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The close association between cardiovascular pathology and renal dysfunction is well
documented and significant. Patients with conventional risk factors for cardiovascular
disease like diabetes and hypertension also suffer renal dysfunction. This is unsurprising
if the kidney is simply regarded as a “modified blood vessel” and thus, traditional risk
factors will affect both systems. Consistent with this, it is relatively easy to comprehend
how patients with either sudden or gradual cardiac and or vascular compromise have
changes in both renal hemodynamic and regulatory systems. However, patients with
pure or primary renal dysfunction also have metabolic changes (e.g., oxidant stress,
inflammation, nitric oxide, or endocrine changes) that affect the cardiovascular system.
Thus, cardiovascular and renal systems are intimately, bidirectionally and inextricably
linked. Whilst we understand several of these links, some of the mechanisms for these
connections remain incompletely explained. Animal models of cardiovascular and renal
disease allow us to explore suchmechanisms, andmore importantly, potential therapeutic
strategies. In this article, we review various experimental models used, and examine
critically how representative they are of the human condition.
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Introduction

Patients with conventional risk factors for cardiovascular disease (CVD), like diabetes and hyper-
tension, also suffer renal dysfunction. This is unsurprising if the kidney is simply regarded as a
“modified blood vessel” with traditional risk factors likely to affect both systems and coexist (1).
However, although a problem in one organ system affects the other, the prime mover in this loop
may be occult. Animal models have helped us tease apart these associations but have consistently
shown that impairment of one organ has detrimental effects on the other at functional, biochemical,
and molecular level [reviewed in Ref. (2–5)]. First described by El-Atat et al. (6), these clinical
interactions are now collectively known as the cardiorenal syndromes (CRS), which for many years
were considered a single diagnostic group, and thus, may have limited or confounded many early
mechanistic studies.

Given its importance, and the wide spectrum of primary disease and clinical presentation, a
number of classification systems have been proposed. Ronco et al. have classified CRS on time
frame (acute, chronic or secondary) and which organ is involved first (heart or kidney) recognizing
five different types of the CRS or renocardiac syndromes (RCS) (7, 8). Other approaches are based
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FIGURE 1 | Pathophysiological mediators of cardiorenal syndrome and
renocardiac syndrome. MBD, mineral bone disorder; NO, nitric oxide;
RAAS, renal–angiotensin–aldosterone system; RBF, renal blood flow; SNS,
sympathetic nervous system.

on pathophysiological links (9–11) (Figure 1), arguing that effects
are bidirectional (11), and that temporal differences in organ
involvement are artificial (9).

As the natural history is sometimes slow and consequently dif-
ficult to explore in clinical trials, adequate experimental modeling
of the clinical scenario is crucial to examining mechanisms and
potential therapeutic strategies. In this review, we use the Ronco
classification (7) to discuss animal approximations of the CRS.

Models of Cardiac Injury Causing Renal
Dysfunction (Types 1/2)

Neurohumoral mechanisms have evolved to maintain a rela-
tively constant blood volume and organ perfusion under con-
tinuously changing conditions (11). In the context of a fail-
ing pump (heart), vasopressor systems, like the sympathetic
nervous system (SNS) and renin–angiotensin–aldosterone sys-
tem (RAAS), are activated to maintain the hemodynamic bal-
ance (12). Vasoconstriction of the efferent artery helps maintain
glomerular filtration rate (GFR) in low-output states, but the
increased vascular resistance may reduce overall renal perfusion
and cause intra-renal hemodynamic changes. This can occur
acutely in the setting of abrupt hypotension [e.g., due to myocar-
dial infarction (MI)] or chronically, which over time causes tubu-
lar hypoxia and apoptosis leading to a loss of nephron mass and
function.

In animal models, MI, produced by ligation of the left anterior
descending coronary artery has detrimental effects on the renal
function over time. GFR significantly decreases after MI within
4weeks, and deteriorates further at 16weeks. Histological analysis
reveals greater renal interstitial fibrosis and downstream trans-
forming growth factor-β1 (TGFβ1) signaling (smad2 phosphory-
lation) at all time-points (13).

