs, HMGB1 and ATP, and their contribution 
to both inflammation and tissue repair.

HMGB1 and ATP as exemplary DAMPs

HMGB1, a Redox-Sensitive DAMP
HMGB1 is a mobile chromatin protein that acts as a DNA chap-
erone, by binding DNA transiently and bending it reversibly. As a 
DNA chaperone, it facilitates nucleosome formation, contributes 
to the binding of proteins, including transcription factors that 

TABLe 1 | List of putative DAMPs and role in inflammation and tissue repair.

DAMPs Receptors Release Role in inflammation/immunity Role in tissue repair Reference

Nucleus Histones TLR2, TLR4 and 
TLR9

P, S and A TLR- and inflammasome-dependent 
inflammatory response

N.D. (6)

Genomic 
DNA

TLR9 P TLR9- and NALP3-mediated innate immune 
response, DC maturation

N.D. (6)

HMGB1 TLR2, TLR4, 
RAGE and TIM3

P and A Recruitment/activation of immune cells Migration/proliferation of stem cells, 
pro-angiogenic mediator.

(7)

IL1a IL-1R P Strong pro-inflammatory activity Protective during early phase of 
inflammation

(7)

IL33 ST2 P Secretion of pro-inflammatory and Th2 
cytokines

Epithelial cells proliferation and mucus 
production in the gut

(8)

Cytosol ATP P2Y2 and P2X7 P and A Macrophages recruitment, IL-1β production 
by DC, antitumor immunity

Migration/proliferation of epithelial and 
endothelial cells, pro-angiogenic role

(9)

F-actin DNGR1 P Contribution in recognition of necrotic cells 
by DC

N.D. (10)

Cyclophilin A CD147 A Inflammatory cells recruitment, inflammatory 
mediators release

N.D. (10)

HSPs CD91, TLR2, 
TLR4, SREC1  
and FEEL1

P, S and A Recruitment of immune cells DC maturation, 
T cell-based antitumor immunity

Wound debris clearance, cell 
migration/proliferation and collagen 
synthesis in skin

(7)

Uric acid 
crystals

NLRP3 P DC maturation and neutrophil recruitment N.D. (7)

S100s TLR2, TLR4, 
RAGE

P Potent immunostimulatory activity,  
monocytes and neutrophils recruitment

Myoblast proliferation/differentiation (7)

Mitochondria Mitochondrial 
DNA

TLR9 P Macrophages and neutrophils activation N.D. (11)

Mitochondrial 
trascription 
factor A

RAGE and TLR9 P DC activation, type I interferon release N.D. (11)

ER Calreticulin CD91 P and S Potent “eat me” signal, mediator of tumor 
immunogenicity

Cell migration/proliferation, 
extracellular matrix production

(10)

P, passive release; A, active secretion; S, surface exposure; ER, endoplasmic reticulum; N.D. not described.

distort DNA upon binding, and participates in transcription, 
replication, and DNA repair (16). HMGB1 is constitutively 
expressed in almost all cell types, and to act as a DAMP it must 
relocate into the external environment: it is passively released 
following traumatic cell death (but not apoptosis) and is secreted 
during severe stress (4, 17).

HMGB1 secretion is not completely understood. Drawing a 
comparison with another leaderless protein, IL-1β, a “two-step 
model” for HMGB1 secretion was proposed, which involves a 
first trigger to induce HMGB1 acetylation and cytoplasmic trans-
location and a second trigger to elicit its extracellular transport 
(18) Indeed, secreted HMGB1 (as opposed to HMGB1 passively 
released by dead cells) is hyperacetylated (19). In accordance 
with the two-step model, Lu et al. (20) have demonstrated that 
the inflammasome, in particular NLRP3, is involved in the 
release of HMGB1. Inflammasomes are large caspase-1-activat-
ing complexes, composed by the assembly of proteins that are 
ultimately activated by both PAMPs and DAMPs (21). There are 
multiple inflammasome complexes, and among them the one 
containing NLRP3 (also known as NALP3 and cryopyrin) is the 
most studied. Since the synthesis of NLRP3 is triggered by TLR 
signaling, it has recently been proposed that HMGB1 itself could 
“prime” the inflammasome through its binding to TLR2/TLR4 
(22). Indeed, the role of HMGB1 in inflammasome activation 
has been demonstrated in a model of heatstroke-induced liver 
injury (23).
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Once in the extracellular milieu, HMGB1 signals danger to the 
surrounding cells, triggers inflammation, and activates innate and 
adaptive immunity by interacting with multiple receptors (24).

