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Despite intensive studies since the 1990s, the physiological role of the cellular prion 
protein (PrPC) remains elusive. Here, we present a novel concept suggesting that PrPC 
contributes to immunological quiescence in addition to cell protection. PrPC is highly 
expressed in diverse organs that by multiple means are particularly protected from 
inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the 
same time it is expressed in most cells of the lymphoreticular system. In this paradigm, 
PrPC serves two principal roles: to modulate the inflammatory potential of immune cells 
and to protect vulnerable parenchymal cells against noxious insults generated through 
inflammation. Here, we review studies of PrPC physiology in view of this concept.

Keywords: prion protein, immune privilege, immune modulation, cytoprotection, cell signaling, inflammation, 
neurodegeneration, Alzheimer

introduction

The cellular prion protein (PrPC) is known for its crucial involvement, via its scrapie isoform PrPSc, 
in the development of transmissible spongiform encephalopathies (TSEs), such as Creutzfeldt–Jakob 
disease in man and scrapie in sheep and goats. In these fatal diseases, the spontaneous or template-
directed misfolding of PrPC into abnormal PrPSc subverts PrPC’s normal function and causes synaptic 
loss and neuronal demise (1, 2). Despite extensive investigations for three decades, PrPC remains 
a conundrum. What is the major physiological role of this protein and why does it exist under a 
plethora of isoforms and interact with so many partners? Why do Prnp knockout mice develop nor-
mally and without major phenotypic alterations, although PrPC is ubiquitous and highly conserved 
between species? Here, based on the current knowledge of PrPC function, we provide an overview 
of its potential contribution to a phenomenon generically known as immune privilege, providing a 
new angle to the question of the physiological role of PrPC.

During evolution of the vertebrate immune system, the potency of inflammatory responses 
has increased, not least during the transition from ectothermic (fish, amphibians, and reptiles) to 
endothermic (birds and mammals) species, dramatically increasing O2 consumption and reactive 
oxygen species (ROS) generation (3). In parallel with increasing immunological firepower, to combat 
intruding microorganisms and cancer cells, several anti-inflammatory and protective measures have 
evolved to shield “innocent bystander” cells from inflammatory damage. Interestingly, major areas 
of modern medical treatment are concerned with dampening inflammatory responses. In organs 
such as the eye, the brain, pregnant uterus, and testicles, inflammation can have devastating conse-
quences. One fascinating development to protect such tissues with limited regenerative capacity is the 
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evolution of immune privilege. This phenomenon is established 
through combinations of physical barriers and circulatory adap-
tations, together with organ expression of potent cell surface and 
soluble immunomodulatory factors (4). The principal concept 
presented in this review is that PrPC serves an anti-inflammatory 
and protective role. This explains the prevalent observation that 
phenotypes due to loss of PrPC are minor if detectable at all under 
physiological conditions, while clearly evident under stress and 
particularly under inflammation in immune-privileged organs, 
such as the brain.

immune Privilege

In the late nineteenth century, VanDooremaal and later, in the 
1940s, Medawar pioneered studies that defined “immune privi-
lege” after studying grafts that survived after being transplanted 
into the brain or anterior chamber of the eye (5) [reviewed in Ref. 
(6)]. Classically, immune-privileged sites were the central nerv-
ous system (CNS), the anterior chamber of the eye, the placenta 
and fetus, and testicles. Immune privilege was considered a static 
phenomenon, mainly resulting from anatomical and circulatory 
peculiarities, such as an apparent lack of lymphatic drainage. 
This concept was supported by the discovery of the blood–brain 
barrier and later the blood–testis barrier (7).

Today, our understanding of immune privilege, often referred 
to as immunological quiescence, is vastly extended, and may 
be defined as a dynamic and highly complex interplay between 
anatomical, physiological and immunoregulatory adaptations, 
which together restrict, deviate, and block inflammatory pro-
cesses in the privileged tissue (8, 9). Moreover, many organs and 
cellular niches can obtain immune privilege, and certain elements 
of immune privilege have been observed in tumor growth and 
during chronic inflammation. Importantly, immune privilege is 
not a general immunosuppression, but involves tight control and 
often downregulation of those immune responses that potentially 
cause severe tissue damage. These include cytotoxic T cells, natu-
ral killer cells (NK), and pro-inflammatory cytokines.