In rodents, beta-adrenergic stimulation through multiple iso-
proterenol injections results in left ventricular (LV) fibrosis (14).
It remains unclear if this interference with the SNS has renal
consequences, consistent with CRS.

Hemodynamic changes are a well-recognized driving force in
the pathophysiology of CRS. A reduction in cardiac output (for-
ward failure) reduces renal blood flow leading to changes in distal
tubular chloride and other solute content, resulting in increased
renin release from the macula densa and activation of the RAAS
(15). Surgical restriction of the carotid artery leads to aortic regur-
gitation (16) with both cardiac hypertrophy and albuminuria from
5months (17).

Higher central venous pressures due to congestion may
increase both interstitial pressure and efferent pressure (through a
decreased afferent-efferent gradient) (5). In these circumstances,
elevated venous pressures (backward failure) may reduce renal
blood flow and consequently urine output more than a reduction
in arterial pressure, ultimately leading to hypoxia and activation
of the RAAS. Elevated renal venous pressure alone reduces renal
arterial flow and GFR in the pig, with increases in plasma renin
activity (18). While maintaining cardiac homeostasis initially,
long-term activation of the RAAS eventually leads to progression
and myocardial remodeling through fibrosis (3).

Models of Acute/Chronic Renal Disease
Causing Cardiac Dysfunction (Type 3/4)

As chronic kidney disease (CKD)progresses, the SNS is stimulated
as a result of renal ischemia, activation of the RAAS and suppres-
sion of nitric oxide (NO) synthesis. This results in hypertension,
left ventricular hypertrophy (LVH), and progressive LV dilatation
(12). Early cardiac hypertrophy, and subsequent fibrosis due to
fibroblast activation (19, 20), are final common contributors to
organ dysfunction irrespective of the nature of the initial injury.

Cardiac Pathologies in Renal Models
Sub-total nephrectomy, often termed 5/6 nephrectomy, is prob-
ably the most established method of modeling progressive renal
failure seen with loss of renal mass. Although commonly per-
formed in the rat, similar rabbit and mouse models exist but
appear less reliable. Rather than mimicking a renal disease
per se, sub-total nephrectomy parallels the consequences of reduc-
ing functional nephron number. The predominant pathological
abnormalities within the remaining kidney are glomerulosclerosis
and tubulointerstitial fibrosis (21). It is important to appreciate
that two quite differentmodels are encompassed by the expression
“5/6 nephrectomy”, namely an ablation model widely used for the
study of CRS and a less common ligationmodel. In the former, one
kidney is removed along with ~50% of the contralateral kidney by
polar excision 1–2weeks later, with the rate of renal decline very
closely related to the amount of tissue excised (21). In contrast to
human chronic kidney disease (CKD), although LVH is a consis-
tent feature (22) and resembles that seen in early human CKD
(23), severe hypertension is not usually a feature of this model.
Nevertheless early LV diastolic dysfunction is seen with com-
mensurate increases in heart weight (corrected for body weight),
and myocyte cross sectional area (24, 25). Other documented
pathologies include increased myocardial artery wall thickness,
capillary density (26) and interstitial fibrosis (24). Similar changes
are seen in mice, but tend to be more strain dependent (4).
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Modeling CKD-Specific Risk Factors
While traditional cardiovascular risk factors are highly prevalent
in patients with CKD, results of clinical trials focusing on control-
ing such factors have been largely disappointing, and thus, non-
traditional risk factors associated with CKD are being increasingly
explored.

Anemia
Anemia is a feature of most CKD and related to erythropoietin
deficiency (27), yet it is unclear whether it is a mediator of CRS
or simply a marker of disease progression (11). There is some
experimental evidence that correction of anemia preserves both
renal and cardiovascular function. Cardiomyopathy occurs after
IV injection of anthracycline antibiotics, such as adriamycin (28,
29), with renal fibrosis and pronounced loss of renal function
accompanying LV enlargement (29). In the doxorubicin model
administration of darbepoetin can increase Hb to control levels
and significantly attenuates the renal dysfunction, renal interstitial
fibrosis and LV weight (29). Likewise, erythropoietin improves
cardiac function post-MI, an effect seemingly related to the pro-
motion of neovascularization (30). Effects in a combined cardiac-
renal model have not been examined.