The first receptor described for HMGB1 is the receptor for 
advanced glycation endproducts (RAGE), a multifunctional 
transmembrane protein of the immunoglobulin superfamily 
(25). Under physiological conditions, RAGE is expressed at low 
levels in the majority of tissues and, interestingly, at high levels 
in the lung. In pathophysiological conditions such as chronic 
inflammation, RAGE expression is considerably increased in 
different tissues, in particular activated endothelium and leuko-
cytes (26). HMGB1 signaling through RAGE leads to activation 
of the nuclear factor-κB (NF-κB) pathway, as well as to signal 
transduction through JNK, and p38 (27). In addition, HMGB1/
RAGE interactions lead to the activation of the ERK MAP kinase 
pathway, which is important in cell migration, tumor proliferation 
and invasion, and expression of matrix metalloproteinases. The 
HMGB1/RAGE axis is mainly involved in the recruitment and 
migration of cells, directly by inducing expression of adhesion 
molecules, such as VCAM-1 and ICAM-1 (28), or indirectly by 
inducing secretion of chemokines, in particular CXCL12, which 
in turn forms a heterocomplex with HMGB1 (29).

HMGB1 also binds to TLRs. In complex with CpG-ODNs, 
HMGB1 binds to TLR9 and enhances cytokine production in 
plasmacytoid dendritic cells (DCs) (30). When HMGB1 is bound 
to nucleosomes, it activates macrophages and DCs through TLR2 
(31). However, most studies focused on the HMGB1/TLR4 axis. 
TLR4 mediates cell responses to lipopolysaccharide (LPS), but 
responds to several DAMPs as well. The contribution of the 
HMGB1/TLR4 axis to inflammation and immune regulation has 
been demonstrated in a wide range of experimental models, such 
as liver and lung damage, cancer, and epilepsy (32–35). Recently, 
a large body of evidence demonstrated that the redox state of 
cysteines modulates the binding of HMGB1 to its receptors, and 
consequently its activities.

HMGB1 contains three cysteines: C23 and C45 can form a 
disulfide bond, and C106 is unpaired. These cysteines are modi-
fied by redox reactions, giving rise to three isoforms named “fully 
reduced HMGB1” for the all-thiol form, “disulfide HMGB1” 
for the partially oxidized one, and “sulfonyl HMGB1” for the 
terminally oxidized form (36). Fully reduced HMGB1 forms 
a heterocomplex with the chemokine CXCL12, which binds 
with increased affinity to its CXCR4 receptor (29). Conversely, 
the extracellular TLR4 adaptor myeloid differentiation factor 2 
(MD-2) binds specifically to disulfide HMGB1, and not to the 
other redox forms, triggering the expression of chemokines and 
cytokines (37). Notably, interaction with MD-2 also requires 
the third cysteine, in the fully reduced form. Thus, the disulfide 
bond between C23 and C45 makes HMGB1 a proinflammatory 
cytokine, whereas further cysteine oxidation to sulfonates abro-
gates both the chemoattractant and proinflammatory activities 
of HMGB1 (38). Several studies demonstrated a correlation 
between the presence of the disulfide HMGB1 and the onset 
of pathologies such as brain injury, liver damage, myositis, and 
juvenile idiopathic arthritis (19, 39–41). Moreover, disulfide 
HMGB1, and not the reduced form, contributes to nociceptive 
signal transmission via activation of TLR4 (42) (Figure 1).

The HMGB1 inside the cell (nucleus or cytosol) is completely 
reduced, and early prevalence of fully reduced HMGB1 and subse-
quenct appearance of disulfide HMGB1 were observed in models 
of brain, muscle, or liver injuries and in patients with Juvenile 
Idiopathic Arthritis (19, 39, 41). Supernatants from LPS-activated 
THP-1 monocytic cells contain both fully reduced and disulfide 
HMGB1 (38), suggesting that activated monocytes/macrophages 
contribute to inflammation by producing disulfide HMGB1. 
Tandem mass-spectrometric analysis showed that systemic levels 
of the disulfide HMGB1 isoform dramatically increased during 
early Macrophages Activation Syndrome (43). Similarly, a study 
revealed that cells undergoing unprimed pyroptosis release a 
reduced HMGB1 redox isoform, whereas priming with TLRs 
ligands results in the conversion to disulfide HMGB1 (44).