Several cell surface and extracellular proteins play important 
parts in immune privilege, e.g., the immunomodulatory enzyme 
indolamine 2,3-dioxygenase (IDO) which causes a local deple-
tion of L-tryptophan and thereby halts proliferation of T cells 
(10), the apoptosis-stimulating receptor ligand couple Fas/FasL 
(11), tumor necrosis factor alpha apoptosis inducing ligand 
(TRAIL) (12), and transforming growth factor beta (TGF-β) 
(13), amongst others. In addition, in many immune-privileged 
organs, cells, such as neurons, have low expression of major his-
tocompatibility complex (MHC) class Ia molecules, which confer 
fundamental protection from cytotoxic T cells [reviewed in Ref. 
(4)]. They instead express non-classical MHC class Ib molecules 
that downregulate NK cell activity. Novel immunomodulating 
proteins are constantly being discovered (14, 15), and consider-
ing the importance of monitoring and fine-tuning inflammatory 
responses in particularly vulnerable organs, there are probably 
many more to come.

Another contribution to immune privilege is active recruit-
ment of CD4+ CD25+ Foxp3+ regulatory T cells (TREGs), which 
suppress the activation of other T cells, both directly and indirectly 

[reviewed in Ref. (16)]. TREGs exert their immunosuppressive 
activities in various ways, such as cell-cycle arrest via suppressive 
cytokines, e.g., IL-10 and TGF-β or cell surface expression and 
secretion of molecules, such as Galectin-1. They can induce apop-
tosis in IL-2-dependent T cells via IL-2 uptake or direct cytolysis 
via, e.g., granzyme. Indirectly, TREGs can also exert their effects 
on antigen-presenting cells, impairing their co-stimulatory or 
antigen-presenting activity or inducing them to remain naïve.

Posttranslational Modifications of PrPC

Cellular prion protein is a 210-residue glycoprotein, encoded by a 
single-copy gene denoted Prnp (17, 18). It is mainly located at the 
outer leaflet of the plasma membrane, attached by a glycosylphos-
phatidylinositol (GPI) anchor (19) and exists in many forms due to 
variable N-glycosylation (20) and proteolytic processing (21, 22).

Mammalian PrPC has two N-X-T sequence motifs for gly-
cosylation (Figure  1) and most PrPC isolated from tissues is 
indeed diglycosylated. The glycosylation sites of mammalian 
PrPC appear invariant and they are conserved in avian, reptil-
ian, and amphibian PrPC sequences; glycosylation promotes 
trafficking of PrPC to the plasma membrane and may increase 
PrPC half-life. As a response to oxidative stress, mammalian 
PrPC can be cleaved near codon 90 generating fragments PrP-N2 
and PrP-C2 (22, 23). Alternatively, while passing the late-Golgi 
compartment, a subset of PrPC is processed into two fragments 
PrP-N1 and PrP-C1 (Figure  1, C1 processing site) (24). The 
N-terminal PrP-N1 fragment is secreted, whereas the remain-
ing C-terminal fragment PrP-C1 remains attached to the cell 
membrane. Whether it is localized in lipid rafts like full-length 
PrPC remains to be shown.

PrP-C1 may also be generated on the cell membrane (23), 
while C-terminal shedding by ADAM10 can release full-length 
PrPC (and PrP-C1) from the membrane (25, 26). The generation 
of truncated PrP-C1 is conserved in avian PrPC and is likely to 
occur also in other vertebrates, intriguingly it is also seen in 
other prion family genes (PRND, SPRN) (27) and even in the 
structurally related zinc-transporter ZIP10 (SLC39A10) (28). 
Although PrPC processing is in principal conserved, there is 
evidence that the degree of cleavage and shedding is dependent 
on the PrPC sequence (29). Questions remain whether cleavage 
and PrP-C1 specifically may influence regulation and function 
attributed to normal prion protein and because full-length PrPC 
and PrP-C1 are not always experimentally differentiated it is often 
left unresolved which of the isoforms is actually responsible for 
the observed activity. However, the recent finding that PrP-C1 
exhibited myelinotrophic activity in the peripheral nervous sys-
tem strengthens the concept that all the various PrPC molecules 
have physiological importance (30).

The intrinsically Disordered N-Terminal 
Domain of PrPC

Structural studies revealed that PrPC is composed of an intrin-
sically disordered N-terminal and a structured C-terminal 
domain, containing three α-helical regions and a short, two-
stranded ß-sheet (31–33). Classically, the activity of a protein 
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was linked to the ability of the polypeptide chain to adopt a 
stable secondary/tertiary structure. This concept was extended 
when it became evident that intrinsically disordered region 
(IDRs) and proteins can participate in a broad range of defined 
physiological activities and play a major role in several protein 
classes, including transcription factors, scaffold proteins, and 
signaling molecules (34–36). This ability of IDRs to interact with 
many different substrates may explain the observation that PrPC 
can flexibly engage in a variety of supramolecular complexes 
(see below).