Inflammation
Progressive renal impairment is characterized by a chronic inflam-
matory state with elevated tissue and circulating concentrations
of cytokines including interleukin-6 (IL-6) and tumor necro-
sis factor-α (TNFα). The origin of inflammation in renal dis-
ease is multifactorial, and involves reduced clearance of pro-
inflammatory cytokines, reactive oxygen species and effects of
comorbid conditions, such as diabetes (12). Inflammation is also
a risk factor forMI and death in uremic patients (31) and amarker
of severity and progression of heart failure (32). Experimentally,
increased inflammatory cytokine mRNA expression is seen in the
heart after renal ischemia-reperfusion injury (33). Dietary phos-
phate overload directly induces systemic increases in serum and
tissue TNFα in a model of adenine-induced chronic renal failure
(34). Conversely, renal macrophage infiltration and inflammatory
cytokine expression is significantly increased from as early as
3 days post-MI (35). Activation of inflammasome pathways have
been seen in both acute and CKD, with infiltrating macrophages
specifically implicated (36). It is interesting to note that statinsmay
reduce effects of inflammation in both the kidney and heart and
may be protective (37).

Nitric oxide
The nitric oxide synthase (NOS) inhibitor asymmetrical dimethyl
arginine (ADMA) accumulates in renal failure (38) and con-
tributes to a reduction in NO systemically and intra-renally. NOS
inhibition with N-nitro--arginine administration (-NAME)
depletes NO and both exacerbate renal dysfunction, and induce
permanent cardiac dysfunction in rats with sub-total renal
nephrectomy (39). Further evidence for the role of NO comes
from those studies showing that chronic administration of -
NAME on its own also induces heart and kidney damage sim-
ilar to that found in CRS (40). The model is characterized by a

progressive increase in BP over 10weeks with severe proteinuria,
glomerulosclerosis, and tubulointerstitial fibrosis, and elevation in
serum creatinine (40). Further, SNS activation is a recognized fea-
ture of the -NAME model. Proteinuria and cardiac hypertrophy
induced by chronic -NAME treatment is abrogated by bilateral
renal sympathetic denervation, but not hydralazine, even when
blood pressure and NO depletion are equivalent (40).

Oxidative stress
Reactive oxygen species, produced as a result of redox reactions
in various cells, have been recognized as key chemical mediators
causing cellular damage and organ dysfunction in both CVD
and CKD. There is growing evidence that oxidative stress is one
of the central mediators of CRS. Increased oxidative stress is
seen in patients with cardiac (41) and renal failure (42) and the
reduced availability of NO impairs vasodilatation, and reduces
renal perfusion (43).

It is now widely hypothesized that interactions between the
RAAS system, the SNS and inflammation, may all potentiate CRS
through excessive oxidative stress pathways (44). Consistent with
this, experimental studies have identified several dysregulated
pathways in heart failure and in CKD that lead to increased oxida-
tive stress. Dahl salt-sensitive rats show increased LV NADPH
oxidase activity, which is normalized by Angiotensin II blockade
(45). In rats with sub-total nephrectomy, mitochondrial respira-
tion in the heart is dysregulated, with cardiomyocytes isolated
from uremic animals more susceptible to oxidant induced cell
death than their normal counterparts (46).

Protein-bound toxins
Uremic toxins, such as indoxyl sulfate (IS), appear to acceler-
ate the progression of CKD via profibrotic and oxidative path-
ways. Oral administration of IS in sub-totally nephrectomized
rats induced renal tubular injury, renal interstitial fibrosis and
glomerular sclerosis, leading to functional impairment (increased
serum creatinine and blood urea nitrogen). These changes are
associated with increased renal expression of profibrotic genes,
such as TGFβ1, tissue inhibitor of metalloproteinases-1, and pro-
collagen α1(I). Glomerulosclerosis and renal impairment has also
been demonstrated in sub-totally nephrectomized rats receiving
indole (47). The presence of IS, not indole, in the urine of indole-
loaded animals confirms the protein metabolite hypothesis of IS
production (47). IS has effects on cardiac myocytes and can cause
cardiac hypertrophy and fibrosis (48, 49).