In conclusion, it is now essential to identify the redox state of 
HMGB1 in each specific condition and locale in vivo.

ATP, a Time-Resolved DAMP
Nucleotides as well, particularly ATP, have both intra- and 
extracellular roles. They are well known for their function as a 
universal energy source in cell reactions and metabolism. The 
multiple functions of extracellular ATP have been known since 
the late 1940s, when its vasoactive property and its release in 
shock were discovered [reviewed by Gordon (45)]. Later, ATP 
was found to be released at nerve terminals, affecting smooth 
muscle tone. Moreover, ATP and adenosine are involved in the 
mechanisms underlying local control of vessel tone, while ADP 
induces platelet aggregation and is released, together with ATP, 
from platelet granules (45). Several cell types release ATP during 
inflammatory, ischemic, and hypoxic conditions. ATP release 
can occur in a passive fashion, for example during necrosis, 
but many molecular pathways have been described for active 
release, as ATP-containing lysosome exocytosis from astrocytes, 
pannexin-mediated ATP release during apoptosis, and connexin- 
or pannexin-mediated ATP release from inflammatory cells, such 
as neutrophils (46). Moreover, it has been recently demonstrated 
that ATP can also be secreted by dying cancer cells through the 
classical endoplasmic reticulum/Golgi secretory pathway (47).

In the extracellular compartment, nucleotide signaling is 
intrinsically short-lived. Signaling is terminated in the time-
scale from seconds to minutes by the enzymatic conversion of 
ATP to adenosine through the ecto-nucleoside triphosphate 
diphosphohydrolase CD39 (from ATP/ADP to AMP) and the 
ecto-5′-nucleotidase CD73 (from AMP to adenosine) (48). ATP 
acts as a signaling molecule through the activation of purinergic 
P2 receptors (9). These receptors have a widespread expression 
throughout different tissues and are involved in innate and 
adaptive immune responses (46, 48). P2 receptors can be further 
subdivided into metabotropic P2Y receptors (P2YRs), which 
are G-protein-coupled, and ionotropic P2X receptors (P2XRs), 
which are nucleotide-gated ion channels.

P2YR signaling has been linked with chronic inflammation, 
and one of the most studied receptor of this class is P2Y2R, 
which is activated by UTP or ATP. P2Y2R agonists promote 
mucociliary clearance and wound healing [reviewed by Idzko 
et al. (9)]. For these reasons, P2YR agonists were exploited for 
the treatment of cystic fibrosis (49). Apoptotic cells release ATP 
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as a “find-me” signal that binds P2Y2R on macrophages, stimulat-
ing their phagocytic activity and the clearance of apoptotic cells 
(50). During pneumonia, neutrophil-dependent ATP release and 
autocrine activation of P2Y2R contribute to purinergic chemot-
axis, thereby enhancing bacterial clearance (51). However, ATP-
elicited P2Y2R signaling can lead to uncontrolled inflammation 
and chronic inflammatory diseases. On alveolar epithelial cells or 
eosinophils, P2Y2R signaling causes production of pro-allergic 
mediators (for example, IL-33, IL-8, eosinophil cationic protein) 
during allergic airway disease (52). Similarly, P2Y2R signaling 
on DC has a role during the induction and self-perpetuation of 
asthma (53). In general, P2Y2R antagonists can evolve into useful 
drugs for chronic inflammatory diseases.

P2XR channels are opened by the binding of ATP, allowing 
sodium and calcium influx and potassium efflux. The increased 
level of intracellular calcium activates p38 MAPK or phospholipase 
A2 signaling, while potassium efflux activates the inflammasome 
(9). Then, P2XR channels gradually dilate into pores permeable 
to larger organic cations and small hydrophilic molecules with a 
molecular mass below 900 dalton (including ATP) (54). Among 
P2XRs, P2X7R is predominantly expressed on immune cells such 
as mast cells, macrophages, microglia, and DCs, and its signaling 
has been linked to inflammatory and infectious disorders (46). 