Considering the evolution of PrPC, it is interesting to note 
that the three-dimensional structure of the globular C-terminal 
domain of human (121–230), chicken (121–225), turtle (121–
225), and xenopus (90–222) PrPC show extensive similarities, 
indicating a conserved activity (37). By contrast, the N-terminal 
IDR of PrPC shows high diversity between vertebrate classes. 
This is in line with the observation that IDRs often evolve more 
rapidly than well-structured protein domains (38). Many IDRs 
show sequence conservation, sometimes involving particular 
amino-acid residues, such as leucine (L), proline (P), tyrosine 
(Y), and tryptophan (W) (39). The IDR of PrPC harbors many 

FiGURe 1 | Structural features of PrPC in vertebrate lineages. Schematic 
illustration of major structural features of PrPC in terrestrial vertebrates. The ER 
transfer signal peptide (ER SP) and the glycophosphatidylinositol-anchor 
attachment signal peptide (GPI SP) are removed during maturation of the 
primary translation product, followed by N-glycosylation and cysteine bridge 
formation in the C-terminus. The N-terminal domain is an intrinsically 
disordered region (IDR) of variable length containing repeated sequence 
elements (pink/purple) flanked by two positively charged amino-acids motifs 
(green). In mammalian PrPC, this region contains a number of glycine-rich 

octapeptides or nonapeptides, preceded by two hexapeptides, while in avian 
and reptilian PrPC it is comprised entirely of hexapeptides, and in amphibian 
PrPC only a very short pseudo-hexapeptide (ψHx) sequence is present. A highly 
conserved hydrophobic, alanine-rich motif (HD) at the center is characteristic 
for PrPC. Proteolytic cleavage of PrPC, known as α-cleavage (arrow) occurs 
N-terminal to the HD-motif at the boundary between the IDR domain and the 
globular C-terminal domain thus generating the fragments PrP-N1 and PrP-C1 
of PrPC (not shown). The globular domain consists in most PrPs of three 
helices (α1, α2, α3) and a β-sheet formed by two short β-strands (β1, β2).

of these characteristics. Specifically, mammalian PrPCs contain 
glycine-rich octarepeats with conserved W, P, and histidine (H) 
residues in this region (18, 40–46), while a hexarepeat region 
with conserved P, H, and Y is found in avian (47–49) and reptile 
PrPCs (50). Strikingly, amphibian PrPC is devoid of any repeats 
and H residues (51). Interestingly, IDRs are prevalent in virus 
proteins, allowing many interacting partners. Correspondingly, 
many proteins involved in innate immunity also carry IDRs, 
which may reflect the evolutionary “arms” race between invad-
ing pathogens and the host immune system. The evolutionary 
modifications that can be observed in the N-terminal IDR of 
PrPC among terrestrial vertebrates may indeed be a relic of these 
evolving immune functions. The most apparent evolutionary 
change that has occurred first in some reptilian species and 
then has become the norm in avian and mammalian PrPC are 
precisely spaced H residues which allow binding of divalent 
metal-ions, such as Cu2+ (52) and Zn2+ (53). Cu2+ binding will 
not only confer structural order to the N-terminus (54) but also 
by operating as a sensitive regulator of the structural state of 
PrPC’s IDR it may govern protein interactions and proteolytic 
processing (PrP-N1/PrP-C1).
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Studies, comparing wild-type PrPC with mutated PrPs lacking 
the repeat region have shown that the octarepeat region is crucial 
for PrPC’s neuroprotective activity. For instance against Bax 
induced cell death (55) or toxicity caused by ectopic expression of 
the PrP-like protein Doppel (Dpl) (56, 57), excitotoxic stress and 
PrPSc toxicity (58). Interestingly, Drisaldi and co-workers dem-
onstrated that the neuroprotective function of the repeat region 
is dependent on four histidine residues (57). Furthermore, the 
repeat region is also necessary for the PrP-mediated neuropro-
tection observed in models of brain ischemia (59). Similarly, the 
ability of PrPC to transmit neurotoxic signaling of amyloid beta 
(Aβ) and other neurotoxic β-sheet-rich-conformers is greatly 
diminished in PrPC mutants devoid of this domain (60). Further 
studies of the mechanisms underlying the activities of the IDR of 
PrPC and its evolution, particularly in neuro-immune crosstalk 
appears to be an important area for future research.