Neurohormonal disturbance
SNS over-activation is observed early in CKD, stemming from
renal ischemia, raised angiotensin II levels, and suppression of
NO amongst other causes. It is deleterious causing hypertension,
LVH and eventually ventricular dysfunction and dilatation (12).
Renal denervation in small animals can be achieved both sur-
gically and chemically. These techniques have been widely used
to study SNS activation and the relationship to hypertension in
various experimental models of renal disease including sub-total
nephrectomy (50) and deoxycorticosterone acetate (DOCA)-salt
hypertension (51). Sympathectomy directly prevents onset and
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progression of albuminuria after chronic cardiac volume overload
caused by aortic regurgitation (17).

Mineral bone disorder
The burden of excess CVD in patients with CKD is partly
attributed to systemic disturbances in mineral metabolism and
changes in bone histomorphometry. This is frequently accompa-
nied by soft tissue calcification (52) especially within the arte-
rial wall, where it is associated with significant mortality and
morbidity (53). Patients with CKD also have a preponderance of
medial arterial calcification (MAC), as well as greater calcification
of intimal lesions. Pathophysiologically, aortic MAC is linked
to alterations in vessel compliance, which exposes the heart to
changes in vascular compliance and resistance changes in systolic
pressure leading to LVH and myocardial fibrosis (54). Impaired
aortic recoil results in lower diastolic pressures and a widened
pulse pressure and reduced perfusion of coronary arteries, lead-
ing to sub-endocardial ischemia (55). Loss of vessel compliance
may also impact on renal autoregulation (56). Although not a
consistent finding in man (57), rodent models of renal failure
demonstrate a convincing relationship between vascular stiffness
and calcification scores (58, 59).

Three rodent animal models are commonly employed to study
mineral bone disorder (MBD) and its cardiovascular sequelae in
the context of CKD: 1) phosphate/vitamin D loading post 5/6
nephrectomy (60); 2) adenine-induced renal failure (61); and 3)
the mouse electrocautery model of CKD (62) in strains with a
genetic predisposition to vascular calcification (e.g., LDLR−/− or
apoE−/−). While these models consistently generate biochemical
changes, calcification phenotypes are inconsistent due to dif-
ferences in diet, study duration and the genetic background of
the animals. Indeed, some inbred rodent strains (e.g., C57BL/6
mice and Sprague-Dawley rats) are surprisingly calcification resis-
tant. Without concurrent calcitriol administration and or high
phosphate feeding (>1% diet), vascular calcification after 5/6
nephrectomy is only apparent after 24weeks (63). The mouse
electrocautery model shows variable CKD, and mild hyper-
phosphataemia, even with high phosphate feeding. Interestingly,
induction of CKD in transgenic atherosclerotic-prone animals
only imparts a modest increase in aortic calcium relative to non-
uremic littermates. Induction of milder renal impairment (equiv-
alent to CKD Stage 2) by less intensive cautery of one kidney
followed by contralateral nephrectomy (64) provides compelling
evidence of the development of MBD in early CKD. The genera-
tion of uremic mice with adenine-enriched diets has gained con-
siderable interest; here, animals develop advanced CKD, hyper-
phosphataemia (even without dietary phosphate loading), severe
hyperparathyroidism despite normocalcaemia, and MAC within
4weeks when on a 0.75% adenine diet (65, 66).

Crucially however, the MBD animal models discussed, thus
far are generated by acute injury and rely on the consequent
development of CKD. To date, few models of spontaneous
CKD with well-characterized MBD and vascular calcification
have been described. One such model, heterozygous Han:SPRD
(Cy/−) rats (a model of autosomal dominant polycystic kidney
disease) develop slowly progressive CKD, hyperphosphataemia,
hyperparathyroidism and bone abnormalities but the vascular

calcification generated is not progressive and only present in
a subset of animals even after 38weeks (67). Other models of
spontaneous CKD (e.g., the Col4a3 null mouse model of human
autosomal-recessive Alport syndrome), despite showing convinc-
ing biochemical evidence of CKD-MBD, do not exhibit a consis-
tent vascular calcification phenotype (68).