FiGURe 1 | HMGB1 is a redox-sensitive DAMP. In the nucleus, fully 
reduced HMGB1 acts as a DNA chaperone and contributes to gene 
transcription and DNA repair. Upon injury or stress, HMGB1 is passively 
released by dead cells or actively secreted by stressed cells. The fully reduced 
HMGB1 binds to CXCL12 chemokine to form a heterocomplex, which in turn 
binds to CXCR4 and induces cell migration. In addition, HMGB1 interacts with 

RAGE to induce CXCL12 secretion and autophagy. In the extracellular 
compartment, disulfide HMGB1 derives from the active secretion and/or the 
conversion of fully reduced HMGB1 by oxidation. Disulfide HMGB1 binds to 
TLR4/MD-2 complex and induces cytokine/chemokine release. Finally, HMGB1 
cysteines are terminally oxidized to sulfonates; sulfonyl-HMGB1 is neither 
chemoattractant nor has cytokine-inducing activity.

P2X7R is required for appropriate inflammatory defense mecha-
nism against invading pathogens and cancer cells. For instance, 
it is important during intracellular killing of Mycobacterium 
tuberculosis by macrophages (55). Dying tumor cells release ATP 
that activates P2X7R on DCs, which in turn promote the prim-
ing of IFN-γ-producing cytotoxic CD8+ T cells that kill cancer 
cells (56). On the other hand, P2X7R signaling contributes to the 
induction and maintenance of chronic inflammation. Indeed, 
P2X7R signaling on DCs is involved in the sensitization phase of 
allergic disorders such as contact hypersensitivity (through CD81 
T-cell priming) (57) and asthma (through CD41 T-cells, TH2 
response) (58), and contributes to transplant rejection (through 
CD41 T cells, TH1 response) (59). Furthermore, P2X7R signaling 
on enteric neurons or mast cells has been implicated in promot-
ing intestinal inflammation during inflammatory bowel disease 
(60) (Figure 2).

As already mentioned, the binding of extracellular ATP to 
P2X7R elicits NLRP3 activation (21). The contribution of the 
ATP/P2X7 receptor axis to inflammasome activation in patho-
genic conditions has been shown in a bleomycin model of pulmo-
nary inflammation in mice. This leads to IL-1β maturation and 
secretion, causing lung inflammation that evolves to fibrosis (61). 
Moreover, P2X7R upregulation in atherosclerotic lesions in mice 
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modulates NLRP3 inflammasome activation, and is involved in 
the progression and development of atherosclerosis (62).

As we reviewed in this chapter, DAMPs, in particular HMGB1 
and ATP, have been linked to inflammation and related disorders. 
Hence, inhibition of DAMP-mediated inflammatory responses 
might appear as a promising strategy to improve the clinical 
management of infection- and injury-elicited inflammatory 
diseases. However, it is important to keep in mind that these 
sophisticated molecules are danger signals important not only 
for the inflammatory response but also for tissue repair. Here, 
we review the latest findings on the regenerative properties of 
HMGB1 and ATP.

HMGB1 and ATP in Tissue Repair

The functions of DAMPs consist in alerting the body about danger, 
stimulating the immune system in order to initiate the immune 
response, and finally promoting the regeneration process. This 
last property of DAMPs has been particularly investigated for two 
members of the family: HMGB1 and ATP (Figure 3).

HMGB1, a Chemotactic and Proangiogenic 
DAMP
HMGB1 plays an important role in promoting tissue regeneration 
after acute inflammation. Locally released HMGB1 recruits bone-
marrow derived mesenchymal stem cells (MSCs), and promotes 
the proliferation and differentiation of tissue-associated resident 
stem cells, such as dental pulp stem cells, mesoangioblasts, and 
MSCs (63). Adult MSCs have attracted intense interest because 
they can be isolated from the bone marrow and can be expanded 
in culture while maintaining their multipotency, and thus may 
be used for the repair of bone, cartilage, muscle, bone marrow 
stroma, tendon, fat, and other connective tissues. HMGB1 
induces migration of MSC (64–66) and their differentiation 
into osteoblasts (64). Moreover, intravenous administration 
of HMGB1 in mice induces MSC accumulation in skin grafts, 
promoting inflammatory suppression in the grafts, and subse-
quent tissue regeneration (67). However, a recent study showed 
that HMGB1 induces migration of monocytes but not of MSCs 
(68). Further experiments are necessary in order to understand 
these discrepancies, in particular, the culture conditions that 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FiGURe 3 | HMGB1 and ATP in tissue repair. Following tissue injury, 
HMGB1 and ATP are passively released by dead cells or actively secreted by 
stressed cells. Then, they recruit to the site of damage the cell types 
required to heal the wound. First, immune cells are needed to clean the 

wound by engulfing dead cells and cellular debris. Then, stem cells and 
neighboring cells are induced to proliferate and build new tissue, together 
with its extracellular matrix. Endothelial cells are activated to form new 
blood vessels.