Functionally, PrPC can by virtue of its GPI anchor move 
between membrane subdomains (61, 62), and interact with many 
partners at the cell surface. These partners may include other 
GPI-anchored molecules like the proteoglycan Glypican-1 (63), 
transmembrane proteins like the neural cell-adhesion molecule, 
NCAM (64), the low-density-related protein LRP1 (65), the 
amyloid precursor protein APP (64, 66), lipid raft constituents 
such as caveolin (67), or src kinases (68, 69). The formation of 
these complexes may occur following the interaction of PrPC with 
extracellular matrix components, e.g., vitronectin (70) or laminin 
(71) or soluble ligands such as the extracellular chaperone stress-
induced phosphoprotein 1 (STI1) (72). Moreover, in lymphoid 
cells PrPC has been shown to be recruited into microdomains of 
the membrane, the so-called immunological synapses harboring 
T-cell receptor components (73–76). As discussed above, many 
ligands appear to interact with the N-terminal IDR of PrPC 
[reviewed in Ref. (77)].

FiGURe 2 | The expression pattern of Prnp overlaps with immune-
privileged organs and extends into the lymphoreticular system. 
Schematic representation of (A) major immune-privileged organs; highlighting 

the brain, testes, pregnant uterus, and eye, and (B) the organs with highest 
levels of PrPC overlap with the immune-privileged organs with the addition of 
lymphoreticular tissues, illustrated with lymph nodes and the spleen.

Of major pathophysiological relevance is the ability of the 
N-terminal PrP fragment (PrP-N1) to bind to and to mediate 
toxic effects of Aβ oligomers (78). PrPC may further engage into 
homophilic interactions or bind the two other members of the 
prion protein family Doppel and Shadoo (58, 68). It could be 
speculated that shed PrPC or PrP-N1 can act at a distance via 
extracellular fluids. Indeed it has been demonstrated that soluble 
PrP-N1 fragments can prevent Aβ-induced toxicity and have a 
neuroprotective activity (79–84).

PrPC Pattern of expression

Although PrPC is ubiquitously expressed, its main expression 
overlaps strikingly with the distribution of immunologically qui-
escent sites (Figure 2). PrPC is abundantly present in the central 
and peripheral nervous system (17, 18, 85), glial cells of the CNS 
(86, 87), and in the testes, eye, placenta, and uterus (88, 89). PrPC 
is also present in the neurovascular unit, including endothelial 
cells (90, 91), it may thus be one of the protagonists modulating 
blood–brain barrier functions (92).

Cellular prion protein is also found in microglial cells (93). 
Whether its expression is associated with the inflammatory M1 
producing TNF-α, IL-1β, and IL-6, or the immunosuppressive 
M2 (producing IL-10 and TGF-β) phenotype of microglia has 
not been clarified. Notwithstanding, the observation that Prnp 
knockout mice produce less of the anti-inflammatory cytokine 
IL-10 in response to LPS-induced chronic inflammation would 
suggest a positive role for PrPC in M2 microglia (94).

Cellular prion protein is abundantly expressed in neuronal 
and non-neuronal stem cells, including hematopoietic stem cells 
(HSCs) (95) and it contributes to stem-cell renewal, reviewed by 
Lopes and Santos (96) and Martin-Lannerée et  al. (97). HSCs 
have been shown to co-localize with TREGs, suggesting that 
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TREGs provide a “shield” conferring relative immune privilege 
to the HSCs (98). Interestingly, PrPC is found at high levels in both 
immature HSCs (95) and TREGs (99), and probably contributes 
to the interplay between HSCs and TREG cells in this niche.

Differentiation of HSCs along the lymphoid (100–102) or 
monocytic (103) lineages maintains the expression of surface 
PrPC, while during the granulocyte maturation PrPC is downregu-
lated (104). Within lymphoid cells, B cells express lower levels 
of PrPC compared to T cells and NK cells (105), which could be 
linked to the observation that B cells are not repressed in immune-
privileged sites. Regulatory CD4+ CD25+ T cells expressed 4.5 
fold higher levels of Prnp mRNA and showed a 10-fold higher 
intensity of surface PrPC than CD4+ CD25− T cells (99). However, 
an attempt to identify the role of PrPC in TREGs using Prnp 
knockout mice was unsuccessful since no loss-of-function phe-
notypes could be recognized in Tregs without PrPC expression 
(99). In most immune cells, PrPC is dynamically expressed and 
generally naïve immune cells contain less PrPC than mature or 
stimulated immune cells, with a few exceptions (105, 106). Even 
neutrophils strongly upregulate PrPC levels after treatment with 
immunosuppressive TGF-β or dexamethasone (107). On some 
immune cells, such as mast cells, Prnp is highly and constitutively 
expressed and PrPC is rapidly released from the cell surface when 
these cells are activated (108).