A plethora of in vitro and in vivo studies have evoked the
now widely accepted view that vascular calcification is a highly
regulated and principally cell-mediated phenomenon that reca-
pitulates many features of physiological ossification (69). There is
strong evidence of osteochondrocytic differentiation of vascular
cells in the calcified intimal plaques of high-fat fed LDLR−/−

and ApoE−/− mice (70, 71), as well as in the arterial media of
adenine and mineral stressed 5/6 nephrectomy models (72, 73).
However, while de-differentiation of VSMC to a synthetic pheno-
type is found in some knockout models deficient in calcification
inhibitors (e.g., matrix Gla protein (MGP)−/− mice) (74), it is
not a consistent finding (e.g., fetuin-A-deficient mice) (75). More-
over, mutations in the regulators of mineralization can manifest
themselves quite differently in rodents and man. For instance,
MGP−/− mice have massive MAC. In humans, however, inacti-
vating mutations in MGP (Keutel syndrome) exhibit infrequent
arterial calcification (76). Conversely, inactivating mutations in
Ennp1 encoding the pyrophosphate synthesizing ectoenzyme
nucleotide pryophosphatase/phosphodiesterase results in the dev-
astating syndrome, Generalized Arterial Calcification of Infancy
(77). Ablation of homologous gene,Npps, in mice however, results
in ossification of the spinal ligaments and peri-articular calcifi-
cation but with relatively minor arterial involvement and only a
modestly shortened lifespan (78).

Finally it is worth noting that despite considerable enthusiasm
for the role of VSMC phenotype switching as a major mecha-
nism for vascular calcification, the evidence for this phenomenon
in human CKD is currently limited to a subset of patients on
hemodialysis (79, 80). Indeed, even in this setting, evidence of
such changes appear conspicuously absent at some vascular sites
exclusively affected by medial calcification (81). An explanation
for this variable disease penetrance is not currently forthcoming,
although it should also be stressed that analyzes to date have been
on small-to-medium sized muscular arteries that are generally
free from intimal/atherosclerotic disease involvement and which
may, therefore, not be representative of changes occurring in some
larger elastic vessels (e.g., aorta). This may in part also explain
the apparent disparity with findings in some animal models of
uremia, where studies have mainly centered on changes in VSMC
phenotype in the aorta and where phenotypic switching would
appear to occur relatively early in disease progression (64).

Cardiac and Renal Involvement in Systemic
Disease (Type 5 CRS)

In many cases cardiac and renal pathologies are common to
a system-wide perturbation. Relevant models include metabolic
syndromes, such as hypertension, diabetes, obesity, liver disease,
myeloma, lupus, and other autoimmune disease. Self-evidently
these models align closely with the traditional risk factors seen in
CVD, and reflect both chronic and acute causes.
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Chronic Conditions
Hypertension
A number of experimental models of hypertension exist, includ-
ing amongst others, inbredmodels of inherited primary hyperten-
sion [spontaneously hypertensive rat (SHR), Milan hypertensive
rat, dahl salt-sensitive rat, and transgenic models over expressing
renin (mRen2)]. While these consistently display cardiac patholo-
gies, only some have parallel changes in renal function (82), with
high pre-glomerular resistance relatively protective in selectively
bred SHRs (83). Whilst inherited hypertension is a rare but rec-
ognized cause of hypertension in humans (82), in animal mod-
els correction of hypertension per se is not sufficient to prevent
progression of experimental CRS (84).

Diabetes
Several models of diabetes have shown simultaneous cardiac and
renal dysfunction including accelerated models, developed in an
attempt to more closely mimic the human condition. The trans-
genic (mRen-2) rat overexpresses the murine renin gene (85) with
elevated angiotensin II activity. Streptozotocin (STZ) induced
beta-cell destruction in the mRen-2 rat is an established model
of diabetes and its complications. The major advantage being that
these rodents develop functional and structural pathology closely
mimicking that seen in advanced human diabetic nephropathy
(85) and cardiomyopathy (86). In a similar manner, SHR made
diabetic with STZ replicate the confounding hypertension seen
in diabetic nephropathy (87). However, despite a similar rise in
blood pressure, unlike the diabetic mRen2 rat, these animals do
not usually progress to renal failure.