August 2015 | Volume 6 | Article 4226

Vénéreau et al. DAMPs from death to new life

Frontiers in Immunology | www.frontiersin.org

could modulate the redox state of HMGB1 and consequently its 
chemotactic activity.

Tissue repair requires angiogenesis, and numerous studies 
have identified HMGB1 as a proangiogenic factor [recently 
reviewed by Yang et al. (69)]. Briefly, HMGB1 plays an impor-
tant role in neovascularization of ischemic areas by recruiting 
endothelial progenitor cells through activation of integrins and 
inducing the migration and sprouting of endothelial cells in a 
RAGE-dependent manner (70, 71). In addition, HMGB1 stimu-
lates endothelial cells and macrophages to release proangiogenic 
cytokines, such as VEGF, TNF-α, and IL-8 (72). HMGB1 secreted 
by leukocytes is important for the skeletal muscle to react to 
hypoxia and to initiate angiogenesis in response to injury (73).

The regenerative properties of HMGB1 have been studied 
in different models of tissue injury, including spinal cord, skin, 
muscle, and heart. In a model of spinal cord injury in zebrafish, 
the authors observed that HMGB1 expression increases after 

injury in both motoneurons and endothelial cells. Moreover, 
inhibition of HMGB1 decreases locomotor recovery and axonal 
formation (74). In a model of spontaneous spinal cord regenera-
tion in the gecko, HMGB1 does not mediate the inflammatory 
response but promotes regeneration. Here, HMGB1 induces 
migration of oligodendrocytes by interacting with RAGE, but 
not TLRs (75).

In skin, HMGB1 was identified as a chemoattractant for 
bone marrow-derived epithelial progenitors, which contribute 
to epithelial regeneration (67). A well-known consequence of 
diabetes is impaired skin wound repair, and topical treatment 
with recombinant fully reduced HMGB1 accelerated wound 
healing in diabetic mice (76). Accordingly, HMGB1 levels are low 
in diabetic human and mouse skin, and inhibition of endogenous 
HMGB1 impaired wound healing in non-diabetic mice but had 
no effect in diabetic mice. Conversely, HMGB1 also plays a role in 
scar formation in fetal skin (77). Interestingly, the authors used a 
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recombinant HMGB1 described to induce TNF release, suggest-
ing that it corresponds to the disulfide form.

In a mouse model of acute myocardial infarction, overexpres-
sion of HMGB1 in cardiac cells or local administration of HMGB1 
induced myocardial regeneration, restored cardiac function, 
and improved survival (78, 79). These effects were due to pro-
liferation and differentiation of cardiac stem cells and induction 
of angiogenesis. Moreover, HMGB1 stimulates primary cardiac 
fibroblasts to exert a paracrine action on cardiac stem cells (80), 
and intramyocardial injection of HMGB1 improved global 
cardiac function by reducing fibrosis and cardiomyocyte hyper-
trophy (81). HMGB1 activates a number of genes involved in 
cardiac protection and regeneration, and Notch1 signaling plays 
a key role in HMGB1 ability to activate cardiac stem cells (82). 
Interestingly, beneficial effects of HMGB1 were also observed in 
models of heart failure (81–83). Conversely, HMGB1 blockade 
caused an expansion of the infarct scar and marked hypertrophy 
of the non-infarcted area (84).

Finally, HMGB1 is important in skeletal muscle regeneration. 
The presence of only half of the normal amount of HMGB1 results 
in defective myogenesis both during development and after acute 
injury (85). In particular, the absence of HMGB1 in leukocytes 
results in defective angiogenesis and a delay in muscle regeneration 
(73). HMGB1 levels are increased in regenerating skeletal muscle 
after ischemia/reperfusion, and intramuscular administration of 
HMGB1 enhances both vascularization and myofiber formation 
(86). Besides angiogenesis, HMGB1 also promotes myogenesis by 
stimulating migration and proliferation of mesoangioblasts and 
migration of skeletal myoblasts and smooth muscle cells, and by 
accelerating myogenic differentiation (86–89).