Following from the concept presented here, the principal role 
of PrPC in immune-privileged organs would be to protect against 
inflammatory damage. The dynamically regulated levels of PrPC 
observed in cells of the immune system, particularly the high 
expression in immunosuppressive TREGs, indicate that PrPC is 
important in immunological homeostasis.

inflammation Reveals Cytoprotective and 
immunomodulatory Roles of PrPC

Prnp knockout mice develop normally, with normal life expec-
tancy (109, 110) and exhibit complete resistance toward prion 
infection. Despite a relative lack of robust and reproducible 
phenotypes under physiological conditions, a wide variety of 
roles for PrPC have been suggested, such as in maintenance of 
axonal myelin (30, 111), modulating circadian rhythms (112), 
and neuronal excitability (113). For a comprehensive review of 
suggested physiological roles of PrPC, see Ref. (114). In addition 
to murine models, Prnp knockout cattle have been produced 
(115). After extensive analysis, under physiological conditions, 
only minor phenotypes were observed. Similar findings have 
been reported from a recently discovered line of Norwegian dairy 
goats, carrying a nonsense mutation that renders these animals 
devoid of PrPC (116, 117).

Interestingly, experiments with Prnp knockout mice involving 
a diverse set of inflammatory processes (Table 1), such as experi-
mental brain ischemia, brain trauma, experimental autoimmune 
encephalomyelitis (EAE), experimental colitis, and, intracerebral 
infection with encephalomyocarditis virus variant B (EMCV-B), 
have revealed that in the absence of PrPC, inflammatory damage 
is greatly exacerbated; reviewed by Onodera et al. (118).

Experimental autoimmune encephalomyelitis in mice, a chronic 
demyelinating disease of the CNS and a model of multiple sclerosis 

in humans, is often induced by immunization with myelin oligoden-
drocyte glycoprotein (MOG). Autoantigen-specific T cells of both 
the Th1 and Th17 phenotypes cross the BBB and are the primary 
immune cells recruited to the CNS where they activate microglia 
and attract blood monocytes and other inflammatory cells (129). 
Induction of EAE by MOG injection in Prnp knockout mice 
resulted in earlier onset, prolonged and more severe neuroinflam-
mation than in normal mice (125). The Prnp knockout mice had 
persisting T-cell and monocytic/microglial infiltrates in the CNS, 
accompanied by demyelination and axonal drop-out in spinal cord 
white matter. It was concluded that PrPC modulates T-cell-mediated 
neuroinflammation, with a suppressive effect on MOG-induced 
peripheral T-cell responses and the authors discussed whether 
the larger pathological lesions in mice lacking PrPC also could be 
caused by increased cellular susceptibility to oxidative stress.

Gourdain and colleagues (126) conducted experiments with 
reciprocal bone marrow chimeras with lack of PrPC expression 
in lymphoid cells or the CNS, but did not observe earlier disease 
onset nor increased leukocyte infiltration in the CNS in animals 
with Prnp knockout lymphocytes. However, they observed signifi-
cantly higher pathology scores in mice lacking PrPC expression in 
the brain, and concluded that PrPC primarily confers neuropro-
tection against neuroinflammatory insult. In a different attempt 
to discriminate neuroprotection by PrPC from immunoregulatory 
roles, Hu and co-workers (130) used pharmacologically selective 
silencing of PrPC in lymphocytes in models of nervous system 
autoimmune disease. They were able to show that depletion of PrPC 
in lymphocytes directly affected T-cell activation, survival, and 
differentiation. In the absence of PrPC expression in lymphocytes, 
the severity of EAE was considerably increased. They concluded 
that lack of PrPC in lymphocytes resulted in pro-inflammatory 
activities and that autoimmune brain pathologies could develop 
despite protective PrPC expression in neuronal cells. Thus, under 
these experimental conditions, the role for PrPC as a regulator of 
immunological homeostasis apparently dominated the cytopro-
tective role of the protein in the CNS. In Gourdain et al. (126), 
the authors state that their data do not exclude an important role 
for PrPC, particularly in early lymphoid responses. They further 
discuss several possible explanations for the conflicting results 
in their study and the study by Hu et al. (130). The models used 
are complicated and obviously differ in many aspects, such as 
mouse strain, encephalitogenic antigens, T-cell assay protocols 

TABLe 1 | Loss of PrPC aggravates immunopathology in a variety of 
experimental settings.