STZ administration in the atherosclerotic (ApoE−/−) mouse
model accelerates both diabetic renal pathology and atheroscle-
rosis, a major risk factor for MI ischemia (88).

Obesity
Obese Zucker (OZ) rats (readily available commercially, and
extensively studied) are characterized by mild glucose intolerance
and peripheral insulin resistance similar to that found in humans
with Type 2 diabetes. These abnormalities precede the develop-
ment of albuminuria and glomerular injury and animals show a
parallel deterioration in cardiac output and renal function (89).
Ultrastructural studies have shown cardiomyopathy in both the
OZ rat, and in mice with a similar mutation (db/db mouse) (90).
A comprehensive analysis in the db/db mouse has shown that
albuminuria/glomerulopathy and cardiac contractile dysfunction
appear after 2–4months of hyperglycemia (91).

Acute Conditions
Liver Disease
Both acute cholestatic and chronic fibrotic liver disease cause
renal and cardiac dysfunction. Bile duct ligation causes acute
and chronic renal (92) and cardiac dysfunction (93). Adminis-
tration of carbon tetrachloride (CCl4) is a model of acute (or if
repeated, chronic) hepatic failure causing widespread disruption
to cardiac and renal function, although CCl4 generates oxidant
injury directly in other organs (94). Other relevant experimental
models include toxin induced murine models, as well as some
murine models of autoimmune hepatitis and primary biliary
cirrhosis (95).

Lupus
The classic murine model of lupus (as a paradigm for other
autoimmune disease) includes genetically predisposed crosses
(New Zealand Black crosses) and toxin (pristane) induced models
(96). Nevertheless, many of the murine models fail to fully repli-
cate the multisystem manifestations of human lupus, and whilst
most replicate lupus nephritis, other organs like skin and arthritis
are inconsistently affected, although the NZB murine model does
seem to develop pericardial, epicardial andmyocardial inflamma-
tion (97). Because the murine model is not altogether representa-
tive of the human condition, other models including canine and
porcine models have been developed (98, 99).

Compound Effect of Combining Renal and
Cardiac Pathologies

A less common experimental scenario looks at the effect of over-
laying renal impairment on cardiac disease, and the reverse. For
example sub-total nephrectomy accelerates pathological cardiac
remodeling post-MI when performed 4weeks after infarction
with worse ejection fraction in those animals with renal impair-
ment (100). Similarly when insults are reversed e.g., perform-
ing a sub-total nephrectomy a week before MI, LV damage is
worse and associated with worse creatinine clearance (101) and
renal blood flow, and more proteinuria and glomerulosclero-
sis. Sub-total nephrectomy followed by MI once renal injury is
firmly established leads to more pronounced damage in both
organs (102).

In sub-totally nephrectomized rats, temporary ligation of the
descending branch of the left coronary artery after 3 weeks
resulted in a larger area of cardiac necrosis (devoid of mitochon-
drial oxidation) than sham ligated paired controls. Infarcts after
coronary artery ligation (CAL) were larger in animals with even
modest renal impairment (84). A major disadvantage of these
models is that experimental mortality is high. Although the effect
is mild, reducing renal mass by uninephrectomy is also often used
as a means of accelerating renal disease, but this is not in itself
sufficient to produce a cardiac phenotype (103).

Conclusion

No animal model in isolation reproduces the complexity of dif-
ferent CRS (Table 1). Nevertheless, animal models have provided
valuable insights into the pathogenesis of CRS in all its forms (5).
Like their counterpart clinical trials, animal studies have high-
lighted themechanistic importance of non-traditional risk factors.
To this end the RAAS system, SNS, indirect and direct effects of
the uremic toxins, anemia, inflammation, neurohormonal factors
and disturbances in mineral handling and bone turnover are
all implicated causatively. However, although the small animal
models frequently employed in these studies are readily amenable
to further genetic manipulation and intervention, induction of
injury is generally acute and unphysiological, and these models
often fail to faithfully recapitulate the pathological features of
human CRS.