In conclusion, HMGB1 released by injured tissues promotes 
tissue repair by inducing migration and proliferation of stem 
cells, and by promoting angiogenesis. However, several studies 
have demonstrated the beneficial effect of blocking HMGB1 in 
animal models of spinal cord, liver, brain, and myocardial dam-
age after ischemia/reperfusion injury (24). Indeed, HMGB1 also 
activates fibroblasts and astrocytes, which might induce fibrosis 
as a program of tissue consolidation if successful regeneration 
is not achieved. The discrepancy between these results might be 
due to the fact that the redox state of HMGB1 has not been rigor-
ously identified in most of the studies reported. Indeed, even if 
the fully reduced HMGB1 is the most used recombinant form, the 
reduced and disulfide forms can easily interconvert both in vitro 
and in vivo.

Nucleotides as “Find-Me” Signals in 
Tissue Repair
The interplay between nucleotides and the immune system is 
essential for regenerative processes in the body (46, 90). During 
tissue regeneration, the organism needs to remove dead cells 
and debris to recruit various types of cells and to stimulate their 
proliferation in order to achieve wound closure. Nucleotides 
participate actively to these three phases by interacting with 
purinergic receptors on different cell types.

The two families of P2Rs appear to have separate roles: P2XRs 
are involved in defense mechanisms and cell death, and P2YRs in 

wound healing (9). Indeed, prevalently P2YRs have been studied 
in different models of tissue regeneration. Both ATP and UTP 
released by apoptotic cells in a caspase-1-dependent manner act 
as “find-me” signals that recruit macrophages through P2Y2R, 
and stimulate their phagocytic activity (50). Neutrophils release 
ATP that in turn recruits neutrophils, in a feed forward loop (51). 
In addition, both ATP and UTP promote migration of vascular 
smooth muscle cells through binding of P2Y2R to filamin A (91).

Stimulation of P2Y receptors has a mitogenic effect on multiple 
cell types, including brain capillary endothelial cells (92), cardiac 
endothelial cells (93), and fibroblasts (94). Non-hydrolyzable 
nucleotide analogs (e.g., ATPγS, ADPβS) strongly promote pro-
liferation of HUVEC cells and of mammalian vascular smooth 
muscular cells (95). These observations strongly suggest that 
nucleotide might be proangiogenic factors important for tissue 
repair.

Nucleotide release from dying cells after acute kidney injury 
induces proliferation of neighboring tubular cells, thus promot-
ing wound closure via the downstream activation of Akt (96). 
In the liver, ATP released after partial hepatectomy, both from 
hepatocytes and from Kupffer cells, contributes to liver regen-
eration by activating cell cycle progression in hepatocytes (97). 
Calcium waves elicited by ATP released from damaged cells are 
important in the developing brain of Xenopus laevis, where neural 
progenitor cells reorganize their cytoskeleton and activate the 
actomyosin contractile machinery to drive the expulsion of dam-
aged cells into the brain ventricle. This represents a mechanism 
for rapid wound healing in the developing brain (98).

Shockwave treatment is a new technology used to treat chronic 
painful conditions of the musculoskeletal system. Shockwaves 
induce ATP release, which leads to Erk1/2 and p38 MAPK 
activation and cell proliferation, and increased wound healing 
in a rat model (99). During skin wound healing, extracellular 
nucleotides have a dual function: they inhibit keratinocyte motil-
ity and facilitate migration of other cell types (e.g., endothelial 
cells) (100, 101). Treatment of mouse ear wounds with Mg-ATP 
encapsulated in lipid vesicles (ATP-vesicles) induced macrophage 
accumulation, in situ proliferation and new tissue growth (102). 
ATP release from HaCaT keratinocytes caused the propagation 
of intercellular calcium waves from cells at the frontier facing the 
scar toward the cells in the rear, in a P2Y-receptor-dependent 
manner (103). Finally, the most striking evidence of P2YR sign-
aling in tissue repair is the delay of wound healing observed in 
P2y2r−/− mice (94).