Tissue damagea

insult Prnp wild type Prnp 
knockout

Reference

Brain ischemia ++ ++++ (59, 119–122)

Brain trauma ++ ++++ (123, 124)

Experimental autoimmune 
encephalomyelitis (EAE)

++ ++++ (125, 126)

Experimental colitis ++ ++++ (127)

Encephalomyocarditis 
Virus variant B

++ ++++ (128)

aRefers to onset, duration, and severity of inflammation and magnitude of tissue 
damage.
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and differences in methodology for gene silencing, all factors that 
may have contributed to the discrepancies.

In a different model with induction of focal brain ischemia, Prnp 
knockout mice experience more severe tissue damage after focal 
brain ischemia than wild-type mice (59, 119–121). Spudich and 
colleagues observed 200% larger infarct volume in Prnp knockout 
mice. In addition, an induction of ERK1/2, STAT1, JNK1/2, and 
Caspase-3 activity in the Prnp knockouts suggests that these sign-
aling molecules are involved in Prnp knockout-related neuronal 
cell death (120). Significantly increased infarction volumes were 
also observed in Prnp knockout mice, in studies of permanent 
and transient focal cerebral ischemia (121). Moreover, they 
observed reduced levels of phosphorylated Akt and enhanced 
neuronal caspase-3 activation in Prnp knockout mice. In a rat 
stroke model, Shyu and colleagues revealed a time-dependent 
increase in PrPC levels in infarcted tissue to reach a peak 3 days 
post infarction and that overexpression of PrPC reduced ischemic 
injury (122). Mitsios and colleagues detected increased levels 
of PrPC in plasma from human stroke patients compared with 
healthy controls (131). Moreover, they found upregulation of 
PrPC in gray matter peri-infarcted tissue and in infarcted tissue, 
in 6 out of 10 patients. In a study of traumatic brain injury, Prnp 
knockout mice had a larger lesion volume and a breakdown of the 
blood–brain barrier 1 month after injury compared to wild-type 
mice (123). Interestingly, it has been observed that Prnp mRNA 
is one of two most upregulated mRNAs after induced traumatic 
brain injury in mice (124), supporting a protective role for PrPC. 
From the studies on ischemic and traumatic brain injury, the role 
of inflammation in the development of lesions remains to be clari-
fied, since no inflammation-specific parameters were measured, 
nor infiltration of cells along the borders of the necrotic tissue 
were observed. Cell death also activates inflammation and further 
studies should include the role of cytokines and immune cells, 
such as locally activated or blood-derived macrophages/micro-
glia, when evaluating how PrPC influences damage control (94).

Intracranial infection with EMCV-B resulted in similar viral 
titers in wild-type and Prnp knockout mice, however, mice lack-
ing PrPC showed higher numbers of apoptotic neurons, while 
wild-type mice had more activation of microglial cells as well as 
more severe infiltration of immune cells in the hippocampal area 
(128), suggesting that PrPC affected the inflammatory response, 
while also serving a protective, anti-apoptotic role during the 
infection.

In a mouse model of inflammatory bowel disease, mice lack-
ing PrPC developed a more severe colitis with markedly elevated 
levels of pro-inflammatory cytokines and pro-apoptotic regula-
tory proteins (127). Moreover, it was shown that overexpression 
of PrPC protected against induction of colitis. Interestingly, lack 
of PrPC has been shown to skew T-cell development in favor of 
pro-inflammatory Th1 and Th17 phenotypes (125, 130).

Taken together, these observations made under different 
experimental modalities demonstrate that PrPC both mediates 
cytoprotective signaling under inflammatory stress and has the 
capacity to attenuate the inflammation itself.