In this article, we have discussed a range of models that
can be used to mimic the mechanisms of human renal and
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TABLE 1 | Animal models of cardiorenal and renocardiac syndromes, and relative advantages and disadvantages of each.

Model Technique Mechanism Advantages Disadvantages Reference

PRIMARY CARDIAC DISEASE
Coronary artery ligation (CAL) Surgical Myocardial

ischemia (MI)
Widely used, well
characterized

Variable renal pathology (13, 35)

Aortic regurgitation Surgical Cardiac volume
overload

Mild renal pathology (16, 17)

PRIMARY RENAL DISEASE
Sub-total nephrectomy (SNx) Surgical Uremia, renal

insufficiency
Relevant to CKD in general,
well characterized

Highly variable if not performed
uniformly

(21)

SIMULTANEOUS CARDIAC AND RENAL DISEASE
SNx followed by CAL Surgical High mortality (101)

SNx followed by CAL with
established CKD

Surgical Clinical relevance (102)

CAL followed by SNx Surgical High mortality, poorly
characterized

(100)

CAL and uninephrectomy Surgical Lower mortality than SNx,
and more reproducible

Unrepresentative of chronic
kidney disease

(103)

Anthracycline antitumor
antibiotics (e.g., adriamycin)

IV injection Toxicity Simple. Simultaneous cardiac
and renal pathologies

Off target toxicity, cardiac and
renal dose responses differ

(29)

Anemia Simple Mild anemia (29)

L-NAME IV injection NOS inhibition,
SNS activity

Simultaneous cardiac and
renal pathologies

(40)

MODELS OF SYSTEMIC DISEASE WITH CARDIAC AND RENAL PATHOLOGIES
Spontaneously hypertensive rat
(various inbred strains)

Spontaneous Hypertension,
RAAS

Uncommon cause of human
hypertension

(82)

Zucker rat (inbred rat strain with
leptin receptor deficiency)

Spontaneous Dyslipidemia Approximates type 2 diabetes Leptin receptor mutations are
rare in humans

(89)

db/db mouse (leptin receptor
mutation)

Spontaneous Dyslipidemia Approximates type 2 diabetes Leptin receptor mutations are
rare in humans

(91)

Diabetic mRen2 rat (STZ
diabetes in transgenic renin
overexpressing rat)

Spontaneous,
IV injection

hyperglycemia,
hypertension,
RAAS

Accelerated type 1 diabetes,
simultaneous cardiac and
renal functional changes

Hypertension is primary rather
than secondary to diabetes

(85)

Lupus Spontaneous Unrepresentative of human
condition

(96)

Hepatic bile duct ligation Surgical Off target pathology (92, 93)
BONE MINERAL DISORDERS
Phosphate/vitamin D loading
post-SNx

Surgical, oral
intake

Mineral bone
disorder

Widely used, well
characterized

Slow, high mortality, poorly
reproducible with complications,
unphysiological

(60)

Adenine Oral intake Mineral bone
disorder

Simple, rapidly progressive Substantial weight loss
(dehydration)

(61)

Electrocautery in LDLR−/− or
apoE−/− mice

Surgical,
spontaneous

Mineral bone
disorder

Good models of
atherosclerosis

Not widely available, poor
models of arteriosclerosis (lack of
intimal calcification).

(62)

Han:SPRD+/− Spontaneous Mineral bone
disorder

Spontaneous, mimics
chronicity of process

Not widely available, no bone
phenotype, mild calcification
phenotype

(67)

CAL, coronary artery ligation; l-NAME, N-nitro-l-arginine administration; NOS, nitric oxide synthase; MI, myocardial infarction; RAAS, renin angiotensin aldosterone syndrome; SNX,
sub-total nephrectomy.

cardiac disease, and examined how representative they are of
the human condition. While not perfect, careful and ethi-
cal use of animal models offers the opportunity to examine
the complex interactions seen in CRS in an accelerated time
frame.
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