In zebrafish larvae, when the tail fin is wounded, osmolarity 
differences between the interstitial fluid and the ambient water 
trigger ATP release, which initiates rapid wound closure through 
long-range activation of basal epithelial cell motility. In this case, 
P2Y2R is probably irrelevant, since the P2Y2R inhibitor suramin 
had little effect, even at high concentrations (104). Indeed, wound 
healing is known to involve other purinergic receptors. In cystic 
fibrosis, ATP release from epithelial cells activates P2RY11 on 
nearby epithelial cells, stimulating proliferation, migration and 
wound repair (105). P2X7 activation participates in angiogen-
esis and wound repair by promoting VEGF release from human 
monocytes (106). Moreover, P2X7 is necessary for timely healing 
of abrasion wounds and normal stromal collagen structure (107). 
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Acute UV irradiation of keratinocytes causes ATP release that 
triggers P2X7R on skin-resident T cells and participates to DNA 
repair response essential for skin regeneration (108). Thus, even 
P2XRs might switch from their killing activity, opening pores on 
the plasma membrane that cause the cell to collapse, to a pro-
regenerative function, helping tissue repair.

Conclusion and Future Directions

Nature is remarkably conservative, in that it uses the same mol-
ecule over and over again to attain related goals (109). DAMPs 
are exemplary from this point of view, as they are (generally 
abundant) molecules that are involved in the everyday function-
ing of the cell, and double up as signals of cell damage when they 
are present outside of the cell. As it happens, this simple invention 
that allowed to discern damage (DAMP-out) from normality 
(DAMP-in), could be used further to better describe the nature 
of the damage, and to record its occurrence for future memory. 
Thus, after being released (either passively or actively), DAMPs 
act to:

 (1) convey the message of danger to other cells,
 (2) trigger inflammation and activate innate immunity to stop 

the damage,
 (3) participate in cell–cell communication that instructs adap-

tive immunity, to help establish immunological memory,
 (4) orchestrate tissue repair and healing.

Points (1) and (2) have been widely described (7, 110). 
The cooptation of DAMPs into the process of immunological 
memory (point 3) and the related process of Immunogenic Cell 
Death are the subject of other reviews in this Frontiers collection. 
Immunogenic cell death is a perfect example of interplay between 
several DAMPs to alert and activate the immune system.

Here, we have focused on the role played by ATP and HMGB1 
in wound repair and tissue reconstruction. ATP and other 
nucleotides, and their purinergic receptors, have been known 
to participate in tissue repair since the late 1990s, even before 
they were recognized as DAMPs. Examples involving HMGB1 
are now as numerous. However, a fundamental problem must 
be acknowledged: how can the organism use the same DAMPs 

to trigger inflammation and to orchestrate tissue repair, which 
should occur after resolution of inflammation? Here, we can 
only speculate, and perhaps suggest future avenues of research. 
Usually, a signal with two possible meanings must be disambigu-
ated by either the state of the receiver or the context of the signal-
ing. Thus, to disambiguate the DAMP in inflammation and tissue 
repair, cells would need two different receptors, on different cells 
or on the same cell but at different times. Perhaps relevant here 
is that RAGE, a receptor for HMGB1, is low at the beginning of 
inflammation and induced by it.

Context in signaling is easy to picture: contextuality is 
paramount in everyday human communication. In the case of 
inflammation and tissue repair, context is the co-presence of 
other ligand-receptor pairs in different situations, in addition to 
the DAMP and its receptor, so that cells are differently activated 
or polarized. In fact, inflammation creates a microenvironment 
that is acidic, oxidizing (rich in oxygen and ROS), and where the 
metabolism of inflammatory cells is shifted toward glycolysis, 
whereas tissue repair occurs in a microenvironment which is 
neutral, reducing, and where macrophage metabolism is shifted 
towards oxidative phosphorylation and fatty acid oxidation 
(111, 112).

Also notable is that tissue reconstruction and inflammation, or 
at least some aspects of both, occur simultaneously in chronically 
inflamed tissue. In  situations like rheumatoid arthritis, where 
inflammation is rampant and the synovia grows exuberantly into 
a pannus, DAMPs might not be disambiguated, and might actu-
ally activate both programs at the same time. Not surprisingly, 
targeting DAMPs or their receptors during chronic inflammation 
is often beneficial. However, finely tuning might be better than 
blocking them altogether. Thus, better understanding of the 
activity and the interaction of cells in inflammation and tissue 
reconstruction, and of DAMP signaling, is key to control exces-
sive inflammation, resolve chronic inflammation, and promote 
tissue repair and healing.
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