In summary, PrPC is highly expressed in immune-privileged 
organs and it serves a protective role evident most clearly under 
inflammatory stress and/or tissue damage. Moreover, data show 

that PrPC is more than a passive protector, but also dampens the 
inflammation itself, by modulating the activity of immune cells 
in an anti-inflammatory direction. The latter role of PrPC fits well 
into the concept of immune privilege and immune modulation. 
The molecular details and signaling pathways by which PrPC 
modulates inflammation are not yet clarified and stand out as a 
challenging area of future research. Below, we highlight some of 
the current data on signaling mediated via or influenced by PrPC 
presence on the cell surface.

PrPC in Cytoprotective and 
immunoregulatory Signaling

At a molecular level, the cytoprotective activity of PrPC may depend 
on its capacity to engage into multimolecular complexes at the cell 
surface and mobilize signal transduction cascades. For a review of 
these signaling events in neuronal cells, see Ref. (132). With respect 
to the concept presented here, the molecular cascades underlying 
the potential contribution of PrPC to immune quiescence remain 
to be dissected. However, many of these probably overlap with 
cytoprotective signaling, which is better characterized. We will 
therefore elaborate somewhat on PrPC partners and effectors 
potentially contributing to its cytoprotective activity (Figure 3). 
The extracellular co-chaperone STI1, identified as a PrPC partner 
in 1997 through a complementary hydropathy approach (133), is 
a well-established inducer of PrPC-dependent signals. The STI1–
PrPC interaction has been shown to protect retinal (72, 134) and 
hippocampal neurons (135) against chemically induced apoptosis, 
in both cases via cAMP-dependent protein kinase A (PKA). The 
neuroprotective action of this partnership is also supported by 
the recruitment of mTOR (136) as well as the inactivation of the 
GSK3β kinase (69), whose overactivity is detrimental to neurons 
(137). Noteworthy, STI1 can be secreted from astrocytes (138), a 
cell type highly contributing to immune quiescence in the CNS 
(92). STI1 may act in a cell-autonomous manner to favor astro-
cytic differentiation upon binding to PrPC (139). Whether the 
STI1–PrPC interaction also instigates a dialog between astrocytes 
and neurons deserves to be considered. Interestingly, astrocytes 
release STI1 in response to oxygen–glucose deprivation (140), 
and thereby induce neuroprotective signals through PrPC. In 
line with this, Lee and colleagues found that STI1 is induced in 
the ischemic brain and contributes to recovery via PrPC (141). 
The same study showed that the upregulation of STI1 promotes 
the recruitment of bone marrow-derived cells to the ischemic 
brain and thereby helps reducing brain injury. Although the full 
pathway of signaling events imparted by the STI1–PrPC duo in 
this context remains to be elucidated, a beneficial contribution of 
the downregulation of matrix-metallopeptidase 9 (MMP-9) tran-
scripts and activity fostered by PrPC (142) should be proposed, 
since MMP-9 knockout mice are less vulnerable to ischemia than 
their wild-type counterparts (143), possibly because activation 
of MMPs during brain injury leads to increased permeability of 
the glia limitans (144), separating the perivascular space from the 
neural tissue proper and thereby opens for a higher flux of cells 
and solutes into the neuropil.

In addition to the mature brain, the cytoprotective action 
of the PrPC–STI1 interaction may operate during embryonic 
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synapse, where it can interact with components of the T cell receptor (TCR), 
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kinase 70 (ZAP-70). These interactions may further promote the activation of 
downstream effectors, including NFkB, JNK, ERK, as well as elevation of 
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development since the two proteins are expressed from early 
stages (140, 145). Beraldo and colleagues reported that mater-
nally derived STI1 can be found in blastocysts. Deletion of the 
STI1 gene in mice leads to embryonic lethality around E9–E10.5 
due to placental disruption and lack of cellular viability (140). 
The molecular details causing embryonal lethality in the STI1 
knockout mice have not been elucidated. This drastic phenotype 
implies that STI1 signaling in early embryos is relayed by several 
receptors beyond PrPC. These include the activin receptor-like 
kinase-2 (ALK2) (146), whose deficiency leads to developmental 
arrest at the gastrulation stage (147). Another possibility to be 
considered is the binding of STI1 to the PrPC homolog Shadoo, 
which is abundantly expressed in extra-embryonic annexes, and 
which may have overlapping functions with PrPC during early 
development (148). Notwithstanding, because PrPC is abundant 
in extra-embryonic annexes (148), STI1–PrPC protective signal-
ing is likely to also occur in placenta, another important site of 

immune privilege. With respect to embryonic development, it 
is worth noting that the binding of STI1 to PrPC enhances the 
self-renewal of neural progenitor cells (149). On the other side, 
however, STI1–PrPC signaling appears to contribute to tumor 
growth (150) (see below).

Regarding cells of the immunological lineage, it has long 
been known that PrPC is present on the surface of lymphocytes 
and that it is rapidly upregulated upon activation of these cells 
(100–102). Mattei and co-workers demonstrated that PrPC was 
part of a signaling complex involved in T-cell activation (73). 
Furthermore, through immunoprecipitation they observed an 
association between PrPC and the signaling tyrosine kinase Fyn, 
and, in activated T cells, PrPC was co-immunoprecipitated with 
zeta chain-associated protein kinase 70 (ZAP-70), a protein of 
central importance in T-cell receptor signaling. Upon silencing of 
PrPC in lymphocytes by Prnp siRNA, an increase in ZAP-70 acti-
vation was seen with a corresponding rise in CD3/CD28 which 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


September 2015 | Volume 6 | Article 4508

Bakkebø et al. The cellular prion protein in immunological quiescence

Frontiers in Immunology | www.frontiersin.org

was stimulated by transcription factor NFAT/AP-1, known for its 
function in T-cell signaling and differentiation (130). In Jurkat 
lymphocytes, a co-localization of PrPC and T-cell co-receptor 
CD3ϵ and the lipid-raft ganglioside GM1 was observed (74, 76). 
Further compelling evidence of PrPC operating in immunologi-
cal synapses, such as in antigen-driven interactions between T 
cells and DCs, have been reported (75). Interestingly, absence of 
PrPC in T cells and DCs had different consequences for T-cell 
proliferation; T cells devoid of PrPC exhibited a normal allogenic 
antigen response, while DCs without PrPC significantly reduced 
proliferation in interacting T cells, suggesting that PrPC might 
serve different signaling roles in the two cell types. From experi-
ments using PrPC antibodies, the authors concluded that PrPC 
is a negative regulator of T-cell receptor signaling and that PrPC 
modulates neuroinflammation.

PrPC and Cancer

While immune privilege represents a physiological safeguard 
mechanism, it is also known to be hijacked by cancer cells to 
evade antitumor immunity (151). Over a decade ago, PrPC 
was found to be overexpressed in a breast cancer cell line that 
was resistant to TNFα-induced cell death (152). A correlation 
between PrPC expression and resistance to cytotoxic agents has 
now been described in various types of tumors, including breast 
cancer, gastric cancer, and glioblastoma [reviewed in Ref. (153)]. 
While the molecular mechanisms underlying the contribution of 
PrPC to tumor resistance are poorly understood, the disruption of 
the STI1 binding to PrPC was recently shown to impair glioblas-
toma growth (150), suggesting that cancer cells may usurp the 
cytoprotective activity of PrPC. A question that deserves further 
investigation is whether the presence of PrPC at the surface of 
cancer cells endows them with properties that enable them to 
evade the immune response.

Future Prospects

Although the concept presented here allows many pieces of the 
PrPC puzzle to fall into place, by providing principal physiological 
roles of PrPC in all tissues, several important questions remain to 

be answered. For instance, does surface-bound PrPC on patrol-
ling immune cells interact with PrPC or a PrPC-controlled protein 
complex in tissues and cells, like in the blood–brain barrier tight 
junctions of the endothelial cells (90) and thereby sense the 
entrance into an immune-privileged, PrPC-enriched zone; thus 
contributing to “do no harm” signaling? To what extent does PrPC 
play part in the maintenance of stem-cell niches, in the prolif-
eration and differentiation of cell lineages derived from the bone 
marrow and in modulating the development of lymphoid organs? 
Furthermore, the concept presented here calls for careful scrutiny 
of the role of PrPC in chronic inflammatory conditions, such as 
inflammatory bowel disease and various pathologies eliciting 
inflammation in the brain or other immune-privileged organs.

Besides, in all these questions, we have to examine which of 
the many PrPC protein/peptide forms are the actual executors 
of these physiological roles. From the genomic perspective, it 
would be of great help to understand the gene control of Prnp and 
whether other immunomodulators, such as TRAIL, Fas/FasL, 
and IDO, are part of the same expression network controlled by 
similar transcription factors; and whether there is genetic vari-
ation resulting in altered immune-privilege. Our proposed link 
between PrPC and immunological quiescence opens an exciting 
new avenue for the study of this protein beyond the chronic 
diseases of the CNS into the domain of the immune system, the 
reproductive system, and in sensatory organs. It will encourage 
the study of PrPC in several inflammatory conditions and cancer.
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